Chapter 11

Counting

We consider the problems of (i) counting the number of simplices spanned by d+1 points
in a finite set of n points in d-space that contain a given point (simplictal depth) and
(ii) counting the number of facets of the convezr hull of n points in d-space. These
problems are closely related by a duality (different from what has been dealt with before)
called Gale Dualsty.

Counting refers to algorithmic counting (given an input, determine the number of
certain objects) and to ezxtremal counting (given all configurations with certain numbers,
what are the extremal number of objects that can occur). Sometimes, one considers also
enumeration (given an input, produce all objects under consideration).

Notation. Here are a few notational conventions: 0 := (0,0,...,0) is the origin in the
considered ambient space R¢; N is the set of positive integers, Ny := IN U {0}; conv(S)
denotes the convex hull of a given set S in R¢; (i) denotes the set of all k-element subsets
of a given set S.

It will be useful to remember

n—1 .
Z i (M _ (- 1 n n—1
= k—1 k k k—1)°
It does not hurt to recapitulate the combinatorial interpretation of these identities: Recall

that (}) is the number of k-element subsets of an n-element set, i.e. (}) = |(")], for

m] :={1,2,...,n}

Every set A € ([L‘]) has a maximum element. We charge® A to this maximum element.
For j € [n] to be the maximum element in A = ([L‘]), it has to be composed of j itself
together with a (k — 1)-element subset of [j — 1], of which there are exactly (11:11) — this

!By the end of the day, this "charging" here is nothing else but a mapping, here A — max(A). In
a similar situation, we will later actually say max(A) is a "witness" of A. This is established counting
jargon, and often objects charge to (or witness) several elements.

190



GEOMETRY: C&A 2022 11.1. Introduction

is how often j is charged. Therefore,

(-x(20)

which proves the first equality. For the second equality, we discriminate the sets in
A€ (h‘:}) by whether the maximum element is n or not. There are (’]:11) sets where n

”*1) sets, where n is not the maximum. This shows

k
ny (n-—1 n n—1
k) \ k k—1/)"°
Checkpoints are usually simple facts that are put there to check your understanding of

definitions or notions, to be answered perhaps in a minute or two (assuming you have
indeed absorbed the definition).

is the maximum, and there are (

11.1 Introduction

Consider a set P C R? and q € R, A set A € (dL) is called g-embracing simplex
if q € conv(A). The simplicial depth, sd,(P), of point q relative to P is the number of
g-embracing simplices, 1.e.

sdq(P) == HAE (dj—1> ‘ q €conv(A)H .

This notion, among others, is a possible response to the search for a higher-dimensional
counterpart of the notion of a median in R'. Note here that when specialized to R', a
median is a point of maximum simplicial depth. We will investigate here this notion,
asking questions like:

What 1s the mazimum possible simplicial depth a point can have in any set of
n points in general position?

How efficiently can we compute the simplicial depth of a point?

A second question we want to address is that of the complexity of polytopes in general
dimension d.

How many facets can a polytope obtained as the convezr hull of n points have,
how few?

Gwven n points, how effictently can we compute the number of facets of its
convez hull? Can we do that asymptotically faster than enumerating these
facets (which is a hard enough problem per se)?
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Chapter 11. Counting GEOMETRY: C&A 2022

A small caveat, as has been mentioned in a previous chapter: We know that a 2-
dimensional polytope with n vertices has n facets (here edges), and a 3-dimensional
polytope with n vertices has at most 2n—4 facets (if the vertices are in general position,
it is exactly this number). So the number of facets is linear in n. This last fact is not
true in higher dimension and we will see what the right bounds are. We will see that
these two types of questions about simplicial depth and number of facets of a polytope
are very closely related; in some sense, that we will make very explicit (via the so-called
Gale Duality), it is the same question.

11.2 Embracing k-Sets in the Plane

In this section we investigate simplicial depth in the plane. First we generalize by
considering arbitrarily large sets with a given point in their convex hull. Not only is
this a natural step to take, but as we will see later, this extension to larger sets was
unavoidable, even when we are interested in simplicial depth only.

Consider a set P C R?, with 0 ¢ P and P U {0} in general position (no three on a line);
n := |P|. This setting will be implicitly assumed throughout the section. For k € INy, we
define

ex = ey (P) = HA € (E) ‘ 0¢€ conv(A)H .

We call A with 0 € conv(A) an embracing k-set. For |A| = 3, we call A an embracing
triangle.

Checkpoint 11.1. e3 is the simplicial depth of 0 in P, 1.e. e3 = sdo(P). eo = e; = e, =0,
en € {0,1} (where we use the general position assumption).

We start a general investigation of the vector € = (eg,e1,...,e,) € ]NQ“. Bounds
and algorithms will follow easily, but you need to be patient until it will be apparent,
how everything fits nicely together — reward will come. For a preparatory step consider
real vectors Xo. n—3 = (X0, X1y+--yXn_3), Yo..n—2 and Zo. 1 satisfying

n-3 .
e = (k ' 3)xi , fork >3, (11.2)
i—0 N
n—2 .
ey = Z (kiz yi, fork>2, and (11.3)
i=0
n—1I .
i
e = Z(k—] zi, fork>1. (11.4)

i=0
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GEOMETRY: C&A 2022 11.2. Embracing k-Sets in the Plane

Observe that Xy ,,_3 exists and is uniquely determined by €3, since

n—3
€h = (n_3)xn—3 = Xn—3 = én
_ n—4 n—3 - o -
€h—1 = (n,4)xn74 =+ (n,4>xn73 = Xn-4=6€n1—(M—=3)xn_3
€n
Similarly, this works for {jo.n—2 and Zy. ,_1. Thus we have
- determine 2 g determine _, e determine 7
< .n— 2. < .n—2 1.. < .n—1 -
each other 0.m=3 n eanchotheryO e n each other 0..m

For now, it is by no means clear what that should help here. Note also that these
facts are true for any vector e, we have not used any of the properties of the specific
vector we are interested in. They simply describe one of many possible transformations
of a given vector.

