
Jordan Curves

A curve is a subset of IR2 of the form

α = {γ(x) : x ∈ [0,1]} ,

where γ : [0,1] → IR2 is a continuous mapping from
the closed interval [0,1] to the plane. γ(0) and γ(1)

are called the endpoints of curve α.

A curve is closed if its first and last points are the
same. A curve is simple if it has no repeated points
except possibly first = last. A closed simple curve is
called a Jordan-curve.

Examples: Line segments between p, q ∈ IR2

x 7→ xp + (1 − x)q ,

circular arcs, Bezier-curves without self-intersection,
etc...
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Drawing of graphs

A drawing of a multigraph G is a function f defined on
V (G) ∪ E(G) that assigns

• a point f(v) ∈ IR2 to each vertex v and

• an f(u), f(v)-curve to each edge uv,

such that the images of vertices are distinct. A point
in f(e) ∩ f(e′) that is not a common endpoint is a
crossing.

A multigraph is planar if it has a drawing without cros-
sings. Such a drawing is a planar embedding of G.
A planar (multi)graph together with a particular planar
embedding is called a plane (multi)graph.

drawing plane embedding
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Are there non-planar graphs?

Proposition. K5 and K3,3 cannot be drawn without
crossing.

Proof. Define the conflict graph of edges.

The unconscious ingredient.

Jordan Curve Theorem. A simple closed curve C

partitions the plane into exactly two faces, each ha-
ving C as boundary.

Not true on the torus!
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Regions and faces

An open set in the plane is a set U ⊆ R2 such that
for every p ∈ U , all points within some small distance
belong to U . A region is an open set U that contains
a u, v-curve for every pair u, v ∈ U . The faces of a
plane multigraph are the maximal regions of the plane
that contain no points used in the embedding.

A finite plane multigraph G has one unbounded face
(also called outer face).
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Dual graph

Denote the set of faces of a plane multigraph G by
F (G) and let E(G) = {e1, . . . , em}. Define the dual
multigraph G∗ of G by

• V (G∗) := F (G)

• E(G∗) := {e∗1, . . . , e∗m}, where the endpoints
of e∗i are the two (not necessarily distinct) faces
f ′, f ′′ ∈ F (G) on the two sides of ei.

Remarks. Multiple edges and/or loops could appear
in the dual of simple graphs

Different planar embeddings of the same planar graph
could produce different duals.

Proposition. Let l(Fi) denote the length of face Fi in
a plane multigraph G. Then

2e(G) =
∑

l(Fi).

Proposition. e1, . . . , er ∈ E(G) forms a cycle in G iff
e∗1, . . . , e∗r ∈ E(G∗) forms a minimal nonempty edge-
cut in G∗.
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Euler’s Formula

Theorem.(Euler, 1758) If a plane multigraph G with
k components has n vertices, e edges, and f faces,
then

n − e + f = 1 + k.

Proof. Induction on e.

Base Case. If e = 0, then n = k and f = 1.

Suppose now e > 0.

Case 1. G has a cycle.

Delete one edge from a cycle. In the new graph:

e′ = e−1, n′ = n, f ′ = f −1 (Jordan!), and k′ = k.

Case 2. G is a forest.

Delete a pendant edge. In the new graph:

e′ = e − 1, n′ = n, f ′ = f , and k′ = k + 1.

Remark. The dual may depend on the embedding of
the graph, but the number of faces does not.
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Application – Platonic solids

• each face is congruent to the same regular convex
r-gon, r ≥ 3

• the same number d of faces meet at each vertex,
d ≥ 3

EXAMPLES: cube, tetrahedron

fr = 2e vd = 2e

Substitute into Euler’s Formula

2e

d
− e +

2e

r
= 2

1

d
+

1

r
=

1

2
+

1

e

Crucial observation: either d or r is 3.

Possibilities: r d e f v
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Applications of Euler’s Formula

For a convex polytope,

#Vertices − #Edges + #Faces = 2

Tetrahedron 4 6 4
Cube 8 12 6

Octahedron 6 12 8
Dodecahedron 20 30 12

Icosahedron 12 30 20

The platonic solids
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Number of edges in a planar graphs

Theorem. If G is a simple, planar graph with n(G) ≥

3, then e(G) ≤ 3n(G) − 6.
If also G is triangle-free, then e(G) ≤ 2n(G) − 4.

