
Directed graphs

A directed (multi)graph (or digraph) is a triple consi-
sting of a vertex set V (G), edge set E(G), and a
function assigning each edge an ordered pair of verti-
ces.

For an edge e = (x, y), x is the tail of e, y is its head.

By path and cycle in a directed graph we always mean
directed path and directed cycle.

A directed graph is weakly connected if the underlying
undirected graph is connected; it is strongly connec-
ted or strong if there is a u, v-path for any vertex u and
any vertex v 6= u.

The out-neighborhood of v in G is
N+
G (v) = {w ∈ V (G) : (v,w) ∈ E(G)}.

The out-degree of v is d+
G (v) = |N+

G (v)|.

The in-neighborhood of v in G is
N−G(v) = {w ∈ V (G) : (w, v) ∈ E(G)}.
The in-degree of v is d−G(v) = |N−G(v)|.

1

Déjà vu

Directed Handshaking. In a directed multigraph G,
we have

∑

v∈V (G)

d+(v) = e(G) =
∑

v∈V (G)

d−(v).

A directed multigraph is Eulerian if it has a directed
Eulerian circuit, i.e. a closed directed trail containing
all edges.

Theorem. A weakly connected directed multigraph on
n(D) ≥ 2 vertices is Eulerian iff d+(v) = d−(v) for
each vertex v.

Proof. Similar to the undirected case. Think it over.

2

Network flows

Network (D, s, t, c); D is a directed multigraph,
s ∈ V (D) is the source, t ∈ V (D) is the sink,
c : E(D)→ IR+ ∪ {0} is the capacity.

Flow f is a function, f : E(D)→ IR

f+(v) :=
∑

v→u
f(vu)

f−(v) :=
∑

u→v
f(uv).

Flow f is feasible if

(i) f+(v) = f−(v) for every v 6= s, t (conservation
constraints), and

(ii) 0 ≤ f(e) ≤ c(e) for every e ∈ E(D) (capacity
constraints).

value of flow, val(f) := f−(t)− f+(t).

maximum flow: feasible flow with maximum value
3

Example

0-flow

3

3

1

3

3

1

44

1

1

4

f -augmenting path

G: underlying undirected graph of network D

s, t-path P in G is an f -augmenting path, if
s = v0, e1, v1, e2 . . . vk−1, ek, vk = t and for every ei

(i) f(ei) < c(ei) provided ei is “forward edge”

(ii) f(ei) > 0 provided ei is “backward edge”

Tolerance of P is min{ε(e) : e ∈ E(P)}, where
ε(e) = c(e)− f(e) if e is forward, and
ε(e) = f(e) if e is backward.

Lemma. Let f be feasible and P be an f -augmenting
path with tolerance z. Define
f ′(e) := f(e) + z if e is forward,
f ′(e) := f(e)− z if e is backward.
f ′(e) := f(e) if e /∈ E(P),
Then f ′ is feasible with val(f ′) = val(f) + z.

5

Characterization of maximum flows

Characterization Lemma. Feasible flow f is of maxi-
mum value iff there is NO f -augmenting path.

Proof.⇒ Easy.
⇐ Suppose f has no augmenting path.

S := {v ∈ V (D) : ∃ f -augmenting path from s to v∗}.
Then t /∈ S and

∑

e∈[S,S̄]

c(e) =
∑

e∈[S,S̄]

f(e)−
∑

e∈[S̄,S]

f(e).

We feel, that

(1) val(f∗) ≤ ∑
e∈[S,S̄] c(e) for any feasible flow f∗,

and

(2) val(f) =
∑
e∈[Q,Q̄] f(e)−∑e∈[Q̄,Q] f(e), for any

Q ⊆ V (D), s ∈ Q, t /∈ Q.

Right? Let’s see

∗some abuse of definition takes place...

6

The value of feasible flow Proof of (2)

Lemma. f any flow, Q ⊆ V (D), then
∑

e∈[Q,Q̄]

f(e)−
∑

e∈[Q̄,Q]

f(e) =
∑

v∈Q
(f+(v)−f−(v)).

In particular, if f is feasible, s ∈ Q, t /∈ Q, then
∑

e∈[Q,Q̄]

f(e)−
∑

e∈[Q̄,Q]

f(e) = val(f).

Proof. For first part: coefficient of f(e) is the same on
both sides for every e ∈ E(D).

For second part:
∑

e∈[Q̄,Q]

f(e)−
∑

e∈[Q,Q̄]

f(e) =
∑

v∈Q̄
(f+(v)− f−(v))

= f+(t)− f−(t)

= −val(f).

Remark. val(f) = f+(s)− f−(s).

7

Source/sink cuts Proof of (1)

Source/sink cut [S, T] = {(u, v) ∈ E(D) : u ∈
S, v ∈ T}, if s ∈ S and t ∈ T .

capacity of cut: cap(S, T) :=
∑
e∈[S,T] c(e).

Lemma. (Weak duality) If f is a feasible flow and [S, T]

is a source/sink cut, then

val(f) ≤ cap(S, T).

Proof.

cap(S, T) =
∑

e∈[S,T]

c(e)

≥
∑

e∈[S,T]

f(e)

≥
∑

e∈[S,T]

f(e)−
∑

e∈[T,S]

f(e)

= val(f).