11.2.1 Adding a Dimension

Another step that comes across unmotivated: Lift the point set P vertically to a set P’
in space, arbitrarily, with the only condition that P’ is in general position (no four on a
plane).? We denote the map by

P> q= (X>y) = q/ - (x,y,z(q)) epP’.

For an embracing triangle A = {p, g, r} in the plane, let 3, be the number of points
in P’ below the plane containing A’ = {p’,q’,r’}. (Just to avoid confusion: P clearly
depends on the choice of the lifting P’.) Let

h; = hi(P’) := the number of embracing triangles A with A =i.
Checkpoint 11.5. 5 2 h; = es.
Let us recall here that we are assuming general position for P U {0}.
Lemma 11.6. 0 € conv(P) <= ho=h,3=1.

Proof. (<) That’s obvious, since hy = 1 means that there is some embracing triangle,
and therefore 0 is in the convex hull of P.

(=) Note that 0 € conv(P) iff the z-axis (i.e. the vertical line through 0 in R3)
intersects conv(P’). There are exactly two facets (triangles because of general position)
intersected by the z-axis, the bottom one, let us call it Aj, has no point in P’ below its
supporting plane, hence, A, = O; the top one, A}, has no point in P’ above and hence
n—3 points in P’ below (all but the three points defining the facet), hence, A, =n—3.
Since any triple A’ C P’ with all points in P’ on one side (above or below) must give rise
to a facet, it cannot be hit by the z-axis, unless A’ = Aj or A’ = Aj. H

2For example, choose the lifting map (x,y) — (x,y,x? +y?) ...but stay flexible!
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Consider an embracing k-set A and its lifting A’. As observed before, in R the
vertical line through 0 will intersect the boundary of conv(A’) in two facets. Consider
the top facet — its vertices are liftings of some embracing triangle A in the plane. We call
this A the witness of (the embracing property of) A. For how many embracing k-sets
is A the witness?

For A to be witness of an embracing k-set B, we must have A C B and the remaining
k — 3 points in B \ A must be chosen so that B’ \ A’ lies below the plane spanned by A’.

Hence A is witness for exactly (kﬁfs) embracing k-sets. It follows that

= (kB_A3> =E (kis)hi . (11.7)

A embracing i=0

That is, the h;’s are exactly the x;’s defined by equations (11.2). As observed before, we
thus have

— determine >
€3.n < ho.n-3:=(ho,hs,...,;hn 3)

each other
and therefore the vector F{O..n—3 is independent of the lifting we chose, i.e. h;y = hi(P).

A few properties emerge. First note that h (consisting of nonnegative integers, each at
most (’;) = 0(n?), i.e. O(logn) bits) is a compact way of representing & (with numbers,
some may be exponential in n, with Q(n) bits). Also, since it is easy to compute the
vector h in O(n*) time®, we can compute each entry of ey in O(n?) time.

The independence of the vector h from the chosen lifting allows quite simple proofs
of properties of h: You can choose the lifting! If you can make a property of h hold for
a chosen lifting, then it will be true for all liftings. Keep this in mind, when solving the
following exercise.

Exercise 11.8. Show
ho=1 < 0€conv(P) & hi>1for0<i<n—3.

Now, don’t hesitate to use the assertion of this exercise and relation (11.7) for the
following exercise.

Exercise 11.9. Assume 0 € conv(P). (i) What is the minimal possible value of e;3
in terms of n := |P|? (Note that this gives a quantified version of Carathéodory’s
Theorem.) (1) What s the minimal possible value of ey, 3 <k <n?

Exercise 11.10. Let P be set of n points in general position (with the origin) in the
plane. Consider the vector hy. .3 as defined for a generic lifting in the lecture.
What does Y 13 2th; count?

3With some basics from computational geometry, in O(n3) time.
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Exercise 11.11. Let P be set of n points in general position (with the origin) in the
plane. Consider the numbers ey as defined tn the lecture for P (the number of
embracing k-sets of P). Show > ,_;(—1)*ex = —1 provided 0 € conv(P).

(Hint: Plugin Y 13 (.15 hi for ex in this sum and simplify, with the vector Ry 3
as defined for a generic lifting in the lecture.)

In a next step we show that the vector R is symmetric.

Lemma 11.12. hi = hnfgfi.

Proof. Define h; in the same way as h;, except that you count the points above (instead
of below) the plane through the lifting of an embracing triangle. First, note that h; =
hn_3_i. And clearly, (with the same witness argument as before)

n—3 .
i .
- hy
and, therefore,

hi=hi=hn 3.

That is, vector ﬁo_.n,3 is determined by entries ho, hyy...,h|(n_3)/2)-

Exercise 11.13. Let P be set of n points in general position (with the origin) in the
plane. Consider the numbers ey as defined in the lecture for P (the number of
embracing k-sets of P). Show (n—3)e; = 2ey.

Exercise 11.14. Show that if |P| = 6, then ez determines e3. . How?

Exercise 11.15. Show that if |P| is even then e; is even.

11.2.2 The Upper Bound

We have seen in one of the exercises how the relation between & and h can be useful
in proving lower bounds on the ex’s. We need two lemmas towards a proof of upper
bounds.

The first lemma states that removing a point in P cannot increase h;.

Lemma 11.16. For all j € Ny and all q € P, hj(P\{q}) < hy(P).

