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EXGI'Cise 7.1 (Exercise 3.3.6 in the Textbook)

() Prove that a tree T has a perfect matching if and only if o(T — v) = 1 for every v € V(T).
(Chungphaisan)

Exercise 7.2 (Exercise 3.3.19 in the Textbook)

() Let G be a 3-regular simple graph with no cut-edge. Prove that G decomposes into copies
of P4.

Exercise 7.3 (Exercise 4.1.9 in the Textbook)

For each choice of integers k,¢,m with 0 < k < ¢ < m, construct a simple graph G with
k(G) = k, k'(G) = ¢, and §(G) = m. Remember to justify your construction. (Chartrand-
Harary [1968])

EXGI'Cise 7.4 (Exercise 3.3.16 in the Textbook)

(1) Prove that every (k — 1)-edge-connected k-regular graph of even order has a 1-factor.

Eer'Cise 7.5 (Exercise 4.1.14 in the Textbook)

() Let G be a connected graph in which for every edge e there are cycles C; and C> containing
e whose only common edge is e. Prove that G is 3-edge-connected. Use this to show that the
Petersen graph is 3-edge-connected.

Exercise 7.6 (Exercise 4.1.23 in the Textbook)

() Let G be an r-connected graph of even order having no K, ,4; as an induced subgraph.
Prove that G has a 1-factor. (Sumner [1974b])



