How to find a maximum weight matching in a bipartite graph?_

In the maximum weighted matching problem a nonnegative weight $w_{i,j}$ is assigned to each edge $x_i y_j$ of $K_{n,n}$ and we seek a perfect matching M to maximize the total weight $w(M) = \sum_{e \in M} w(e)$.

With these weights, a (weighted) cover is a choice of labels u_1, \ldots, u_n and v_1, \ldots, v_n , such that $u_i + v_i \ge 1$ $w_{i,j}$ for all i, j. The cost c(u, v) of a cover (u, v) is $\sum u_i + \sum v_j$. The minimum weighted cover problem is that of finding a cover of minimum cost.

Duality Lemma For a perfect matching M and a weighted cover (u, v) in a bipartite graph $G, c(u, v) \ge w(M)$. Also, c(u, v) = w(M) iff M consists of edges $x_i y_i$ such that $u_i + v_j = w_{i,j}$. In this case, M and (u, v)are both optimal.

The algorithm_

The equality subgraph $G_{u,v}$ for a weighted cover (u, v)is the spanning subgraph of $K_{n,n}$ whose edges are the pairs $x_i y_j$ such that $u_i + v_j = w_{i,j}$. In the cover, the excess for i, j is $u_i + v_j - w_{i,j}$.

Hungarian Algorithm

Input. A matrix $(w_{i,j})$ of weights on the edges of $K_{n,n}$ with partite sets X and Y.

Idea. Iteratively adjusting a cover (u, v) until the equality subgraph $G_{u,v}$ has a perfect matching.

Initialization. Let $u_i = \max\{w_{i,j} : j = 1, \dots, n\}$ and $v_j = 0$.

2

Iteration.

Form $G_{u,v}$ and find a maximum matching M in it. IF M is a perfect matching, THEN stop and report M as a maximum weight matching and (u, v) as a minimum cost cover ELSE let Q be a vertex cover of size |M| in $G_{u,v}$. $R := X \cap Q$ $T := Y \cap Q$ $\epsilon := \min\{u_i + v_j - w_{i,j} : x_i \in X \setminus R, y_j \in Y \setminus T\}$ Update u and v: $u_i := u_i - \epsilon$ if $x_i \in X \setminus R$ $v_j := v_j + \epsilon \text{ if } y_j \in T$ Iterate

Theorem The Hungarian Algorithm finds a maximum weight matching and a minimum cost cover.

The Assignment Problem — An example_

1	1	2	3	4	5
	6	1	8	(2
	1	3	4	4	5
	3	6	2	8	7
(4	1	3	5	4

Excess Matrix

T

4

2

5

8

5

8

5

Equality Subgraph

4

 $\epsilon = 1$

3

1

5

7

The Duality Lemma states that if w(M) = c(u, v) for some cover (u, v), then M is maximum weight.

We found a maximum weight matching (transversal). The fact that it is maximum is certified by the indicated cover, which has the same cost:

Hungarian Algorithm — Proof of correctness

Proof. If the algorithm ever terminates and $G_{u,v}$ is the equality subgraph of a (u, v), which is indeed a cover, then M is a m.w.m. and (u, v) is a m.c.c. by Duality Lemma.

Why is (u, v), created by the iteration, a cover? Let $x_i y_j \in E(K_{n,n})$. Check the four cases. $x_i \in R$, $y_j \in Y \setminus T \Rightarrow u_i$ and v_j do not change. $x_i \in R$, $y_j \in T \Rightarrow u_i$ does not change v_j increases. $x_i \in X \setminus R$, $y_j \in T \Rightarrow u_i$ decreases by ϵ , v_j increases by ϵ .

$$x_i \in X \setminus R, \quad y_j \in Y \setminus T \quad \Rightarrow \quad \begin{array}{l} u_i + v_j \ge w_{i,j} \\ \text{by definition of } \epsilon. \end{array}$$

Why does the algorithm terminate?

M is a matching in the new $G_{u,v}$ as well. So either (*i*) max matching gets larger or

(*ii*) # of vertices reached from U by M-alternating paths grows. (U is the set of unsaturated vertices of M in X.)

Matchings in general graphs_

An odd component is a connected component with an odd number of vertices. Denote by o(G) the number of odd components of a graph G.

Theorem. (Tutte, 1947) A graph G has a perfect matching iff $o(G - S) \leq |S|$ for every subset $S \subseteq V(G)$.

Proof.

 \Rightarrow Easy.

 \Leftarrow (Lovász, 1975) Consider a counterexample *G* with the maximum number of edges.

Claim. G + xy has a perfect matching for any $xy \notin E(G)$.

8

6

Proof of Tutte's Theorem — Continued_____

Define $U := \{v \in V(G) : d_G(v) = n(G) - 1\}$

Case 1. G - U consists of disjoint cliques.

Proof: Straightforward to construct a perfect matching of G.

Case 2. G - U is not the disjoint union of cliques.

Proof: Derive the existence of the following subgraph.

Obtain contradiction by constructing a perfect matching M of G using perfect matchings M_1 and M_2 of G+xz and G + yw, respectively.

Corollaries_

Corollary. (Berge,1958) For a subset $S \subseteq V(G)$ let d(S) = o(G - S) - |S|. Then

 $2\alpha'(G) = \min\{n - d(S) : S \subseteq V(G)\}.$

Proof. (\leq) Easy.

(\geq) Apply Tutte's Theorem to $G \vee K_d$.

Corollary. (Petersen, 1891) Every 3-regular graph with no cut-edge has a perfect matching.

Proof. Check Tutte's condition. Let $S \subseteq V(G)$. Double-count the number of edges between an S and the odd components of G - S.

Observe that between any odd component and S there are at least three edges.

10

Factors_

A factor of a graph is a spanning subgraph. A k-factor is a spanning k-regular subgraph.

Every regular bipartite graph has a 1-factor.

Not every regular graph has a 1-factor.

But...

Theorem. (Petersen, 1891) Every 2k-regular graph has a 2-factor.

Proof. Use Eulerian cycle of G to create an auxiliary k-regular bipartite graph H, such that a perfect matching in H corresponds to a 2-factor in G.

9