Proof. Which changes happen to h; as we remove a point q in P?
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- We lose embracing triangles A with j points below (in the lifting), where q € A or
g is one of the points below.

- We keep embracing triangles A with j points below, and q above.
- We gain embracing triangles A with j+ 1 points below, with q one of those below.

Now move q’ (in the lifting) vertically above all planes defined by three points in P'\{q’}.
This does not change the values h; (since, again, h is independent of the lifting), and
the case of “We gain” cannot occur. This gives the lemma. ]

Lemma 11.17. For all j € No, Y ocp (P \{q}) = (n —j — 3)hj(P) + (j + 1)hy11(P).

Proof. A contribution to qup h;(P\{q}) can come only from triangles A with B =]
or o =j+ 1 (relative to the complete set P and a chosen lifting P’).

- If o =j, A’ remains a triangle with j points below, if q is chosen as one of the
(n —3 —j) points above.

- If o =j+ 1, A’ turns into a triangle with j points below, if q is chosen as one of
the (j + 1) points below.

Hence the lemma. ]

We recall the previous Lemma 11.16 to bound the sum in Lemma 11.17:

> h(P\{q}) <n-h(P),

qep
and with this we can derive (with h; = h;(P))

(Tl—]—3)hj+(]+])h)+1 < Tl'hj
G+Dhe < G+ 3)hy

This bound can be iterated until we reach hy:

3y ci3gw2y o JF3j+2 03 j+3
h]+1<]'+1h3<)'+1 'hJ*]<j+] ] L\]:’?‘/g 2 .

(%)

Theorem 11.18. Let P be a set of n points in general position.
() For allj, 0 <j<n-—3,

j+2
h]- = hn73f]’ and h]' < ()—iz_ )
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and hence h; < min{(’}?), ("7, 7).
(12)

< 2(MF ) = for n even, and
©s 2172y 4 ((n+21)/2) =MD o odd,

Proof. (i) is just a summary of what we have derived so far.
For (ii) we simply plug these bounds into relation (11.7). Suppose first that n is even.
Then

(hO) h] Yooy hn/Zfz) = (hn—3) hn—4) LKD) hn/271)

and, therefore,

no3 n/2—2 n/2—2 .
i4+2 n/2+1
= i=0 " i=0 " i=0 ( 2 ) ( 3 )

Second, if n is odd then

(ho, iy oy hn—3y/2) = (hn_3zyhn_2y...;hn_3),2)

with h(n_3)/, appearing in both sequences. Then

n—3 (m—3)/2—1
e3:Zhi - 2 Z hi +hmo3),2
i=0
(n— 3)/21 .
i4+2 n+1)/2
< 2
> () (™

(m+1)/2 (m+1)/2
(") ()

There are sets where all these bounds are tight, simultaneously. We find it more
convenient to substantiate this claim after some further considerations.

O

Exercise 11.19. Show e3 < 4( ) + O(n?). (That is, asymptotically, at most 1/4 of all
triangles embrace the origin.)

Exercise 11.20. Try to understand the independence of h of the actual lifting by ob-

serving what happens as you move a single point vertically.

We have obtained lower and upper bounds in the plane. Before proceeding to better
methods for computing the e,’s, we generalize to arbitrary dimension d.
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11.3 Embracing k-Sets in d-Space

It has been announced that our methods easily carry over to higher dimensions. So
let us do a quick tour of deriving the bounds analogous to Theorem 11.18. The reader
should make sure that indeed all arguments can be generalized. It is a good exercise to
recapitulate the proofs.

Let us now assume that P C R is a set of n points in general position with the origin
0,ie.,, 0 ¢ P and no d + 1 points in P U{0} lie on a common hyperplane. There is no
change in the notion of an embracing k-set and of the vector €, but let us still repeat:

For k € Ny, we define e, = ex(P) := ’{A € (D } 0e conv(A)}|. We call A with
0 € conv(A) an embracing k-set. For |A| = d+ 1, we call A an embracing simplexr. We
will still mostly use A for embracing simplices. Observe that e =e; =--- =eq =0 and
eqr1 = sdo(P).

We consider a generic vertical lifting from P to R4*', denoted by p — p’. “Generic”
means that no d + 2 points in P’ lie in a common hyperplane.

If A C P is an embracing simplex (with d+ 1 points), then its lifting A’ spans (via its
affine hull) a hyperplane. We use 3o = -+ for the number of P’ below this hyperplane.
We emphasize that 34 is dependent on the lifting chosen.

As before, we define the vector h with

h; = hi(P’) ;== the number of embracing simplices A with A = i.
with the only difference that we now consider embracing simplices rather than triangles.
Checkpoint 11.21. Z?:_O(dﬂ) hi = eqq1.

In the plane, our next lemma was: 0 € P < hy = h,,_3 = 1, where h,,_3 counted all
embracing triangles A with all points except for A below. This number is now n—(d+1)
and we get:

Lemma 11.22. 0 € P & hy = hn—(d—H) =1

We can take over the proof we have seen for Lemma 11.6. Essential ingredients were
that a line, in particular the x4,1-axis, intersects the convex polytope conv(P’) in an
interval. If this interval is nonempty, its endpoints are parts of facets of the polytope.
The hyperplane spanned by one of these facets has no point in P’ below, the hyperplane
of the other facet has no point above (here we use the fact that the intersecting line, the
Xq.+1-axis, is vertical). Hence, these facets are liftings of embracing simplices Ay and Ay,
resp., with 3o, =0 and A, =n—(d+1). Via the notion of a witness embracing simplex
A C A of an embracing k-set A, the counterpart of (11.7) reads now (note |[A|=d+1)

n—(d+1)

o Ba B i .
=) (k_(d+1))_ ; (k—(d+1)>h" (11.23)

A embracing 0
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and

determine >

€ar1.m < No.n—(as1) -
each other

Hence, h; is independent of the lifting chosen and we can write h; = h;{(P). Symmetry of
h follows readily, as before, by looking at points above instead of below a lifted embracing
simplex.

