
Chapter 7

Delaunay Triangulation: Incremental
Construction

We have learned about the Lawson flip algorithm that computes a Delaunay triangulation
of a given n-point set P ⊆ R2 by performing O(n2) Lawson flips. We have also seen in
an exercise that there are point sets where it may take up to Ω(n2) flips. Moreover, it
can be implemented to run in O(n2) time.

Here, we will discuss a different algorithm. The final goal is to show that this algo-
rithm can be implemented to run in O(n logn) time. Throughout, we assume that P
is in general position (no 3 points on a line, no 4 points on a common circle), so that
the Delaunay triangulation is unique (Corollary 6.19). There are techniques to deal with
non-general position, but we don’t discuss them here.

7.1 Incremental construction

The idea is to build the Delaunay triangulation of P by inserting one point after another
according to an order p1, p2, . . . , pn chosen uniformly at random. Note that this random
order will only become relevant later in the runtime analysis.

To avoid special cases, we enhance the set P with three artificial points p0, p−1 and
p−2 “far out” such that the boundary of the convex hull of P ∪ {p0, p−1, p−2} has only
these three artificial points as vertices. The idea is to later remove the extra points and
their incident edges to obtain DT(P).

The algorithm starts off with the Delaunay triangulation of the three artificial points,
which consists of one big triangle enclosing all other points. In our figures, we sup-
press the far-away points, since they are merely a technicality. For 1 6 s 6 n, let
Ps = {p1, . . . , ps} and P∗s = Ps ∪ {p0, p−1, p−2}. Throughout, we maintain the Delaunay
triangulation of the set P∗s−1 of points inserted so far, and when the next point ps comes
along, we update the triangulation to the Delaunay triangulation of P∗s.

LetDT(s) denote the Delaunay triangulation of P∗s. Now assume that we have already
built DT(s− 1), and we next insert ps. Here is the outline of the update step.

107

Chapter 7. Delaunay Triangulation: Construction Geometry: C&A 2022

ps
∆

Figure 7.1: Inserting ps into DT(s− 1): Step 1

1. Find the triangle ∆ = ∆(p, q, r) of DT(s− 1) that contains ps, and replace it with
the three triangles resulting from connecting ps with all three vertices p, q, r; see
Figure 7.1. We now have a triangulation T of P∗s.

2. Perform Lawson flips on T until DT(s) is obtained; see Figure 7.2

ps
∆

ps
∆

ps
∆

ps
∆

Figure 7.2: Inserting ps into DT(s− 1): Step 2

How to organize the Lawson flips. The Lawson flips can be organized quite systematically,
since we always know the candidates for “bad” edges that may still have to be flipped.
Initially (after step 1), only the three edges of ∆ can be bad, since these are the only
edges for which an incident triangle has changed (by inserting ps in Step 1). Each of

108

Geometry: C&A 2022 7.2. The History Graph

the three new edges is good, since the 4 vertices of its two incident triangles are not in
convex position.

Now we have the following invariant (part (a) certainly holds in the first flip):

(a) In every flip, the convex quadrilateral Q in which the flip happens has exactly two
edges incident to ps, and the flip generates a new edge incident to ps.

(b) Only the two edges of Q that are not incident to ps can become bad after the flip.

We will prove part (b) in the next lemma. The invariant then follows since (b) entails
(a) in the next flip. This means that we can maintain a queue of potentially bad edges
that we process in turn. A good edge will be removed from the queue, and a bad edge
will be flipped and replaced according to (b) with two new edges in the queue. In this
way, we never flip edges incident to ps; the next lemma proves that this is correct and
at the same time establishes part (b) of the invariant.

Lemma 7.1. Every edge incident to ps that is created during the update is an edge of
the Delaunay graph of P∗s and thus an edge that will be in DT(s). It easily follows
that edges incident to ps will never become bad during the update step.1

Proof. Let us consider one of the first three new edges, psp, say. Since the triangle
∆ has a circumcircle C strictly containing only ps (∆ is in DT(s − 1)), we can shrink
that circumcircle to a circle C ′ through ps and p with no interior points, see Figure 7.3
(a). This proves that psp is in the Delaunay graph. If pst is an edge created by a flip,
a similar argument works. The flip destroys exactly one triangle ∆ of DT(s − 1). Its
circumcircle C contains ps only, and shrinking it yields an empty circle C ′ through ps
and t. Thus, pst is in the Delaunay graph also in this case.

