
Matchings

A matching is a set of (non-loop) edges with no sha-
red endpoints. The vertices incident to an edge of a
matching M are saturated by M , the others are un-
saturated. A perfect matching of G is matching which
saturates all the vertices.

Examples. Kn,m, Kn, Petersen graph, Qk; graphs wi-
thout perfect matching

A maximal matching cannot be enlarged by adding
another edge.

A maximum matching of G is one of maximum size.

Example. Maximum 6= Maximal
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Characterization of maximum matchings

Let M be a matching. A path that alternates between
edges in M and edges not in M is called an M -
alternating path.
An M -alternating path whose endpoints are unsatu-
rated by M is called an M -augmenting path.

Theorem(Berge, 1957) A matching M is a maximum
matching of graph G iff G has no M -augmenting path.

Proof. (⇒) Easy.
(⇐) Suppose there is no M -augmenting path and let
M∗ be a matching of maximum size.
What is then M4M∗???

Lemma Let M1 and M2 be matchings of G. Then
each connected component of M14M2 is a path
or an even cycle.

For two sets A and B, the symmetric difference is A4B =

(A \ B) ∪ (B \ A).
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Hall’s Condition and consequences

Theorem (Marriage Theorem; Hall, 1935) Let G be a
bipartite (multi)graph with partite sets X and Y . Then
there is a matching in G saturating X iff |N(S)| ≥ |S|

for every S ⊆ X.

Proof. (⇒) Easy.

(⇐) Not so easy. Find an M -augmenting path for any
matching M which does not saturate X.
(Let U be the M -unsaturated vertices in X. Define

T := {y ∈ Y : ∃ M -alternating U, y-path},

S := {x ∈ X : ∃ M -alternating U, x-path}.

Unless there is an M -augmenting path, S∪U violates
Hall’s condition.)

Corollary. (Frobenius (1917)) For k > 0, every k-
regular bipartite (multi)graph has a perfect matching.
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Graph parameters — Definitions and simple
properties

The size of the largest independent set in G is deno-
ted by α(G).

The size of the largest matching (independent set of
edges) in G is denoted by α′(G).

A vertex cover of G is a set Q ⊆ V (G) that contains
at least one endpoint of every edge. (The vertices in
Q cover E(G)).
The size of the smallest vertex cover in G is denoted
by β(G).

Claim. β(G) ≥ α′(G).

An edge cover of G is a set L of edges such that every
vertex of G is incident to some edge in L.
The size of the smallest edge cover in G is denoted
by β′(G).

Claim. β′(G) ≥ α(G).
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Certificates

Suppose we knew that in some graph G with 1121

edges on 200 vertices, a particular set of 87 edges
is (one of) the largest matching one could find. How
could we convince somebody about this?

Once the particluar 87 edges are shown, it is easy to
check that they are a matching, indeed.

But why isn’t there a matching of size 88? Verifying
that none of the

(

1121
88

)

edgesets of size 88 forms a
matching could take some time...

If we happen to be so lucky, that we are able to exhi-
bit a vertex cover of size 87, we are saved. It is then
reasonable to check that all 1121 edges are covered
by the particular set of 87 vertices.

Exhibiting a vertex cover of a certain size proves that
no larger matching can be found.
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Min-max theorems for bipartite graphs

Theorem. (König (1931), Egerváry (1931)) If G is bi-
partite then β(G) = α′(G).

Proof. For any minimum vertex cover Q, apply Hall’s
Condition to match Q ∩ X into Y \ Q and Q ∩ Y into
X \ Q.

Lemma. Let G be any graph. S ⊆ V (G) is an inde-
pendent set iff S is a vertex cover.
Hence α(G) + β(G) = n(G).

Proof. Easy.

Theorem. (Gallai, 1959) Let G be any graph without
isolated vertices. Then α′(G) + β′(G) = n(G).

Corollary. (König, 1916) Let G be a bipartite graph
with no isolated vertices. Then α(G) = β′(G).

Proof. Put together the previous three statements.
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How to find a maximum matching
in bipartite graphs?

Augmenting Path Algorithm

Input. A bipartite graph G with partite sets X and Y ,
a matching M in G,
the set U of unsaturated vertices in X.

Output. EITHER an M -augmenting path OR a certifi-
cate (a cover of the same size) that M is maximum.

Idea. Explore M -alternating paths from U , letting S ⊆

X and T ⊆ Y be the sets of vertices reached. Mark
vertices of S that have been explored for path exten-
sions. As a vertex is reached, record the vertex from
which it is reached.

Initialization. S = U and T = ∅.
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Iteration.
IF all vertices in S are marked THEN

stop and report that M is a maximum matching
and T ∪ (X \ S), is a cover of the same size.

ELSE

select an unmarked x ∈ S and explore its neigh-
bors y ∈ N(x), for which xy 6∈ M .
IF y is unsaturated, THEN

stop and report an M -augmenting path from
U to y.

ELSE

∃w ∈ X with yw ∈ M . Update
T := T ∪ {y} (y is reached from x),
S := S ∪ {w} (w is reached from y).

After exploring all neighbors of x, mark x and
iterate.

Theorem. Repeatadly applying the Augmenting Path
Algorithm to a bipartite graph produces a maximum
matching and a minimum vertex cover.

If G has n vertices and m edges, then this algorithm
finds a maximum matching in O(nm) time.
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Proof of correctness

If Augmenting Path Algorithm does what it supposed
to, then after at most n/2 application we can produce
a maximum matching.
Why does the APA terminate? It touches each edge
at most once. Hence running time is O(nm).

What if an M -augmenting path is returned? It is OK,
since y is an unsaturated neighbor of x ∈ S, and x
can be reached from U on an M -alternating path.

What if the APA returns M as maximum matching and
T ∪ (X \ S) as minimum cover?

Then all edges leaving S were explored, so there is
no edge between S and Y \ T .
• Hence T ∪ (X \ S) is indeed a cover.

• |M | = |T | + |X \ S| (By selection of S and T .)

If a cover and a matching have the same size in any
graph, then they are both optimal.

|M | ≤ α′(G) ≤ β(G) ≤ |T ∪ (X \ S)| = |M |.
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