Eidgenössische Technische Hochschule Zürich

Institut für Theoretische Informatik Dr. Tibor Szabó and Yoshio Okamoto

Graph Theory

Course Webpage: http://www.ti.inf.ethz.ch/ew/courses/GT03/

Due Date: February 4, 2004 at the lecture

Exercise 13.1

(-) Prove that every simple triangle-free planar graph G with $n(G) \ge 3$ has at most 2n(G) - 4edges.

Exercise 13.2

A (multi)graph is **outerplanar** if it has a planar embedding with every vertex on the boundary of the unbounded face. An **outerplane** (multi)graph is such an embedding of an outerplanar (multi)graph. Prove that neither K_4 nor $K_{2,3}$ is outerplanar.

Exercise 13.3

(!) Prove that a set of edges in a connected plane multigraph G forms a spanning tree of G if and only if the duals of the remaining edges form a spanning tree of G^* .

Exercise 13.4

(!) Prove that every *n*-vertex plane multigraph isomorphic to its dual has 2n - 2 edges. For all $n \ge 4$, construct a simple *n*-vertex plane graph isomorphic to its dual.

Exercise 13.5

(!) Let G be an n-vertex simple planar graph with girth k, where k is finite. Prove that G has at most $(n-2)\frac{k}{k-2}$ edges. Use this to prove that the Petersen graph is nonplanar.

Exercise 13.6

(!) Prove that every simple planar graph with at least four vertices has at least four vertices with degree less than 6. For each even value of n with $n \ge 8$, construct an n-vertex simple planar graph G that has exactly four vertices with degree less than 6. (Grünbaum–Motzkin [1963])

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich

January 28, 2004

Problem Set 13

(Exercise not in the Textbook)

(Exercise not in the Textbook)

(Exercise 6.1.35 in the Textbook)

(Exercise 6.1.30 in the Textbook)

(Exercise 6.1.25 in the Textbook)

(Exercise 6.1.21 in the Textbook)