Line graphs and edge coloring_____

A *k*-edge-coloring of a multigraph *G* is a labeling f: $E(G) \rightarrow S$, where |S| = k. The labels are called colors; the edges of one color form a color class. A *k*-edge-coloring is proper if incident edges have different labels. A multigraph is *k*-edge-colorable if it has a proper *k*-edge-coloring.

The edge-chromatic number (or chromatic index) of a loopless multigraph G is

 $\chi'(G) := \min\{k : G \text{ is } k \text{-edge-colorable}\}.$

A multigraph G is k-edge-chromatic if $\chi'(G) = k$.

Remarks. $\chi'(G) = \chi(L(G))$, so $\Delta(G) \leq \omega(L(G))$ $\leq \chi'(G) \leq \Delta(L(G)) + 1$ $\leq 2\Delta(G) - 1$ Vizing's Theorem_____

Example. K_{2n}

Theorem. (König, 1916) For a bipartite multigraph G, $\chi'(G) = \Delta(G)$

Proposition. $\chi'(Petersen) = 4.$

Theorem. (Vizing, 1964) For a simple graph *G*,

 $\chi'(G) \le \Delta(G) + 1.$

Generalization. If the maximum edge-multiplicity in a multigraph *G* is $\mu(G)$, then $\chi'(G) \leq \Delta(G) + \mu(G)$ *Example.* Fat triangle; $\chi'(G) = \Delta(G) + \mu(G)$. Proof of Vizing's Theorem (A. Schrijver)_____

Induction on n(G).

If n(G) = 1, then $G = K_1$; the theorem is OK.

Assume n(G) > 1. Delete a vertex $v \in V(G)$. By induction G - v is $(\Delta(G) + 1)$ -edge-colorable.

Why is G also $(\Delta(G) + 1)$ -edge-colorable?

We prove the following

Stronger Statement. Let $k \ge 1$ be an integer. Let $v \in V(G)$, such that

- $d(v) \leq k$,
- $d(u) \leq k$ for every $u \in N(v)$, and
- d(u) = k for at most one $u \in N(v)$.

Then

G - v is k-edge-colorable \Rightarrow G is k-edge-colorable.

Induction k (!!!)

For k = 1 it is OK.

W.I.o.g. d(u) = k - 1 for every $u \in N(v)$, except for exactly one $w \in N(v)$ for which d(w) = k.

Let $f : E(G) \rightarrow \{1, \ldots, k\}$ be a proper k-edgecoloring of G - v, which minimizes

$$\sum_{i=1}^k |X_i|^2.$$

Here $X_i := \{u \in N(v) : u \text{ is missing color } i\}.$

Proof of the Stronger Statement II_____

Case 1. There is an *i*, with $|X_i| = 1$. Say $X_k = \{u\}$. Let $G' = G - uv - \{xy : f(xy) = k\}$. Apply the induction hypothesis for G' and k - 1.

Case 2. $|X_i| \neq 1$ for every i = 1, ..., k.

Then

$$\sum_{i=1}^{k} |X_i| = 2d(v) - 1 < 2k.$$

So there are colors *i* with $|X_i| = 0$ and *j* with an odd $|X_j| \neq 1$.

H is subgraph spanned by edges of color i and j.

Switch colors *i* and *j* in a component *C* of *H*, where $|C \cap X_j| = 1$. This reduces $\sum_{l=1}^k |X_l|^2$, a contradiction.