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Exercise 5.1 (Exercise 3.1.1 in the Textbook)

(—) Find a maximum matching in each graph below. Prove that it is a maximum matching by
exhibiting an optimal solution to the dual problem (minimum vertex cover). Explain why this
proves that the matching is optimal.

Exercise 5.2 (Exercise 3.1.7 in the Textbook)

(=) Prove that a graph G is bipartite if and only if «(H) = /(H) for every subgraph H of G
with no isolated vertices.

Exercise 5.3 (Exercise 3.1.8 in the Textbook)

(1) Prove or disprove: Every tree has at most one perfect matching.

Exercise 5.4 (Exercise 3.1.9 in the Textbook)

(1) Prove that every maximal matching in a graph G has at least o/(G)/2 edges.

Exercise 5.5 (Exercise 3.1.19 in the Textbook)

() Let A = (Ay,...,A,) be a collection of subsets of a set Y. A system of distinct repre-
sentatives (SDR) for A is a set of distinct elements ay,...,a, in Y such that a; € A; for every
i =1,...,m. Prove that A has an SDR if and only if ||, ¢ A;| > |S]| for every S C {1,...,m}.
(Hint: Transform this to a graph problem.)
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Exercise 5.6 (Exercise 3.1.24 in the Textbook)

() A permutation matrix P is a 0, 1-matrix having exactly one 1 in each row and column.
Prove that a square matrix of nonnegative integers can be expressed as the sum of k£ permu-
tation matrices if and only if all row sums and column sums equal k.

Exercise 5.7 (Exercise 3.1.32 in the Textbook)

() In an X,Y-bigraph G (namely, a bipartite graph with X and Y as its partite sets), the
deficiency of a set S is def(S) = |S| — |[N(S5)[; note that def() = 0. Prove that

! — —
o (G) =X gncag((def(S).

(Hint: Form a bipartite graph G’ such that G’ has a matching that saturates X if and only if G
has a matching of the desired size, and prove that G’ satisfies Hall’'s Condition.) (Ore [1955])