Lemma 11.24. hy =h,_(q11)-i-

The two lemmas towards the upper bound carry over, with the first identical to what
we have seen before, and the second with the constants adapted to the dimension.

Lemma 11.25. For allj € Ny and all q € P, hj(P\{q}) < h;(P).
Lemma 11.26. For allj € No, ¥ . cp hj(P\{q}) = (n—j — (d+ 1))hj(P) + (j + 1)hj41 (P).

Proof. A contribution to qup h;(P\ {q}) can come only from simplices A with A =]
or o =j+ 1 (relative to the complete set P and a chosen lifting P’).

- If o =j, A’ remains a simplex with j points below, if q is chosen as one of the
(n—(d+ 1) —j) points above.

- If o =j+ 1, A’ turns into a simplex with j points below, if q is chosen as one of
the (j + 1) points below.

O]
Again, for the upper bound on the h;’s, just like in the plane, we start with
> h(P\{q}) <n-h(P),
qepP
and then continue
m—j—(d+1))hy+(G+1hj1 < n-hy
G+Dh < (+d+T)hy
j+d+1
hj1 < j-i-—1hj .
Then we iterate this until we reach hy:
, jrd+l . jrdt] jod jtd+1j+d d+1 j+d+1
M ST S S T e S TS S 1 g%g d '
~("4) )
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Theorem 11.27. Let P C RY be a set of n points in general position.
(1) For allj, 0 <j<n—(d+1),

j+d
hj =hn a+1)5 and h;< <] 4 )
and hence h; < min{ (jzd)) (n*;*i)}'
(w)
eqi1 < 2((n§f1)/2) for n—d even, and
a+1 S 2((n+§;]1)/2) n ((n+d;1)/2) forn—d odd.

Proof. (i) is a summary of what we have derived.
For (ii) we simply plug these bounds into relation (11.23). For n — d even we have

(h0> h] Yoo h(n—d)/Z—l ) = (hn7d71 ) hnfde) ceey h(n—d)/z)
and, therefore,

n—(d+1) (n—d)/2—1 (n—d)/2—-1 .,
i+d (m+d)/2
o= Y m=2 Y m<2 Y (d>:2( Lo
i=0 i

i=0

If n —d is odd then

(ho, iy oy hin—(a+1))/2) = (hno3, hn2, ..oy Rn—(a+1))/2)

with h(n_(4a+1))/2 appearing in both sequences. Then

n—(d+1) (n—(d+1))/2—1
egi= ) hi =2 ) hi  +hm—(a+1))2
i=0 i=0
(n—(d+1))/2—-1 .
i+d (n+d—1)/2
< 2
> () 0
_ > m+d—1)/2 n m+d-1)/2
B d+1 d ’

11.4 Embracing Sets vs. Faces of Polytopes

This section exhibits a duality between points sets, such that, roughly speaking, if P is
dual to Q, then there is a bijection between the faces of conv(P) and the embracing sets
of Q. This duality is different from the point-line duality you have seen in a previous
chapter. Just to demonstrate this, we will have P C R4 and Q C R™ 4! for n = [P| =
|Q| and some d, 0 < d < n.
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In order to describe this duality, and then handling it, we need some linear algebra
terminology handy, together with its relation to our targeted notions “embracing” and
“supporting hyperplane” (for faces of a polytope). We will approach this smoothly, and
I apologize to those who have these matters on top of their head anyway.*

11.4.1 Warm-up

Point sequences and matrices. For integers d,n € INy, consider a matrix A € R™*4. The
sequence Sa = (p1,P2,-...,Pn) Of Tow vectors of A is a sequence of points in R? (or we
say in R'*4, if we want to emphasize that these are row vectors). Clearly, vice versa,
every sequence of n points in R¢ can be thought of as a matrix in A € R™*4. Let us say
right away that we abandon here the general position assumption, at least for the time
being. In particular, we allow repetitions in a sequence of points.

We will use 1 and O for the row or column vector of all 1’s and 0’s, resp., of the
appropriate dimension (i.e., we use also 0 for the origin 0 in the ambient space). Given

a vector u = (uy,...,uy) € R™ (row or column), we write u > 0 if u; > 0 for all
i=1,...,m.
Linear and convex combinations. A linear combination A\yp1+---Anpn, A= (A1,...,An) €

R"™™, of the rows of A € R™*¢ can be compactly written as A - A € R'*4. Here are a
few simple observations.

1. 1 (I-A) is the centroid® of Sa.

2. 1-A = 0 iff 0 is the centroid of Sa (obviously, if 1- A = 0 then 1 (T- A) = 0).
Another way of reading 1- A = 0 is that 1 (as column vector) is orthogonal to all
column vectors of A.

3. M-A,withA>0and ) ' ;A =1, is a convex combination of Sa.
4. IfX-A =0 with 0 # A > 0, then 0 € conv(SA) (if the presumption holds, we can
always scale A to A’ =cA with 5 " /Al =1and A’- A = 0).

Just like A- A denotes a linear combination of the rows of A, the product A-u € R™*,
for some u € R4*', denotes a linear combination of the columns of A. We recall that A
has rank d (i.e. the columns are independent) iff there is no 0 # u € R4*" with A-u = 0.

