How to find a maximum weight matching in a
bipartite graph?

In the maximum weighted matching problem a non-
negative weight w; ; is assigned to each edge x;y; of
Kn n and we seek a perfect matching M to maximize
the total weight w(M) = > .cpr w(e).

With these weights, a (weighted) cover is a choice of
labels u1,...,un and vy, ..., vy, such that u; +v; >
w; ; for all 7, j. The cost c(u,v) of a cover (u,v) is
> u;+ > v;. The minimum weighted cover problem is
that of finding a cover of minimum cost.

Duality Lemma For a perfect matching M and a weigh-
ted cover (u, v) in a bipartite graph G, c(u,v) > w(M).
Also, c(u,v) = w(M) Iif M consists of edges z;y;
such that u; + v; = w; ;. In this case, M and (u,v)
are both optimal.



The algorithm

The equality subgraph G ., for a weighted cover (u, v)
Is the spanning subgraph of Ky n whose edges are
the pairs z;y; such that u; + v; = w; ;. In the cover,
the excess for 4, 7 is u; + v; — w; ;.

Hungarian Algorithm

Input. A matrix of weights on the edges of Ky, .,
with partite sets X and Y.

Idea. Iteratively adjusting a cover until the equa-
lity subgraph G, has a perfect matching.

Initialization. Let u; = max{w;; : j = 1,...,n}
and Vj = 0.



lteration.

Gu,v and a maximum matching M in it.
IF M is a perfect matching, THEN
stop and report M as a maximum weight matching
and (u,v) as a minimum cost cover

ELSE
let Q) be a vertex cover of size |M|in Gy .
R =XnNQ
T =YNAQ

€ .= min{uz-—l—vj—wi,j . T EX\R,yj ceY\T}
Update v and v:
u; i=u; —eife; € X\ R
v i=wvjteify; €T
Iterate

Theorem The Hungarian Algorithm finds a maximum
weight matching and a minimum cost cover.



The Assignment Problem — An example
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The Duality Lemma states that if w(M) = c¢(u,v) for
some cover (u,v), then M is maximum weight.

We found a maximum weight matching (transversal).
The fact that it is maximum is certified by the indicated
cover, which has the same cost:
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54+7+4+8+4=
1404142424+
3+74+34+6+4+3=c(u,v)

w(M)



Hungarian Algorithm — Proof of correctness

Proof. If the algorithm ever terminates and G is the
equality subgraph of a (u, v), which is indeed a cover,
then M is a m.w.m. and (u,v) is a m.c.c. by Duality
Lemma.

Why is (u,v), created by the iteration, a cover?
Let z;y; € E(Kn,n). Check the four cases.

x; € R, y; €Y \T = wu;andwv;do notchange.
z; € R y: €T _  u; does not change

’ / v; increases.
z; € X\ R, y;€T _,  u; decreases by e,

v; increases by e.

i€ X\R, yjeY\T = Uitv2w,
by definition of e.

Why does the algorithm terminate?

M is a matching in the new G« as well. So either
() max matching gets larger or

(41) # of vertices reached from U by M-alternating
paths grows. (U is the set of unsaturated vertices of M in X.)
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Matchings in general graphs

An odd component is a connected component with an
odd number of vertices. Denote by o(G) the number
of odd components of a graph G.

Theorem. (Tutte, 1947) A graph GG has a perfect mat-
ching iff o(G — S) < | S| for every subset S C V(G).

Proof.
= Easy.

< (Lovasz, 1975) Consider a counterexample G with
the maximum number of edges.

Claim. G + xy has a perfect matching for any xy ¢
E(G).



Proof of Tutte’s Theorem — Continued

Define U := {v € V(G) : dg(v) =n(G) — 1}

Case 1. G — U consists of disjoint cliques.

Proof: Straightforward to construct a perfect matching
of G.

Case 2. G — U is not the disjoint union of cliques.

Proof: Derive the existence of the following subgraph.

-- ¢ EG)

— ¢ E(G)

Obtain contradiction by constructing a perfect matching
M of GG using perfect matchings M7 and M, of G4z =z
and G 4+ yw, respectively.



Corollaries

Corollary. (Berge,1958) For a subset S C V(G) let
d(S) = o(G — S) —|S|. Then

2a'(G) =min{n —d(S) : S CV(G)}.

Proof. (<) Easy.
(>) Apply Tutte’s Theoremto G v K.

Corollary. (Petersen, 1891) Every 3-regular graph with
no cut-edge has a perfect matching.

Proof. Check Tutte’s condition. Let S C V(G).
Double-count the number of edges between an .S and
the odd components of G — S.

Observe that between any odd component and S the-
re are at least three edges.
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Factors

A factor of a graph is a spanning subgraph. A /-factor
IS a spanning k-regular subgraph.

Every regular bipartite graph has a 1-factor.
Not every regular graph has a 1-factor.
But...

Theorem. (Petersen, 1891) Every 2k-regular graph
has a 2-factor.

Proof. Use Eulerian cycle of G to create an auxiliary
k-regular bipartite graph H, such that a perfect mat-
ching in H corresponds to a 2-factor in G.
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