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Exercise 11 .1 (Exercise 5.2.2 in the Textbook)

(—) Prove that a simple graph is a complete multipartite graph if and only if it has no 3-vertex
induced subgraph with one edge (i.e., K1 + K5).

EXGI'Cise 11.2 (Exercise 5.2.15 in the Textbook)

() Prove that every triangle-free n-vertex graph has chromatic number at most 2,/n. (Com-
ment: Thus every k-chromatic triangle-free graph has at least k2 /4 vertices.)

EXCI'Cise 11.3 (Exercise not in the Textbook)

a) Prove that the Turan graph 7, ,_; is a unique graph which maximizes the sum of the
squared degrees (i.e., >, oy (q d(v)?) among all K, -free n-vertex graphs G. (Hint: Mimic
the proof of Turan’s theorem.)

b) Prove that the statement of part (a) is no longer generally true if we consider maximizing
>vev(e) d(v)* instead.

ExerCise 1 1 .4 (Exercise not in the Textbook)
Let s,¢,n be natural numbers such that 0 < s <t <n.

a) Let G be a graph with n vertices which does not contain any K; s as a subgraph. Prove
that 3° v (o (d(:)) < (t—1)(7). (Hint: Count the number of copies of K , in two ways.)
b) Use part (a) to prove that ex(n, K; ) < Cn?>~'/* for some constant C' depending only on

s,t. (Hint: Use the estimates (£)" < () < a® and Jensen’s inequality.)

EXCI'Cise 11 .5 (Exercise not in the Textbook)

a) Given n distinct points in the plane, prove that the distance is exactly 1 for at most
O(n?/?) pairs. (Hint: First prove that the unit-distance graph contains no K3, and
apply the result in Exercise 11.4.)

b) Given n distinct points in the 3-dimensional space, prove that the distance is exactly 1
for at most O(n®/?) pairs.

EXCI'Cise 11.6 (Exercise not in the Textbook)

Let p be a prime number, and F, = {0,1,2,...,p—1}. Consider the following graph G,. The
vertex set of G, is F \ {(0,0)}, and an edge is drawn between distinct (a,b), (a/,V') € F\ {(0,0)}
if and only if aa’ + b0’ =1 mod p.

a) Prove that G, does not contain K ». (Hint: You can utilize the fact that [, constitutes a
field under the addition and the multiplication modulo p.)

b) Show that e(G,) > (p — 1)(p® — 1)/2.
c) From parts (a) and (b), conclude that ex(n, K3 2) = Q(n3/2).

(Comment: Together with Exercise 11.4, we can see that ex(n, Ka ) = ©(n%/?).)

Please look at the back side for the supplement.



Supplement

1. Convex functions and Jensen’s inequality

A function f : R™ — R is convex if for any z,y € R” and for any A € [0, 1]

M@) + (1 =Nfy) > fAr + (1= Ny).

A convex function f satisfies the following inequality: For any integer k > 1, any z1,x2, ...,z €
R”, and any Aq, Ag,...,A\x € R with Zle A; =1, it holds that

k k
Z)\if(iﬂi) > f ( )\ifﬁi> :

i=1 =

This inequality is called Jensen’s inequality.

2. Big-O notation

Let f,¢g : N — R be two functions. We write f(n) = O(g(n)) if f is bounded by g from above
in the order of magnitude. Formally speaking, we say f(n) = O(g(n)) if there exist ¥k and M
(which depend on f, g) such that for all n > k it holds that |f(n)/g(n)] < M. If g(n) = O(f(n)).
we write f(n) = Q(g(n)). If f(n) = O(g(n)) and f(n) = Q(g(n)), then we write f(n) = O(g(n)).

Another frequently encountered notation is the little-o. We write f(n) = o(g(n)) if f is negligible
compared to ¢g in the order of magnitude (or f is less than g in the order of magnitude).
Formally speaking, we say f(n) = o(g(n)) if lim, . |f(n)/g(n)| = 0.

Here is the summary.

Notation Definition Interpretation

fis atmost g

in the order of magnitude.
fis atleast g

in the order of magnitude.
f has the same order of
magnitude as g.

o) =ola(w)  Jim (/o) =0 In the order of magnitude.

f(n) =0(g(n)) 3k, M ¥n > k: [f(n)/g(n)] < M

Fn) = Qg(n)) 3k, M Vn > k: |g(n)/f(n)] < M

f(n) =0O(g(n))  fn) = 0(g(n)) and f(n) = Q(g(n))




