

Institut für Theoretische Informatik Dr. Tibor Szabó and Yoshio Okamoto

Graph Theory

Course Webpage: http://www.ti.inf.ethz.ch/ew/courses/GT03/

Due Date: January 14, 2004 at the lecture

Exercise 10.1

(–) Find a subdivision of K_4 in the Grötzsch graph.

Exercise 10.2

(!) Given a set of lines in the plane with no three meeting at a point, form a graph G whose vertices are the intersections of the lines, with two vertices adjacent if they appear consecutively on one of the lines. Prove that $\chi(G) < 3$. (H. Sachs)

Exercise 10.3

(!) Prove that the complement of a bipartite graph is perfect. (This implies the weak perfect graph conjecture for bipartite graphs.)

Exercise 10.4

(!) Prove that if G is a color-critical graph, then the graph G' generated from G by applying Mycielski's construction is also color-critical.

Exercise 10.5

Thick edges below indicate that every vertex in one circle is adjacent to every vertex in the other. Prove that $\chi(G) = 7$ but G has no K_7 -subdivision. Prove that $\chi(H) = 8$ but H has no K_8 -subdivision. (Catlin [1979])

Exercise 10.6

(Exercise 5.1.25 in the Textbook)

(+) Let G be the **unit-distance graph** in the plane; $V(G) = \mathbb{R}^2$, and two points are adjacent if their Euclidean distance is 1 (this is an infinite graph). Prove that $4 \le \chi(G) \le 7$. (Hint: For the upper bound, present an explicit coloring by regions, paying attention to the boundaries.) (Hadwiger [1945, 1961], Moser-Moser [1961])

(Exercise 5.2.9 in the Textbook)

(Exercise not in the Textbook)

(Exercise 5.2.40 in the Textbook)

Problem Set 10

Ecole polytechnique fédérale de Zurich

Swiss Federal Institute of Technology Zurich

Politecnico federale di Zurigo

(Exercise 5.2.5 in the Textbook)

(Exercise 5.1.22 in the Textbook)

January 7, 2004