7.2 The History Graph

What can we say about the performance of the incremental construction? Not much yet.
First of all, we did not specify how we find the triangle ∆ of DT(s − 1) that contains
the point ps to be inserted. Doing this in the obvious way (checking all triangles) is
not good, since already the find steps would then amount to Θ(n2) work throughout the
whole algorithm. Here is a smarter method, based on the history graph.

Definition 7.2. For any given s, the history graph Hs−1 of P∗s−1 is a directed acyclic
graph whose vertices are all triangles that have ever been created during the incre-
mental construction of DT(s − 1). There is a directed edge from triangle ∆ to ∆ ′

whenever ∆ has been destroyed and ∆ ′ has been created in the same step, which
implies that ∆ overlaps with ∆ ′ in its interior.

1If such an edge was bad, it could be flipped, but then it would be “gone forever” according to the lifting
map interpretation from the previous chapter, which means it could not have been part of the Delaunay
graph.

109

Chapter 7. Delaunay Triangulation: Construction Geometry: C&A 2022

ps

p

∆
C′

C

(a) New edge psp incident
to ps created in Step 1

ps

∆

C′

t

C

(b) New edge pst incident
to ps created in Step 2

Figure 7.3: Newly created edges incident to ps are in the Delaunay graph

It follows that the history graph Hs−1 contains triangles of outdegrees 3, 2 and 0.
The ones of outdegree 0 are clearly the triangles of DT(s− 1).

The triangles of outdegree 3 are the ones that have been destroyed during Step 1 of
an insertion. For each such triangle ∆, its three outneighbors are the three new triangles
that have replaced ∆, see Figure 7.4.

The triangles of outdegree 2 are the ones that have been destroyed during Step 2 of
an insertion. For each such triangle ∆, its two outneighbors are the two new triangles
created during the flip that has destroyed ∆, see Figure 7.5.

The history graph Hs−1 can be built during the incremental construction at asymp-
totically no extra cost; but it may need extra space since it keeps all triangles ever
created. Given Hs−1, we can search for the triangle ∆ of DT(s − 1) that contains ps,
as follows. We start from the big triangle ∆(p0, p−1, p−2); this one certainly contains
ps. Then we follow a directed path in the history graph. If the current triangle still has
outneighbors, we find the unique outneighbor containing ps (recall that we assume gen-
eral position) and continue the search there. If the current triangle has no outneighbors,
it is in DT(s − 1) and contains ps. Thus, the time complexity of finding the triangle
containing ps is linear in the length of the path traversed in the history graph.

Types of triangles in the history graph. After each insertion of a point ps, several triangles
are created and added to the history graph. It is important to note that these triangles
come in two types: Some of them are valid Delaunay triangles of DT(s), and they survive
to the next stage of the incremental construction. Other triangles are immediately
destroyed by subsequent Lawson flips, because they are not Delaunay triangles of DT(s).

Note that, whenever a Lawson flip is performed, one of the two triangles destroyed is
always a “valid” triangle from a previous iteration, and the other one is an “ephemeral”
triangle that was created in this iteration. The ephemeral triangle is always the one that
has ps, the newly inserted point, as a vertex.

110

Geometry: C&A 2022 7.2. The History Graph

�

�

ps

ps

ps ps
ps

Figure 7.4: The history graph: one triangle gets replaced by three triangles

ps

ps
ps

ps

Figure 7.5: The history graph: two triangles get replaced by two triangles

111

Chapter 7. Delaunay Triangulation: Construction Geometry: C&A 2022

7.3 Analysis of the algorithm

We start by making the following simple observation.

Observation 7.3. Let ds denote the degree of the vertex ps in the triangulation DT(s).
Given DT(s − 1) and the triangle ∆ of DT(s − 1) that contains ps, we can build
DT(s) in time proportional to ds. Moreover, the total number of new triangles
(both “valid” and “ephemeral”) created throughout this insertion is 2ds − 3.

