Connectivity_____

A separating set (or vertex cut) of a graph G is a set $S \subseteq V(G)$ such that G-S has more than one component. For $G \ne K_n$, the connectivity of G is $\kappa(G) := \min\{|S| : S \text{ is a vertex cut}\}$. By definition, $\kappa(K_n) := n-1$. A graph G is k-connected if there is no vertex cut of size k-1. (i.e. $\kappa(G) \ge k$)

Examples.
$$\kappa(K_{n,m}) = \min\{n, m\}$$

 $\kappa(Q_d) = d$

Extremal problem: What is the minimum number of edges in a *k*-connected graph?

Theorem. For every n, the minimum number of edges in a k-connected graph is $\lceil kn/2 \rceil$.

Proof:

```
\begin{array}{ll} \min & \geq & \lceil kn/2 \rceil, \text{ since } k \leq \kappa(G) \leq \delta(G) \\ \min & \leq & \lceil kn/2 \rceil; \text{ Example: Harary graphs } H_{k,n}. \end{array}
```

1

Edge-connectivity___

A disconnecting set of a multigraph G is a set $F\subseteq E(G)$ of edges such that G-F has more than one component. The edge-connectivity of G is

$$\kappa'(G) := \min\{|F| : F \text{ is a disconnecting set}\}.$$

A graph G is k-edge-connected if there is no disconnecting set of size k-1 (i.e. $\kappa'(G) \geq k$).

An edge cut is an edge-set of the form $[S, \bar{S}]$, where $\emptyset \neq S \neq V(G)$ and $\bar{S} = V(G) \setminus S$.

For
$$S, T \subseteq V(G)$$
, $[S, T] := \{xy \in E(G) : x \in S, y \in T\}$.

Implications. edge cut ⇒ disconnecting set edge cut ≠ disconnecting set edge cut ← minimal disconnecting set

Theorem. (Whitney, 1932) If G is a simple graph, then $\kappa(G) \le \kappa'(G) \le \delta(G)$.

Homework. Example of a graph G with $\kappa(G) = k$, $\kappa'(G) = l$, $\delta(G) = m$, for any $0 < k \le l \le m$.

Theorem. G is 3-regular $\Rightarrow \kappa(G) = \kappa'(G)$.

2

Characterization of 2-connected graphs_

Theorem. (Whitney,1932) Let G be a graph, $n(G) \ge 3$. Then G is 2-connected iff for every $u, v \in V(G)$ there exist two internally disjoint u, v-paths in G.

Theorem. Let G be a graph with $n(G) \ge 3$. Then the following four statements are equivalent.

- (i) G is 2-connected
- (ii) For all $x,y\in V(G)$, there are two internally disjoint x,y-path.
- (iii) For all $x, y \in V(G)$, there is a cycle through x and y.
- (iv) $\delta(G) \geq 1$, and every pair of edges of G lies on a common cycle.

Expansion Lemma. Let G' be a supergraph of a k-connected graph G obtained by adding one vertex to V(G) with at least k neighbors.

Then G' is k-connected as well.

Menger's Theorem___

Given $x,y\in V(G)$, a set $S\subseteq V(G)\setminus\{x,y\}$ is an x,y-separator (or an x,y-cut) if G-S has no x,y-path.

A set $\mathcal P$ of paths is called pairwise internally disjoint (p.i.d.) if for any two path $P_1,P_2\in\mathcal P$, P_1 and P_2 have no common internal vertices.

Define

```
\begin{split} \kappa(x,y) &:= \min\{|S|: S \text{ is an } x,y\text{-cut,}\} \text{ and } \\ \lambda(x,y) &:= \max\{|\mathcal{P}|: \mathcal{P} \text{ is a set of p.i.d. } x,y\text{-paths}\} \end{split}
```

Local Vertex-Menger Theorem (Menger, 1927) Let $x,y\in V(G)$, such that $xy\not\in E(G)$. Then

$$\kappa(x,y) = \lambda(x,y).$$

Corollary (Global Vertex-Menger Theorem) A graph G is k-connected iff for any two vertices $x, y \in V(G)$ there exist k p.i.d. x, y-paths.

Proof: Lemma. For every $e \in E(G)$, $\kappa(G - e) \ge \kappa(G) - 1$.

4

 $E(G') = E(G) \cup \{sx, yt\}.$ The line graph L(G) of a graph G is defined by V(L(G)) := E(G),

 $E(L(G)) := \{ef : e \text{ and } f \text{ share an endpoint}\}.$

Corollary (Global Edge-Menger Theorem) Multigraph G is k-edge-connected iff there is a set of k p.e.d.x, y-paths for any two vertices x and y.

5