8

Max flow-Min cut Theorem

Max Flow-Min Cut Theorem (Ford-Fulkerson, 1956)
Let f be a feasible flow of maximum value and [S, T]

be a source/sink cut of minimum capacity. Then

val(f) = cap(S, T).

Proof. (Corollary to proof of Characterization Lemma)
Define

S := {v ∈ V (D) : ∃ f -augmenting path from s to v∗}.
Since f is maximum, f ha no augmenting path. Then
t ∈ S̄ and of course s ∈ S.

cap(S, S̄) =
∑

e∈[S,S̄]

c(e)

=
∑

e∈[S,S̄]

f(e)−
∑

e∈[S̄,S]

f(e)

= val(f).

∗some abuse of definition again takes place...

9

Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm

Input. A feasible flow f in a network (D, s, t, c).

Output. EITHER an f -augmenting path OR a certificate
(a cut with capacity val(f)) that f is maximum.

Idea. Explore f -augmenting paths in the underlying
graph G from s, letting R ⊆ V (D) the set of vertices
reached. Vertices of R that have been explored for
path extensions are put in S. As a vertex is reached,
record the vertex from which it is reached.

Initialization. R = {s} and S = ∅.

10

Iteration.
IF S = R THEN

stop and report that f is a maximum flow
and [S, S̄] is a minimum source/sink cut.

ELSE

select an x ∈ R \ S and explore its neighbors
y ∈ NG(x), for path-extensions.
IF xy ∈ E(D) and f(xy) < c(xy) or
yx ∈ E(D) and f(yx) > 0 THEN

IF y = t THEN

stop and report an f -augmenting path.
ELSE

Update R := R ∪ {y} (y is reached from x),
After exploring all neighbors of x,
update S := S ∪ {x}, and

iterate.

Theorem. Repeatedly applying the Ford-Fulkerson Al-
gorithm to a feasible rational flow in a network with
rational capacities produces a maximum flow and a
minimum source/sink cut.

11

Example

The Max-flow Min-cut Theorem is true for real capaci-
ties as well,
BUT our algorithm might fail to find a maximum flow!!!

√
5−1
2

9999

9999

9999
1

1

Example of Zwick (1995)
Remark. The max flow is 199. There is such an unfortunate

choice of a sequence of augmenting paths, by which the flow

value tends to 3. Even our implementation can be cheated to do

this by introducing an extra vertex in the middle of each edge.

12

Integrality Theorem

Remark. Edmonds and Karp (1972) modified the FFA
to work for real capacities in at most n

3−n
4 augmenta-

tions.

Corollary. (Integrality Theorem) If all capacities of a
network are integers, then there is a maximum flow
assigning integral flow to each edge.
Furthermore, some maximum flow can be partitioned
into flows of unit value along path from source to sink.

13

Directed Edge-Menger

Given x, y ∈ V (D), a set F ⊆ E(D) is an x, y-
disconnecting set if D − F has no x, y-path. Define

κ′D(x, y) := min{|F | : F is an x, y-disconnecting set,}
λ′D(x, y) := max{|P| : P is a set of p.e.d.∗ x, y-paths}

∗ p.e.d. means pairwise edge-disjoint

Directed-Local-Edge-Menger Theorem For all x, y ∈
V (D),

κ′D(x, y) = λ′D(x, y).

Proof. Apply the Integrality Theorem for the network
(D,x, y, c) with c(e) = 1 for all e ∈ E(D).

Corollary (Directed-Global-Edge-Menger Theorem) Di-
rected multigraph D is strongly k-edge-connected iff
there is a set of k p.e.d.x, y-paths for any two vertices
x and y.

14

Menger’s Theorem for directed graphs

Given x, y ∈ V (D), a set S ⊆ V (D) \ {x, y} is an
x, y-separator (or an x, y-cut) if D − S has no x, y-
path.
Define

κD(x, y) := min{|S| : S is an x, y-cut,} and
λD(x, y) := max{|P| : P is a set of p.i.d. x, y-paths}

Directed-Local-Vertex-Menger Theorem Let x, y ∈
V (D), such that xy 6∈ E(D). Then

κD(x, y) = λD(x, y).

Proof. We apply the Integrality Theorem for the auxili-
ary network (D′, x+, y−, c′).

V (D′) := {v−, v+ : v ∈ V (D)}
E(D′) := {u+v− : uv ∈ E(D)} ∪ {v−v+ : v ∈ V (D)}
c′(u+v−) =∞∗ and c′(v−v+) = 1.
∗or rather very-very large.

15

Corollaries

Corollary (Directed-Global-Vertex-Menger Theorem)
A digraph D is strongly k-connected iff for any two
vertices x, y ∈ V (D) there exist k p.i.d. x, y-paths.

Proof: Lemma. For every e ∈ E(D), κD(G−e) ≥ κD(G)−1.

And finally, after having 8 versions of Menger’s Theo-
rem, the proof of the very first one,
the (original) Undirected-Local-Vertex-Menger Theo-
rem is

HOMEWORK !!!

Derive implication DLVM⇒ ULVM

16