Proof. Apply Euler’s Formula.

Corollary K5 and K3,3 are non-planar.

A maximal planar graph is a simple planar graph that
is not a spanning subgraph of another planar graph. A
triangulation is a simple plane graph where every face
is a triangle.

Proposition. For a simple n-vertex plane graph G,
the following are equivalent.

A) G has 3n − 6 edges

B) G is a triangulation.

C) G is a maximal planar graph.
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Coloring maps with 5 colors

Five Color Theorem. (Heawood, 1890) If G is planar,
then χ(G) ≤ 5.

Proof. Take a minimal counterexample.

(i) There is a vertex v of degree at most 5.

(ii) Modify a proper 5-coloring of G − v to obtain a
proper 5-coloring of G. A contradiction.

Idea of modification: Kempe chains.
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Coloring maps with 4 colors

Four Color Theorem. (Appel-Haken, 1976) For any
planar graph G, χ(G) ≤ 4.

Idea of the proof.
W.l.o.g. we can assume G is a planar triangulation.
A configuration in a planar triangulation is a separa-
ting cycle C (the ring) together with the portion of the
graph inside C.
For the Four Color Problem, a set of configurations
is an unavoidable set if a minimum counterexample
must contain a member of it.
A configuration is reducible if a planar graph contai-
ning it cannot be a minimal counterexample.

The usual proof attempts to

(i) find a set C of unavoidable configurations, and

(ii) show that each configuration in C is reducible.
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Proof attempts of the Four Color Theorem

Kempe’s original proof tried to show that the unavoi-
dable set

is reducible.

Appel and Haken found an unavoidable set of 1936 of
configurations, (all with ring size at most 14) and pro-
ved each of them is reducible. (1000 hours of compu-
ter time)

Robertson, Sanders, Seymour and Thomas (1996) used
an unavoidable set of 633 configuration. They used
32 rules to prove that each of them is reducible. (3
hours computer time)
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Kuratowski’s Theorem

Theorem.(Kuratowski, 1930) A graph G is planar iff G

does not contain a subdivision of K5 or K3,3.

Outline of a proof.

A Kuratowski subgraph of G is a subgraph of G that
is a subdivision of K5 or K3,3. A minimal nonplanar
graph is a nonplanar graph such that every proper
subgraph is planar.

Kuratowski’s Theorem follows from the following Lem-
ma and Theorem.

Lemma If G is a graph with fewest edges among coun-
terexamples, then G is 3-connected.

Lemma. Every minimal nonplanar graph is 2-connected.

Lemma. Let S = {x, y} be a separating set of G. If G is a
nonplanar graph, then adding the edge xy to some S-lobe of
G yields a nonplanar graph.
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Theorem.(Tutte, 1960) If G is a 3-connected graph
with no Kuratowski subgraph, then G has a convex
embedding in the plane with no three vertices on a
line.

A convex embedding of a graph is a planar embedding in
which each face boundary is a convex polygon.

Lemma. If G is a 3-connected graph with n(G) ≥ 5, then
there is an edge e ∈ E(G) such that G · e is 3-connected.

Lemma. G has no Kuratowski subgraph ⇒ G · e has no Ku-
ratowski subgraph.



The Graph Minor Theorem

Theorem. (Robertson and Seymour, 1985-200?) In
any infinite list of graphs, some graph is a minor of
another.

Proof: more than 500 pages in 20 papers.

Corollary For any graph property that is closed un-
der taking minors, there exists finitely many minimal
forbidden minors.

Homework. Wagner’s Theorem. Every nonplanar graph
contains either a K5 or K3,3-minor.

For embeddability on the projective plane, it is known
that there are 35 minimal forbidden minors. For em-
beddability on the torus, we don’t know the exact num-
ber of minimal forbidden minors; there are more than
800 known. (The generalization of Kuratowski’s sub-
division characterization yields an infinite list.)
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