Extremal problems* — Examples_____

Proposition. *G* is an *n*-vertex graph with $\delta(G) \geq \lfloor n/2 \rfloor$, then *G* is connected.

Remark. The above proposition is *best possible*, as shown by $K_{\lfloor n/2 \rfloor} + K_{\lceil n/2 \rceil}$.

Graph G + H is the disjoint union (or sum) of graphs G and H. For an integer m, mG is the graph consisting of m disjoint copies of G.

Prop. + Remark: The maximum value of $\delta(G)$ over disconnected graphs is $\lfloor \frac{n}{2} \rfloor - 1$.

Vague description: An extremal problem asks for the maximum or minimum value of a parameter over a class of objects (graphs, in most cases).

Proposition. The minimum number of edges in a connected graph is n - 1.

*My favorite topic

graph	graph	type of	value of
property	parameter	extremum	extremum
connected	e(G)	minimum	n-1
disconnected	$\delta(G)$	maximum	$\left\lfloor \frac{n}{2} \right floor - 1$
K ₃ -free	e(G)	maximum	$\left\lfloor \frac{n^2}{4} \right\rfloor$

Triangle-free subgraphs_____

Theorem. (Mantel, 1907) The maximum number of edges in an *n*-vertex triangle-free graph is $\lfloor \frac{n^2}{4} \rfloor$.

Proof.

- (*i*) There is a triangle-free graph with $\lfloor \frac{n^2}{4} \rfloor$ edges.
- (*ii*) If G is a triangle-free graph, then $e(G) \leq \lfloor \frac{n^2}{4} \rfloor$.

Proof of (ii) is with extremality. (Look at the neighborhood of a vertex of maximum degree.)

Example of a wrong proof of (ii) by induction.

Bipartite subgraphs____

Theorem. Every loopless multigraph G has a bipartite subgraph with at least e(G)/2 edges.

Proof # 1. Algorithmic. (Start from an arbitrary bipartition and move over a vertex whose degree in its own part is *more* than its degree in the other part. Iterate. Prove that at termination you have what you want.)

Proof # 2. Extremality. (Consider a bipartite subgraph H with the *maximum number of edges*, prove that $d_H(v) \ge d_G(v)/2$ for every vertex $v \in V(G)$ and use the Handshaking Lemma.)

Remark 1. *Maximum vs. maximal.* Algorithmic proof *not* necessarily ends up in bipartite subgraph with maximum number of edges.

Remark 2. The constant multiplier $\frac{1}{2}$ of e(G) in the Theorem is best possible. *Example:* K_n .