(Supporting) hyperplanes. An oriented hyperplane in R¢ is defined by a vector v € R4*!
(as a column vector):

d V1
H, ::{XG]RdI(x,—1)~v:Zvixi—vd+1 =0} forv= : € Rld+DxT,

i=1 Vda+1

4Think of it as a warm-up of your linear-algebra-muscles.
5Center of gravity, the average of the points.
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(Here (x,—1) is the vector x extended by one extra dimension with entry —1.) H{ is
the closed positive halfspace of points x with (x,—1) -v > 0. Recall that an oriented
hyperplane H, is supporting for a ploytope P if P C H{.

1. The vector 0 := (A, —1)-v € R™*! indicates the positions of the points p;i relative
toH,: pi€ H, < 0y =0and p; € H} < 0y > 0. ((A,—f) denotes the matrix in
R™*(4+1) obtained from A by extending it by an extra column of —1’s).

—.

2. (A,—1)-v > 0iff H, is a supporting hyperplane of conv(SA).

3. If vay1 =0, v #0, and A -v;_q = 0, then H, is a hyperplane through the origin
0 containing all points in So. Or, in other words, the column vectors in A are not
independent (and the rank of A is strictly less than d), since we can write 0asa
nontrivial linear combination of the column vectors of A.

11.4.2 Orthogonal dual (Gale Duality)

We are now ready to describe a duality between sequences of n points in R¢ and R™~ ¢~
that is closely related to the Gale transform.

For d,n € Ny, we call a matrix A € R"*4 legal if 0 < d <n, 1-A =0, and if A has
full rank d. The conditions for ‘legal’ translate to the facts that the origin is the center
of gravity of the points in S, and that there is no hyperplane in R¢ containing all points
in Sh, i.e., conv(Sa) is a full dimensional polytope — an assumption much weaker than
general position!

Given legal matrices A € R"*¢ and B € R™*("=4=1) 'we call B an orthogonal dual
of A, in symbols ALB, if AT-B = 04x(n=d=1) In other words, all columns of A are
orthogonal to all columns of B. That is, the columns of A span a linear vector space
of dimension d orthogonal to the linear space of dimension n — d — 1 spanned by the
columns of B, and both spaces are orthogonal to 1 (by the legality condition). Hence,
given a legal matrix A, there is always an orthogonal dual B which is unique up to linear
transformations. Clearly, A1B <= B1A.°

See Figures 11.1 and 11.2 for examples of orthogonal duals and their point sequences.

Lemma 11.28 (Gale Duality). For d,n € Ny, let R**¢ 3 A1B € R4 pe [egal
matrices with ALB, and let (pi)l; = Sa and (pi)l, := Sg. For some given
1C{1,2,...,n}, consider F:={pi|i €[} and F*:={pr|i g I}.7

(i) If F is contained in a supporting hyperplane of conv(Sa) then 0 € conv(F*).

(ii) If 0 € conv(F), then F* is contained in a supporting hyperplane of conv(Sg).

6This convenient symmetry, enforced by the condition I- AT = 0, is the only difference to the standard
Gale transform — apart from expository details. o
"Note, it’s “c” in the definition of F and it’s “¢” for F*.
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Figure 11.2: Point sequences Sp and Sg from orthogonal duals R®*3 5 ALB € R®*2.

Proof. Let F lie in a supporting hyperplane. That is, there is a vector v € R4*', vq 4 # 0,
such that for the vector o := (A, —1)-v we have 0 > 0 and o; = 0 for i € I. Note also
o # 0, since A has full rank. Moreover,

o -B=v -(A,—I)T -B=0e R ¢!
—_——

0(d+1)x(n—d—1)

which means that the origin in R™ ¢~ is a nontrivial nonnegative linear (and thus
convex) combination of points p; with i ¢ I. That is, 0 € conv(F*).

For the reverse direction (ii), let A € R'™ be a vector that witnesses the fact that
0 € conv(F). Thatis, 0 #A >0, A\-A =0, and A\; = 0 for i ¢ I. AT is orthogonal
to the linear space spanned by the columns in A (that’s exactly what A - A = 0 says).
Consequently, it is in the linear space spanned by the columns of (B,—1), and there
is a vector v € R("4)*1 with (B,—I)-v = AT. Hence, v corresponds to a supporting
hyperplane that contains all p; with A; = 0. Since A; = 0 for i ¢ I, the hyperplane
contains all points in F*. O
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Faces in simplicial polytopes. At this point recall (and you probably already did) the
discussion about simplicial polytopes, i.e., polytopes where every face is a simplex. We
have argued that simplicial polytopes maximize the number of facets, and actually of all
i-faces, 0 <1< d—1, for a given number n of vertices.

We also saw that in such a simplicial polytope, every i-face, 0 <i<d—1, hasi+1
vertices, which determine the face. Also, whenever F is a set of vertices of a face, then
the convex hull of every subset is a face of the polytope. F is the vertex set of an i-face
iff [F| =i+ 1 and F lies in a supporting hyperplane.®

Given a d-dimensional polytope P, let

f:f(?) - (f—1)f0)f1)°°')fd—1) EIN(()H_]

be the vector with f; the number of i-faces, we call this the f-vector of P. (Recall that
there is the empty face, which we agree to be —1-dimensional; in this vector we ignore the
d-dimensional face, the whole polytope itself). For example, f_; = 1, f; is the number
of vertices of P and f4_; is the number of facets of P.

Observation 11.29. If P s a d-dimensional stmplicial polytope with vertexr set V(P),
then f; is the number of (i + 1)-element subsets of V(P) that are contained in a
supporting hyperplane of P.

We are ready to employ Gale Duality.

