Line graphs and edge coloring

A k-edge-coloring of a multigraph G is a labeling f : $E(G) \rightarrow S$, where $|S| = k$. The labels are called colors; the edges of one color form a color class. A k -edge-coloring is proper if incident edges have different labels. A multigraph is k -edge-colorable if it has a proper k-edge-coloring.

The edge-chromatic number (or chromatic index) of a loopless multigraph G is

 $\chi'(G):=\min\{k:\;G\text{ is }k\text{-edge-colorable}\}.$

A multigraph G is k -edge-chromatic if $\chi'(G)=k.$

Remarks. $\chi'(G) = \chi(L(G))$, so $\Delta(G) \leq \omega(L(G))$ $\leq \chi'(G) \leq \Delta(L(G)) + 1$ $\leq 2\Delta(G) - 1$

Vizing's Theorem

Example. K_{2n}

Theorem. (König, 1916) For a bipartite multigraph $G, \chi'(G) = \Delta(G)$

Proposition. $\chi'(Petersen) = 4$.

Theorem. (Vizing, 1964) For a simple graph G,

 $\chi'(G) \leq \Delta(G) + 1.$

Generalization. If the maximum edge-multiplicity in a multigraph G is $\mu(G)$, then $\chi'(G) \leq \Delta(G) + \mu(G)$ Example. Fat triangle; $\chi'(G) = \Delta(G) + \mu(G)$.

Proof of Vizing's Theorem (A. Schrijver)

Induction on $n(G)$.

If $n(G) = 1$, then $G = K_1$; the theorem is OK.

Assume $n(G) > 1$. Delete a vertex $v \in V(G)$. By induction $G - v$ is $(\Delta(G) + 1)$ -edge-colorable.

Why is G also $(\Delta(G) + 1)$ -edge-colorable?

We prove the following

Stronger Statement. Let $k \geq 1$ be an integer. Let $v \in V(G)$, such that

- $\bullet \, d(v) \leq k,$
- $d(u) \leq k$ for every $u \in N(v)$, and
- $d(u) = k$ for at most one $u \in N(v)$.

Then

 $G - v$ is k-edge-colorable $\Rightarrow G$ is k-edge-colorable.

Induction k (!!!)

For $k = 1$ it is OK.

W.l.o.g. $d(u) = k - 1$ for every $u \in N(v)$, except for exactly one $w \in N(v)$ for which $d(w) = k$.

Let $f : E(G) \rightarrow \{1, ..., k\}$ be a proper k-edgecoloring of $G - v$, which minimizes

$$
\sum_{i=1}^k |X_i|^2.
$$

Here $X_i := \{u \in N(v) : u$ is missing color $i\}.$

Proof of the Stronger Statement II

Case 1. There is an i, with $|X_i| = 1$. Say $X_k = \{u\}$. Let $G' = G - uv - \{xy : f(xy) = k\}.$ Apply the induction hypothesis for G' and $k - 1$.

Case 2. $|X_i| \neq 1$ for every $i = 1, \ldots, k$.

Then

$$
\sum_{i=1}^{k} |X_i| = 2d(v) - 1 < 2k.
$$

So there are colors i with $\left| {{X_i}} \right| = 0$ and j with an odd $|X_j|\neq 1$.

H is subgraph spanned by edges of color i and j.

Switch colors i and j in a component C of H, where $|C \cap X_j| = 1.$ This reduces $\sum_{l=1}^k |X_l|$ $²$, a contradiction.</sup>