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EXGI'Cise 10.1 (Exercise 5.2.5 in the Textbook)

() Find a subdivision of K, in the Grétzsch graph.

Exercise 10.2 (Exercise 5.1.22 in the Textbook)

(1) Given a set of lines in the plane with no three meeting at a point, form a graph G whose ver-
tices are the intersections of the lines, with two vertices adjacent if they appear consecutively
on one of the lines. Prove that y(G) < 3. (H. Sachs)
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ExerCise 10.3 (Exercise not in the Textbook)

() Prove that the complement of a bipartite graph is perfect. (This implies the weak perfect
graph conjecture for bipartite graphs.)

EXGI'Cise 10.4 (Exercise 5.2.9 in the Textbook)

(1) Prove that if G is a color-critical graph, then the graph G’ generated from G by applying
Mycielski’s construction is also color-critical.

Exercise 10.5 (Exercise 5.2.40 in the Textbook)

Thick edges below indicate that every vertex in one circle is adjacent to every vertex in the
other. Prove that x(G) = 7 but G has no K;-subdivision. Prove that x(H) = 8 but H has no
Kg-subdivision. (Catlin [1979])

Exercise 10.6 (Exercise 5.1.25 in the Textbook)

(+) Let G be the unit-distance graph in the plane; V(G) = R?, and two points are adjacent if
their Euclidean distance is 1 (this is an infinite graph). Prove that 4 < yx(G) < 7. (Hint: For
the upper bound, present an explicit coloring by regions, paying attention to the boundaries.)
(Hadwiger [1945, 1961], Moser—Moser [1961])



