
Leaves, trees, forests...

A graph with no cycle is acyclic. An acyclic graph is
called a forest.

A connected acyclic graph is a tree.

A leaf (or pendant vertex) is a vertex of degree 1.

A spanning subgraph of G is a subgraph with vertex
set V (G).

A spanning tree is a spanning subgraph which is a
tree.

Examples. Paths, stars

1



Properties of trees

Lemma. T is a tree, n(T ) ≥ 2⇒ T contains at least
two leaves.
Deleting a leaf from a tree produces a tree.

Theorem (Characterization of trees) For an n-vertex
graph G, the following are equivalent

1. G is connected and has no cycles.

2. G is connected and has n− 1 edges.

3. G has n− 1 edges and no cycles.

4. G has no loops and has, for each u, v ∈ V (G),
exactly one u, v-path.

Corollary.
(i) Every edge of a tree is a cut-edge.

(ii) Adding one edge to a tree forms exactly one cy-
cle.

(iii) Every connected graph contains a spanning tree.

2



Bridg-it∗ by David Gale

∗ c©1960 by Hassenfeld Bros., Inc. — “Hasbro Toys”

3



Who wins in Bridg-it?

Theorem. Player 1 has a winning strategy in Bridg-it.

Proof. Strategy Stealing.

Suppose Player 2 has a winning strategy.

Then here is a winning strategy for Player 1:

Start with an arbitrary move and then pretend to be
Player 2 and play according to Player 2’s winning stra-
tegy. (Note that playground is symmetric!!) If this stra-
tegy calls for the first move of yours, again select an
arbitrary edge. Etc...

Since you play according to a winning strategy, you
win! But we assumed Player 2 also can win⇒ contra-
diction, since both cannot win.

Good, but HOW ABOUT AN EXPLICIT STRATEGY???∗
∗In the divisor-game strategy-stealing proves the existence of a
sure first player win, but NO explicit strategy is known. Similarly
for HEX.

4



An explicit strategy via spanning trees

5



The tool for Player 1.

Proposition. If T and T ′ are spanning trees of a connec-
ted graph G and e ∈ E(T ) \ E(T ′), then there is an
edge e′ ∈ E(T ′) \ E(T ), such that T − e + e′ is a
spanning tree of G.

Proposition. If T and T ′ are spanning trees of a connec-
ted graph G and e ∈ E(T ) \ E(T ′), then there is an
edge e′ ∈ E(T ′) \ E(T ), such that T ′ + e − e′ is a
spanning tree of G.

6



How to build the cheapest road network?

G is a weighted graph if there is a weight function
w : E(G)→ �

.

Weight w(H) of a subgraph H ⊆ G is defined as

w(H) =
∑

e∈E(H)

w(e).

Example:

5

7

10

1

11

12

3

4

9

28

6

7



Kruskal’s Algorithm

Kruskal’s Algorithm

Input: connected graphG, weight functionw : E(G)→
�

, w(e1) ≤ w(e2) ≤ ... ≤ w(em).

Idea: Maintain a spanning forest H of G. At each ite-
ration try to enlarge H by an edge of smallest weight.

Initialization: V (H) = V (G), E(H) = ∅

Iteration:
IF ei goes within one component of H, THEN

iterate
ELSE

update H := H + e

IF H is connected THEN
stop and return H

ELSE iterate

Theorem. In a connected weighted graph G, Krus-
kal’s Algorithm constructs a minimum-weight spanning
tree.

8



Proof of correctness of Kruskal’s Algorithm

Proof. T is the graph produced by the Algorithm.
E(T ) = {f1, . . . , fn−1} andw(f1) ≤ · · · ≤ w(fn−1).

Easy: T is spanning (already at initialization!)
T is a connected (by termination rule) and has no cy-
cle (by iteration rule)⇒ T is a tree.

But WHY is T min-weight?

Let T ∗ be an arbitrary min-weight spanning tree. Let j
be the largest index such that f1, . . . , fj ∈ E(T ∗).

If j = n− 1, then T ∗ = T . Done.

9



Proof of Kruskal, cont’d

If j < n− 1, then fj+1 /∈ E(T ∗).
There is an edge e ∈ E(T ∗), such that
T ∗∗ = T ∗ − e+ fj+1 is a spanning tree.

(i) w(T ∗) − w(e) + w(fj+1) = w(T ∗∗) ≥ w(T ∗)
So w(fj+1) ≥ w(e).

(ii) Key: When we selected fj+1 into T , e was also
available. (The addition of e wouldn’t have created a
cycle, since f1, . . . , fj, e ∈ E(T ∗).)
So w(fj+1) ≤ w(e).

Combining: w(e) = w(fj+1), i.e. w(T ∗∗) = w(T ∗).

Thus T ∗∗ is min-weight spanning tree and it contains
a longer initial segment of the edges of T , than T ∗ did.

Repeating this procedure at most (n − 1)-times, we
transform any min-weight spanning tree into T .

10



Weighted shortest paths

The distance between u and v in graph G is

dG(u, v) = min{e(P ) : P is a u, v-path in G}.

The diameter of G is diam(G) = max
u,v∈V (G)

d(u, v).

The eccentricity of a vertex u is ε(u) = max
v∈V (G)

d(u, v).

The radius of G is rad(G) = min
u∈V (G)

ε(u).

11


