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EXGI'Cise 12.1 (Exercise (a) 7.1.1, (b) not in the Textbook)

a) For each graph G below, compute x'(G) and draw L(G).

b) Show that each graph below is not a line graph of any simple graph.

Exercise 12.2 (Exercise 7.1.11 in the Textbook)
(1) Let G be a simple graph.

a) Prove that the number of edges in L(G) is 3, oy (¢ (“). (Note that (¢) = 0 when a < b.)

b) Prove that G is isomorphic to L(G) if and only if G is 2-regular.
Exercise 12.3 (Exercise 7.1.15 in the Textbook)

() Use Tutte’s 1-factor theorem to prove that every connected line graph with even number
of vertices has a perfect matching. Conclude from this that the edges of a simple connected
graph with even number of edges can be partitioned into paths of length 2. (Chartrand-
Polimeni-Stewart [1973])

Exercise 12.4 (Exercise 7.1.26 in the Textbook)

(1) Let k > 3, and G be a k-regular graph with a cut-vertex. Prove that x'(G) > k.

EXGI'Cise 12.5 (Exercise 7.1.34 in the Textbook)

Use Petersen’s Theorem to prove that x'(G) < 3[A(G)/2] for every loopless multigraph G.

EXGI'Cise 12.6 (Exercise 7.1.33 in the Textbook)

Use Vizing’s Theorem to prove that every simple graph with maximum degree A has an “eq-
uitable” (A+1)-edge-coloring, i.e., a proper edge-coloring with each color used [e(G)/(A+1)]
or |e(G)/(A+1)] times. (de Werra [1971], McDiarmid [1972])



