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Eer'Cise 9. 1 (Exercise 4.2.21 in the Textbook)

(1) Let G be a 2k-edge-connected graph with at most two vertices of odd degree. Prove that G
has a k-edge-connected orientation. (Nash-Williams [1960])

Exercise 9.2 (Exercise 4.2.29 in the Textbook)

Given a graph G, let D be the digraph obtained by replacing each edge with two oppositely-
directed edges having the same endpoints (thus D is the symmetric digraph with underlying
graph G). Assume that, for all =,y € V(D), kp(z,y) = Ap(x,y) holds when (z,y) ¢ E(D). Use
this hypothesis to prove that also kg (x,y) = Ag(x,y) for {z,y} € E(G).

Exercise 9.3 (Exercise not in the Textbook)

In the eighth grade, playing in the little soccer league, our school (Aldds) was in a fierce
competition with four others: the Ady, the Fillér, the Medve, and the T6rékvészi elementary
schools. During the year every team played every other team 6 times. Despite my brilliant
effort as right mid-fielder, in the middle of the season we were standing without a single win,
with twelve losses. Our coach was still very enthusiastic and in order to motivate us, got into
some complicated argument about how we can still win at least a share of the championship.

The situation was the following. Ady had 5 more games with Fillér, 2 more games with Medve,
and 5 with Torokvészi. Filler had 3 more games with Medve, and 6 with Térokvészi. Medve
had to play 3 more times with Térokvészi. Ady was at first place with 8 wins, Torékvészi was
second with 7, Fillér had 6, and even the much despised Medve was ahead of us with 3 wins.

Was our coach right about his calculations or did he just want to fire us up before our usual
showdown with Medve? (Hint: you can try to model the problem as a network flow.)

ExerCise 9.4 (Exercise not in the Textbook)

(+) Let A={A4;,..., A} and B={B,..., B, } be collections of subsets of a set Y. A common
system of distinct representatives (CSDR) for .4 and B is a set of distinct elements z1, ...,z
in Y which is both an SDR for A and an SDR for B. (For the definition of an SDR, see Exercise
5.5.) Prove that there exists a CSDR for A and B if and only if

(UAi>ﬂ UB]- > |I|+|J|—m for each pair I,J C [m].
i€l jed
Exercise 9.5 (Exercise 5.1.1 in the Textbook)

(—) Compute the clique number, the independence number and the chromatic number of the
graph below. Is the graph color-critical?



Exercise 9.6 (Exercise 5.1.20 in the Textbook)

() Let G be a graph whose odd cycles are pairwise intersecting, meaning that every two odd
cycles in G have a common vertex. Prove that x(G) < 5.

Exercise 9.7 (Exercise 5.1.41 in the Textbook)

(1) Prove that x(G) + x(G) < n(G) + 1. (Nordhaus-Gaddum [1956])

Have a nice Christmas and a happy new year!