Lemma 11.30. Let P C R¢ be a set of n points in general position and let P := conv(P),
a stmplicial polytope, with f-vector f = (f_q,fo,...,fqa_1). Suppose P 1is the set of
points in Sa for a legal matriz A € R™"*4. Moreover, suppose B, a legal matriz,
1s an orthogonal dual of A such that the point set P* of points in Sg 1s a set of n
points in general position with the origin 0 in RY, d* :==n—d—1. Then

fio1 =eni(P) .

In particular, f_1 = e, = 1, the number of vertices 1s fo = en_1, and the number of
facets fq_1 =en_q = eq-+1 (the stmplicial depth of 0 in P*).

Proof. Since P is simplicial, the number of (i—1)-faces is exactly the number of i-element
subsets of P that are contained in a supporting hyperplane (Observation 11.29). {p;}jej,
|J| =1, is in a supporting hyperplane iff {p;‘}jgl is embracing, a subset of n — i elements
of P* (Gale Duality Lemma 11.28). O

In order to apply the upper bounds for the e*’s for the f;’s, we still have to ensure
that for every polytope, or at least for every face lattice, the presumptions of the lemma
can be achieved. So we start with a simplicial polytope P. We translate and perturb

8For all of this it is important that the polytope is simplicial. Think of a cube in 3 dimensions: The
facets, which are 2-faces, have vertex sets of size 4, and 3-element subsets of these 4-element sets are not
vertex sets of any face.
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the vertex set V(P) of P to a polytope P’ with f(P’) = f(P) where 0 is the centroid and
the vertex set V(?P’) is in general position together with 0. That this is possible needs a
not too difficult careful argument, which we sweep under the rug here. Moreover, under
these assumptions, an orthogonal dual of V(P’) is a set that is in general position even
with the origin (see Exercise 11.34).

Here, finally, comes the bound on the number of faces, first shown by McMullen in
1970.

Theorem 11.31 (Upper Bound Theorem). Let P be a stmplicial d-dimensional polytope
with n vertices and f-vector f = (f_1,fo,...,fq_1). Then there is a vector h =
(ho, hy,...,hq) € ]Ng+] with

a . )

d— . +n—d—1

fi_1 = E (i—)’))hj , and for allj, h; < (] ; ) and hj =hg_j .
j=0

In particular,

2(“;;?) d odd
fa1 < _zd_] L4 = O(nld/2)
Z(n%f] )+ (n ; ) d even

The proof of the theorem is just a transformation of Theorem 11.27 via Lemma 11.30.
Let us first check the bounds for f4_; for the values we are familiar with: For d = 2 we
get f1 < 2(“52) + (“72) =24n—2=mn,and for d =3 we get f, < 2(“;2) =2n—4,
which are both the values to be expected. For d = 4, we see already the bound grows

beyond linear: f3 = 2(“]—3) + (n;3) _ n(TL2—3).

Proof. Let ALB with S5 an ordering of the vertices of V(P’), with P’ a perturbation
of P as described above (with f(P’) = f(P)). We know that there is a vector h =
(ho, h] Yooy hn—(d*+])) such that

n—(d*+1)

j
Ck(SB) = Z (k— (d* I ])>hJ and hj = hn—(d*+1)—j .
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Moreover, we have

h < j+dr _ j+n—d—1 _ j+n—d—1
P ar n—d—1 j



Chapter 11. Counting GEOMETRY: C&A 2022

Finally, (with 249 =n — 431

_ _ 2((“;‘1*1)/2) n — d* even
fao1 = en—a=-¢€aq1 < { (A I/2y (e d S 1/2) oy ge odd
2("27) d odd

2 - O(ntd/ZJ)
2(“7%71) + (n,%,1) d even
g- g

]

Tightness. The bounds in the Upper Bound Theorem are tight, for the whole f-vector.
Polytopes that attain this bound are quite easy to describe: So-called cyclic polytopes
which are obtained as the convex hull of set {(t,t%,...,t%) | t = 1,2,...,n}. We skip
the proof here, that shows that such polytopes have indeed that many faces of various
dimension. These polytopes have the property that for all 1 < L%j, all i-element subsets
of the vertices form faces, (1 — 1)-faces. For example, in 4-space, all pairs of vertices are
connected by an edge of the cyclic polytope.

The beauty of the theorem goes much beyond supplying an upper bound. Many facts
known about polytopes follow now quite naturally.

Identities (Dehn-Sommerville relations). The identities h; = hq_j,j =0,1,...,d, are called
the Dehn-Sommerwille relations, some special cases are known to you already. To see
that, recall that the h-vector is unique and there is a formula

) Cfd—i
h; = (—] )]_1( .>fi— .
) ; d—) 1

1

We get ho = (—1)°($)f_1 = 1 (which nicely fits with what we expected) and

ha=fa 1 —fa2+Ffa3—--- (=14 + (=1)4

which, by hgq = ho, has to be 1. For d = 2 this relation reads f; — fy = 0 (matches our
expectation that a convex polygon has the same number of edges as vertices) and for
d = 3 we get f, — f; + fo = 2, which is the Euler Relation for convex polytopes in R3.
The general identity is called Euler-Poincaré Formula.

More formulas of the type are 2fy_, = dfq_;, which can be easily obtained directly
by double-counting.

The usual proof. The “usual proof”’ of the Upper Bound Theorem does not take the
detour to the Gale dual. Instead, the h-vector is defined directly for a simplicial convex
polytope P C R¢. The ingredients of the proof are similar, actually the same as we saw
translated to the Gale Dual. Apart from the original paper by McMullen, see, e.g., the
book on polytopes by Giinter Ziegler for this version of the proof.
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Exercise 11.32. Let A € R™*¢ and B € R™*"~4=1) be legal matrices with ALB, such
that Sa and Sg are in general position with the origin (in particular, all points are
distinct).

