How to find a maximum weight matching in a bipartite graph?

In the maximum weighted matching problem a nonnegative weight $w_{i,j}$ is assigned to each edge x_iy_j of $K_{n,n}$ and we seek a perfect matching M to maximize the total weight $w(M) = \sum_{e \in M} w(e).$

With these weights, a (weighted) cover is a choice of labels u_1, \ldots, u_n and v_1, \ldots, v_n , such that $u_i + v_j \geq$ $w_{i,j}$ for all i, j . The cost $c(u, v)$ of a cover (u, v) is $\sum u_i + \sum v_j$. The minimum weighted cover problem is that of finding a cover of minimum cost.

Duality Lemma For a perfect matching M and a weighted cover (u, v) in a bipartite graph $G, c(u, v) \geq w(M)$. Also, $c(u, v) = w(M)$ iff M consists of edges $x_i y_j$ such that $u_i + v_j = w_{i,j}$. In this case, M and (u, v) are both optimal.

The algorithm______

The equality subgraph $G_{u,v}$ for a weighted cover (u,v) is the spanning subgraph of $K_{n,n}$ whose edges are the pairs x_iy_j such that $u_i + v_j = w_{i,j}$. In the cover, the excess for i, j is $u_i + v_j - w_{i,j}$.

Hungarian Algorithm

Input. A matrix $(w_{i,j})$ of weights on the edges of $K_{n,n}$ with partite sets X and Y .

Idea. Iteratively adjusting a cover (u, v) until the equality subgraph $G_{u,v}$ has a perfect matching.

Initialization. Let $u_i = \max\{w_{i,j} : j = 1, \ldots, n\}$ and $v_j = 0$.

Iteration.

Form $G_{u,v}$ and find a maximum matching M in it. IF M is a perfect matching, THEN **stop** and **report** M as a maximum weight matching and (u, v) as a minimum cost cover ELSE let Q be a vertex cover of size $|M|$ in $G_{u,v}$. $R := X \cap Q$ $T := Y \cap Q$ $\epsilon := \min\{u_i + v_j - w_{i,j} : x_i \in X \setminus R, y_j \in Y \setminus T\}$ **Update** u and v: $u_i := u_i - \epsilon$ if $x_i \in X \setminus R$ $v_j := v_j + \epsilon$ if $y_j \in T$ **Iterate**

Theorem The Hungarian Algorithm finds a maximum weight matching and a minimum cost cover.

The Assignment Problem - An example_

$$
\left(\n\begin{array}{ccccccc}\n1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 7 & 2 \\
1 & 3 & 4 & 4 & 5 \\
3 & 6 & 2 & 8 & 7 \\
4 & 1 & 3 & 5 & 4\n\end{array}\n\right)
$$

 $\epsilon = 1$

The Duality Lemma states that if $w(M) = c(u, v)$ for some cover (u, v) , then M is maximum weight.

We found a maximum weight matching (transversal). The fact that it is maximum is certified by the indicated cover, which has the same cost:

$$
\begin{array}{r} 1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \\ 7 \ 6 \ 7 \ 8 \ 7 \ 2 \\ 3 \ 1 \ 3 \ 4 \ 4 \ 5 \\ 6 \ 3 \ 6 \ 2 \ 8 \ 7 \\ 4 \ 1 \ 3 \ 5 \ 4 \end{array}
$$

\n
$$
w(M) = 5 + 7 + 4 + 8 + 4 = 28 =
$$

\n
$$
= 1 + 0 + 1 + 2 + 2 +
$$

\n
$$
3 + 7 + 3 + 6 + 3 = c(u, v)
$$

Hungarian Algorithm — Proof of correctness

Proof. If the algorithm ever terminates and $G_{u,v}$ is the equality subgraph of a (u, v) , which is indeed a cover, then M is a m.w.m. and (u, v) is a m.c.c. by Duality Lemma.

Why is (u, v) , created by the iteration, a cover? Let $x_iy_j \in E(K_{n,n})$. Check the four cases.

 $x_i \in R$, $y_j \in Y \setminus T \implies u_i$ and v_j do not change. $x_i \in R$, $y_j \in T$ \Rightarrow u_i does not change
 v_i increases. v_j increases. $x_i \in X \setminus R$, $y_j \in T$ \Rightarrow u_i decreases by ϵ , v_j increases by $\epsilon.$ $x_i \in X \setminus R$, $y_j \in Y \setminus T \Rightarrow u_i + v_j \geq w_{i,j}$ by definition of ϵ .

Why does the algorithm terminate?

M is a matching in the new $G_{u,v}$ as well. So either (i) max matching gets larger or

 $(ii) \#$ of vertices reached from U by M-alternating paths grows. (U is the set of unsaturated vertices of M in X.) Matchings in general graphs

An odd component is a connected component with an odd number of vertices. Denote by $o(G)$ the number of odd components of a graph G.

Theorem. (Tutte, 1947) A graph G has a perfect matching iff $o(G - S) \leq |S|$ for every subset $S \subseteq V(G)$.

Proof.

 \Rightarrow Easy.

 \Leftarrow (Lovász, 1975) Consider a counterexample G with the maximum number of edges.

Claim. $G + xy$ has a perfect matching for any $xy \notin$ $E(G)$.

Proof of Tutte's Theorem — Continued

Define $U := \{v \in V(G) : d_G(v) = n(G) - 1\}$

Case 1. $G - U$ consists of disjoint cliques.

Proof: Straightforward to construct a perfect matching of G .

Case 2. $G - U$ is not the disjoint union of cliques.

Proof: Derive the existence of the following subgraph.

Obtain contradiction by constructing a perfect matching M of G using perfect matchings M_1 and M_2 of $G+xz$ and $G + yw$, respectively.

Corollaries

Corollary. (Berge, 1958) For a subset $S \subseteq V(G)$ let $d(S) = o(G - S) - |S|$. Then

 $2\alpha'(G) = \min\{n - d(S) : S \subseteq V(G)\}.$

Proof. $(<)$ Easy. (\geq) Apply Tutte's Theorem to $G \vee K_d$.

Corollary. (Petersen, 1891) Every 3-regular graph with no cut-edge has a perfect matching.

Proof. Check Tutte's condition. Let $S \subset V(G)$. Double-count the number of edges between an S and the odd components of $G - S$.

Observe that between any odd component and S there are at least three edges.

Factors

A factor of a graph is a spanning subgraph. A k -factor is a spanning k -regular subgraph.

Every regular bipartite graph has a 1-factor.

Not every regular graph has a 1-factor.

But...

Theorem. (Petersen, 1891) Every 2k-regular graph has a 2-factor.

Proof. Use Eulerian cycle of G to create an auxiliary k -regular bipartite graph H , such that a perfect matching in H corresponds to a 2-factor in G .