How to find a maximum weight matching in a
bipartite graph?

In the maximum weighted matching problem a non-
negative weight w; ; is assigned to each edge z;y; of
Knn and we seek a perfect matching M to maximize
the total weight w(M) = Y .cps w(e).

With these weights, a (weighted) cover is a choice of
labels uy, ..., un and vy, ..., vy, such that u; +v; >
w; j for all 4, 5. The cost c(u,v) of a cover (u,v) is
> ui =+ > v;. The minimum weighted cover problem is
that of finding a cover of minimum cost.

Duality Lemma For a perfect matching M and a weigh-
ted cover (u, v) in a bipartite graph G, c(u, v) > w(M).
Also, c(u,v) = w(M) iff M consists of edges z;y;
such that u; + v; = w; ;. In this case, M and (u, v)
are both optimal.

The algorithm

The equality subgraph G, for a weighted cover (u, v)
is the spanning subgraph of K, , whose edges are
the pairs z;y; such that u; + v; = w; ;. In the cover,
the excess for 4, j is u; + v; — w; ;.

Hungarian Algorithm

Input. A matrix of weights on the edges of Ky, .,
with partite sets X and Y.

Idea. Iteratively adjusting a cover until the equa-
lity subgraph G, has a perfect matching.

Initialization. Let u; = max{w;; : j = 1,...,n}
andv; = 0.

Iteration.

Gu,v and a maximum matching M in it.
IF M is a perfect matching, THEN
stop and report M as a maximum weight matching
and (u, v) as a minimum cost cover

ELSE
let Q be a vertex cover of size |[M| in Gy p.
R:=XNQ
T:=YNQ

e:=min{u; +vj —w; ;i x; € X\ Ry, € Y\T}
Update u and v:
ui=u; —eifz; € X\ R
v =vjteify; €T
Iterate

Theorem The Hungarian Algorithm finds a maximum
weight matching and a minimum cost cover.

The Assignment Problem — An example____
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The Duality Lemma states that if w(M) = c(u,v) for
some cover (u,v), then M is maximum weight.

We found a maximum weight matching (transversal).
The fact that it is maximum is certified by the indicated
cover, which has the same cost:

10122
3 1 23 435
7 6 7872
3 1 34405
6 36287
3 4 1 35 4

w(M) = 54+7+4+8+4=023=
= 140+4+1424+2+
347434643 =-c(u,v)

Hungarian Algorithm — Proof of correctness

Proof. If the algorithm ever terminates and G is the
equality subgraph of a (u, v), which is indeed a cover,
then M is a m.w.m. and (u,v) is a m.c.c. by Duality
Lemma.

Why is (u,v), created by the iteration, a cover?
Let z;y; € E(Kn,n). Check the four cases.

z; € R, yj € Y\T = w;andv;donotchange.

u; does not change

xz; € R, y; €T = ;
vj INncreases.

;€ X\R, y; €T —  ujdecreases by,
v; increases by e.

2 € X\R, yjeY\T = uitv=wi
by definition of .
Why does the algorithm terminate?
M is a matching in the new G as well. So either
(i) max matching gets larger or

(i) #£ of vertices reached from U by M-alternating
paths grows. (U is the set of unsaturated vertices of M in X.)
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Matchings in general graphs

An odd component is a connected component with an
odd number of vertices. Denote by o(G) the number
of odd components of a graph G.

Theorem. (Tutte, 1947) A graph G has a perfect mat-
ching iff o(G — S) < | S| for every subset S C V(G).

Proof.
= Easy.

< (Lovész, 1975) Consider a counterexample G with
the maximum number of edges.

Claim. G 4+ xy has a perfect matching for any zy ¢
E(G).




Proof of Tutte’s Theorem — Continued

Define U := {v € V(G) : d(v) = n(G) — 1}

Case 1. G — U consists of disjoint cliques.

Proof: Straightforward to construct a perfect matching
of G.

Case 2. G — U is not the disjoint union of cliques.

Proof: Derive the existence of the following subgraph.

-- ¢EG)

— € E(G)

Obtain contradiction by constructing a perfect matching
M of G using perfect matchings M4 and M of G4zz
and G + yw, respectively.

Corollaries

Corollary. (Berge,1958) For a subset S C V(QG) let
d(S) = o(G — S) —|S|. Then

20/ (G) =min{n —d(S) : S C V(G)}.

Proof. (<) Easy.
(>) Apply Tutte's Theoremto G V K.

Corollary. (Petersen, 1891) Every 3-regular graph with
no cut-edge has a perfect matching.

Proof. Check Tutte’s condition. Let S C V(G).
Double-count the number of edges between an S and
the odd components of G — S.

Observe that between any odd component and S the-
re are at least three edges.
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Factors

A factor of a graph is a spanning subgraph. A k-factor
is a spanning k-regular subgraph.

Every regular bipartite graph has a 1-factor.

Not every regular graph has a 1-factor.

But...

Theorem. (Petersen, 1891) Every 2k-regular graph

has a 2-factor.

Proof. Use Eulerian cycle of G to create an auxiliary
k-regular bipartite graph H, such that a perfect mat-
ching in H corresponds to a 2-factor in G.
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