(i) Suppose that all elements in Sp are extreme (i.e. vertices of the conv(Sa).
What does this translate to for the embracing sets of Sg ?

(11) Suppose fi_1(conv(SA)) = (‘:) What does this translate to for the embracing
sets of Sg ?

Exercise 11.33. Show that a simplicial d-dimensional polytope P with d + 2 vertices
has always k(d + 2 — k) facets, for some k, 2 < k < d.

Exercise 11.34. Let R™*¢ 5 ALB € R™"™ 4= for legal matrices with A,B. Let
(pi)ly = Sa and let (p{)1; = Sg and let I C {1,2,...,n} (there are no general
position assumptions other than the legality of A and B, wn particular, Spo or Sy

may contain repeated points).

(1) Suppose |I| = d+1, and points {pi}ic1 lie in a common hyperplane. What does
this translate to for Sg?

(11) Suppose |I| = d, and points {pi}tic1 lie in a common hyperplane with the origin
0 € RY. What does this translate to for Sg?

(111) Show that Sa is generic iff Sg is generic. Here we call a sequence (pi)l-, of
points in RY generic of |{pi}l*; U{0} =n+1 and if no d+1 points in P, u{0}
lie in a common hyperplane.

Exercise 11.35. Let A € R™*4 and B € R™" 97" legal matrices with ALB, such that
Sa and Sg are in general position with the origin (in particular, all points are
distinct). Suppose n s even.

We call a vector A € R™ balanced, if no entry of A i1s 0, and there 1s the same
number of positive and negative entries in . We call (Q*, Q) a feastble equiparti-
tion of the set of points in Sa = (p1,P2,-..,Pn) if there is a balanced vector A such
that A\-A =0 and Q" ={pinSa | A >0} and Q= = {piinSa | Ay < 0}. What do
these feasible equipartitions translate to for the points of Sg?

11.5 Faster Counting in the Plane — Another Vector

Call a directed edge 0q, q € P, an i-edge, if 1 points in P lie to the left of the directed
line through 0q (directed from 0 to q). Let {; = {;(P) be the number of i-edges of P.

Checkpoint 11.36. > . ¢ = n. What s the vector U= (8o,0,...,00_1) for the case
0 & conv(P)?
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For every nonempty set A C P with 0 ¢ conv(A), conv(A) has a left and a right
tangent from 0. Let q € A be the touching point of the right tangent. For how many
k-element sets A C P with 0 ¢ conv(A) is this point q the right touching point?

Checkpoint 11.37. This is (') f 0q s an i-edge.

Hence, we have for 1 <k < n:

CD _; (ki1)"fi :rg (kL)U —4) . (11.38)

\ i 1= 1
n—1 i
i=0 (kfl )

We have a combinatorial interpretation of the z;’s in (11.4) and, therefore, numbers
{; satisfying (11.38) are unique.

—_

ex =
>

Exercise 11.39. Show that ¢ = €, _1_i. (Hint: Wonder why we chose “left” and not
“right”.)

We can compute the vector fo..n—1 in O(nlogn) time. For that we rotate a directed
line about 0, starting with the horizontal line, say. We always maintain the number of
points left of this line, and update this number whenever we sweep over a point q € P.
This q may lie ahead of 0 or behind it; depending on this the number increases by 1
or decreases by 1, resp. In this way, with a rotation by 180 degrees, we can compute
the “number of points to the left” for every q € P. We need O(nlogn) time to sort
the events (encounters with points in P). We initialize the “number to the left” in O(n)
time in the beginning, and then update the number in O(1) at each event. This gives
O(nlogn) altogether.

Theorem 11.40. In the plane, the simplicial depth sdq(P) can be computed in O(nlogn)
time, provided P U {q} s wn general position.

Clearly, all entries e, 1 < k < n, can be computed based on the vector . How-
ever, keep in mind that the binomial coefficients involved in the sum (11.38) must be
determined and that the numbers involved are large (up to n-bit numbers).

Showing that the upper bound in Theorem 11.18 is tight is now actually easy.
If P is the set of vertices of a regular n-gon, n odd, centered at 0, then {,_1),2 =n
(and all other ¢;’s vanish). Therefore,

_(n m—1)/2 _nn?-1)
o §)-( ae

and the case of n odd is shown tight in Theorem 11.18.
For n even, consider the vertices of a regular n-gon centered at 0, and let P be a
slightly perturbed set of these vertices so that P U{0} is in general position. Note that
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all edges 0q, q € P, must be (n/2 — 1)- or (n/2)-edges. Interestingly, because of the
symmetry of the {-vector, we immediately know that {,, ,»_1 = {,,,2 = n/2 (with all other
{;’s vanishing), independent of our perturbation. Now

e (M) n/2—1 N n/2 E_n(nz—él)
>3 2 2))2 4
and Theorem 11.18 is proven tight also for n even.

A next step is to understand what the possible {-vectors for n points are, and in this
way characterize and eventually count all possibilities for 1 and thus for €.

11.5.1 Characterizing All Possibilities

We start with two observations about properties of L.
Exercise 11.41. Show that {|(n_1)/2] = 1. (There is always a halving edge.)

Exercise 11.42. Show that if {; > 1 for some i < |[(n—1)/2], then {; > 1 for all j,
i<i< -1,

We summarize our knowledge about L.

