Connectivity_____

A separating set (or vertex cut) of a graph G is a set $S \subseteq V(G)$ such that G - S has more than one component. For $G \neq K_n$, the connectivity of G is $\kappa(G) := \min\{|S| : S \text{ is a vertex cut}\}$. By definition, $\kappa(K_n) := n - 1$. A graph G is k-connected if there is no vertex cut of size k - 1. (i.e. $\kappa(G) \geq k$)

Examples.
$$\kappa(K_{n,m}) = \min\{n, m\}$$

 $\kappa(Q_d) = d$

Extremal problem: What is the minimum number of edges in a k-connected graph?

Theorem. For every n, the minimum number of edges in a k-connected graph is $\lceil kn/2 \rceil$.

Proof:

```
min \geq \lceil kn/2 \rceil, since k \leq \kappa(G) \leq \delta(G)
min \leq \lceil kn/2 \rceil; Example: Harary graphs H_{k,n}.
```

Edge-connectivity_____

A disconnecting set of a multigraph G is a set $F \subseteq E(G)$ of edges such that G - F has more than one component. The edge-connectivity of G is

```
\kappa'(G) := \min\{|F| : F \text{ is a disconnecting set}\}.
```

A graph G is k-edge-connected if there is no disconnecting set of size k-1 (i.e. $\kappa'(G) \geq k$).

An edge cut is an edge-set of the form $[S, \bar{S}]$, where $\emptyset \neq S \neq V(G)$ and $\bar{S} = V(G) \setminus S$.

For
$$S, T \subseteq V(G)$$
, $[S, T] := \{xy \in E(G) : x \in S, y \in T\}$.

Implications. edge cut ⇒ disconnecting set
 edge cut ≠ disconnecting set
 edge cut ← minimal disconnecting set

Theorem. (Whitney, 1932) If G is a simple graph, then $\kappa(G) \le \kappa'(G) \le \delta(G)$.

Homework. Example of a graph G with $\kappa(G) = k$, $\kappa'(G) = l$, $\delta(G) = m$, for any $0 < k \le l \le m$.

Theorem. G is 3-regular $\Rightarrow \kappa(G) = \kappa'(G)$.

Characterization of 2-connected graphs_____

Theorem. (Whitney,1932) Let G be a graph, $n(G) \ge 3$. Then G is 2-connected iff for every $u, v \in V(G)$ there exist two internally disjoint u, v-paths in G.

Theorem. Let G be a graph with $n(G) \geq 3$. Then the following four statements are equivalent.

- (i) G is 2-connected
- (ii) For all $x, y \in V(G)$, there are two internally disjoint x, y-path.
- (iii) For all $x, y \in V(G)$, there is a cycle through x and y.
- (iv) $\delta(G) \geq 1$, and every pair of edges of G lies on a common cycle.

Expansion Lemma. Let G' be a supergraph of a k-connected graph G obtained by adding one vertex to V(G) with at least k neighbors.

Then G' is k-connected as well.

Menger's Theorem_

Given $x, y \in V(G)$, a set $S \subseteq V(G) \setminus \{x, y\}$ is an x, y-separator (or an x, y-cut) if G - S has no x, y-path.

A set \mathcal{P} of paths is called pairwise internally disjoint (p.i.d.) if for any two path $P_1, P_2 \in \mathcal{P}$, P_1 and P_2 have no common internal vertices.

Define

$$\kappa(x,y) := \min\{|S| : S \text{ is an } x,y\text{-cut,}\} \text{ and } \lambda(x,y) := \max\{|\mathcal{P}| : \mathcal{P} \text{ is a set of p.i.d. } x,y\text{-paths}\}$$

Local Vertex-Menger Theorem (Menger, 1927) Let $x, y \in V(G)$, such that $xy \notin E(G)$. Then

$$\kappa(x,y) = \lambda(x,y).$$

Corollary (Global Vertex-Menger Theorem) A graph G is k-connected iff for any two vertices $x, y \in V(G)$ there exist k p.i.d. x, y-paths.

Proof: Lemma. For every $e \in E(G)$, $\kappa(G - e) \ge \kappa(G) - 1$.

Edge-Menger_____

Given $x, y \in V(G)$, a set $F \subseteq E(G)$ is an x, y-disconnecting set if G - F has no x, y-path. Define

 $\kappa'(x,y) := \min\{|F| : F \text{ is an } x, y\text{-disconnecting set,}\}$ $\lambda'(x,y) := \max\{|\mathcal{P}| : \mathcal{P} \text{ is a set of p.e.d.* } x, y\text{-paths}\}$

Local Edge-Menger Theorem For all $x, y \in V(G)$,

$$\kappa'(x,y) = \lambda'(x,y).$$

Proof. Apply Menger's Theorem for the line graph of G', where $V(G') = V(G) \cup \{s,t\}$ and $E(G') = E(G) \cup \{sx,yt\}$.

The line graph L(G) of a graph G is defined by V(L(G)) := E(G), $E(L(G)) := \{ef : e \text{ and } f \text{ share an endpoint}\}.$

Corollary (Global Edge-Menger Theorem) Multigraph G is k-edge-connected iff there is a set of k p.e.d.x, y-paths for any two vertices x and y.

^{*} p.e.d. means pairwise edge-disjoint