Theorem 11.43. For n € N, the vector To no of an n-point set satisfies the following
conditions.

e All entries are nonnegative integers.

e Yl li=n
e (i =(, 1. (Symmetry)

o If € > 1 for some i< [(n—1)/2], then{; > 1 for allj, i <j < |[(n—1)/2].
(remains positive towards the muiddle)

Let us call a vector of length n a legal n-vector if the conditions of Theorem 11.43
are satisfied. Then (1) is the only legal 1-vector, (1,1) is the only legal 2-vector, and
the only legal 3-vectors are (0,3,0) and (1,1,1). The following scheme displays how we
derive legal 6-vectors from legal 5-vectors, and how we can derive legal 7-vectors from
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legal 5- or 6-vectors.

nj:\S n=6
0 0500 0 03300
01310 add 1 in the middle and split 012210
02120 — 021120
1T 1 1 11 1T 111 11
add 2 in the middle insert a 1 in the middle
O 007000 0 031300
O 015100 0121210
0023200 0211120
O1 13110 T 111111
n=7, with >1 in the middle n=7, with :I,in the middle

Exercise 11.44. Show that the scheme described, when applied to general n odd, s
complete. That 1s, starting with all legal n-vectors, n odd, we get all legal (n+ 1)-
vectors, and from the n- and (n + 1)-vectors, we get all (n + 2)-vectors.

Exercise 11.45. Show that the number of legal n-vectors is exactly 2L(n—1/2]
Exercise 11.46. Show that every legal n-vector is the {-vector of some set of n points
in general position.

With these exercises settled, we have given a complete characterization of all possible

(-vectors, thus of all possible e-vectors.

Theorem 11.47. The number of different e-vectors (or L-vectors) for n points is ezactly
oLn—1)/2

Exercise 11.48. Show that Zi:o 6 <j+1 forall0<j< [(n—1)/2|. (Hint: Otherwise,
we get into conflict with “remains positive towards the middle”).

11.5.2 Some Add-Ons

We are still missing an interpretation of the y;’s in relations (11.3). We want to leave
this as an exercise.
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Exercise 11.49. For a set P of n points in general position, consider the vector
(boyb1y...ybn2)

defined by the relations

n—2 . n—2 .
() B E ),

i=0 i=0

for 2 < k < n. Gwe a combinatorial interpretation of these numbers b, 0 < i <
n—2.

Finally, let us investigate how the vectors X, U, and Z from relations (11.2), (11.3),
and (11.4) connect to each other. Clearly, e; and e, given, they determine each other.
But how? This will allow us to relate the vectors h and L.

Exercise 11.50. Consider the relations defined in the beginning of this section on
X0.n-3,Y0..n-2, Zo.n_1, and €. (using ey = e, =0). Then the y;’s are the forward
differences of the xi, and the z;’s are the forward differences of the y;’s. Prove this.
More concretely, show that

—Xo0 i=0
Yi=+<¢ Xi_1—% 1<i<n-3
Xn—3 i=n-—-2
or, equivalently,
Yi=%Xi—1—x4 forall0<i<n—2, withx_;:=%x,_2:=0.

Show that this entails as well
Xi:_ZUj , foro<i<n—3.
j=0

Exercise 11.51. Prove for vectors dy. . and bo. m

Vk,0 <k <m: ak:ZC)bi

i=0

Exercise 11.52. Employing the previous exercise, what does ho = 1 say about €3 ..

The following facts can now be readily derived.
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Theorem 11.53.

. ) i
m=(152) - -

§=0
Exercise 11.54. Prove Theorem 11.53.

Note that this implies the upper bounds we proved for the h;’s in Theorem 11.18,
since Z}:O(i + 1 —j)4 is always nonnegative. Moreover, a combinatorial interpretation
of the slack becomes evident.

Theorem 11.55.

=Y (;) (=) with € =, =1

i=0

Exercise 11.56. Prove Theorem 11.55.

Let us point out other counting problems which can be solved efficiently with the
insights developed.

Exercise 11.57. Giwven a ray r (emanating from point q) and n points P in the plane,
design an efficient algorithm that counts the number of points connecting segments
intersecting v. You may assume that P U{q} is in general position and that v s
disjoint from P.

Exercise 11.58. Let w be a line minus an interval on it (an infinite wall with a
window). Given n points P in the plane, design an efficient algorithm that counts
the number of point connecting segments disjoint from w (i.e. the number of pairs
of points that see each other, either because they are both on the same side of w
or because they see each other through the window in w. You may assume general
position.

Exercise 11.59. Recall that a point ¢ is a centerpoint of P if every halfplane containing
c contains at least |P|/3 points in P.
Identify the properties of €, h and 1 that show that 0 is a centerpoint of P.

Exercise 11.60. Show that yi = —yn 21 and y; < 0 for all 0 < i < L“T_Zj (We refer
here to the yi’s as defined by relations (11.3) at the beginning of this section. Hint:
You may wish to recall Homework 11.50 and Ezercise 11.48.)

Exercise 11.61. Show that hy > hi_1 for all 0 < L“T’ﬂ
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Questions

65.

Explain how the h-vector of a planar point set is defined via a lifting. Give the
relation between the e-vector (number of embracing k-sets) and the h-vector.

All of the following five questions also include Question 65.

66.
67.
68.

69.
70.

71.

Argue, why the h-vector is independent of the lifting.
Argue, why the h-vector is symmetric.

Argue, why for a given generic lifting P’ C R? of a point set P C R? in general
position, removing a point (with its lifting) cannot increase hj, i.e. hj(P \ {p}) <
h;(P) for all j € Ny and all p € P.

Show how the (-vector can be computed in O(nlogn) time.

Argue why the (-vector is symmetric ({; =, 1 ;foralli, 0 <i<n—1).

Explain orthogonal duals (Gale Duality). How do embracing sets and faces of
polytopes relate to each other?
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