Indeed, since every Lawson flip increases the number of edges adjacent to ps by
exactly one, the number of flips is equal to the final degree ds of ps minus three. Step
1 of the update takes constant time and creates three new triangles; each flip in Step 2
can be implemented in constant time as well and creates two new triangles. Therefore,
the running time is indeed proportional to ds, and the number of created triangles is
3+ 2(ds − 3) = 2ds − 3, as claimed.

Lemma 7.4. Let ds again denote the degree of the vertex ps in the triangulation
DT(s). Then, we have E[ds] 6 6.

Proof. We use backwards analysis to bound the expected value of the random variable
ds. Since DT(s) is a triangulation with s+3 vertices, it follows from the Euler character-
istic that it has 3(s+3)−6 edges. If we exclude the three edges of the convex hull, we get
that the degrees of all interior vertices in DT(s) add up to at most 2(3(s+ 3) − 9) = 6s.
This implies that the expected degree of a random point of Ps (i.e., not including the
artificial points p0, p−1 or p−2) in DT(s) is at most 6.

By combining the above observations, we can also prove the following bound on the
expected number of triangles created by the algorithm. Note that this is at the same
time a bound on the expected size of the history graph.

Lemma 7.5. The expected number of triangles (both “valid” and “ephemeral”) ever
created by the algorithm is at most 9n+ 1.

Proof. Before inserting any points from the set P, we only have the artificial triangle
∆(p0p−1p−2). During the s-th iteration of the algorithm, when we insert the point ps,
we know from Observation 7.3 that the number of new triangles created is 2ds − 3.
Combined with Lemma 7.4 we then get that the expected number of created triangles
in iteration s is at most

E[2ds − 3] = 2E[ds] − 3 6 2 · 6− 3 = 9.

By linearity of expectation we thus get that the expected total number of created triangles
is at most 9n+ 1.

Note that we cannot say that all iterations create a number of triangles close to 9,
i.e., there could be some very costly insertions. However, the average is constant which
provides us with a linear expected total value.

112

Geometry: C&A 2022 7.3. Analysis of the algorithm

Locating ps in the history graph. We proceed now to the most difficult part of the analysis;
that is, showing that locating the triangle that contains ps inHs−1 costs logarithmic time
in expectation. Note that the time required for locating ps is proportional to the number
of triangles in Hs−1 that contain ps (because every traversed triangle is, by definition,
one that contains ps). This set of traversed triangles also consists of “ephemeral” triangles
that have been created and immediately destroyed in the same iteration. To make the
analysis possible, we instead want to express the required running time for locating ps
in terms only of “valid” triangles.

Indeed, we can say that locating ps costs time at most proportional to the number
of valid triangles ever created that contain ps in their circumcircle. This reformulation
indirectly accounts also for ephemeral triangles that contain ps; whenever we traverse
an ephemeral triangle ∆ in Hs−1 while locating ps, we can charge the time spent to the
valid triangle ∆ ′ that was destroyed together with ∆ during the corresponding Lawson
flip. It is clear that, in this way, the triangle ∆ ′ is charged at most once. Provided that
the corresponding Lawson flip was performed, we also know that ps is indeed contained
in the circumcircle of ∆ ′.

Instead of analyzing the running time for locating one point ps in a particular it-
eration s, the goal is to understand the combined running time for locating all points
p1, p2, . . . , pn over all iterations. We can now express this combined running time as

O

(
n+

∑
∆

|K(∆)|

)
,

where the sum goes over all valid Delaunay triangles ever created in any iteration s =
1, . . . , n (i.e., we deliberately exclude the initial artificial triangle in the sum), and the
set K(∆) consists of all points from P that are contained in the circumcircle of ∆.

Note that in the case of DT(0), we have |K(∆)| = n for the artificial triangle ∆ =
∆(p0p−1p−2); whereas we know that |K(∆)| = 0 for all triangles ∆ in the final Delaunay
triangulation DT(n). In between, we would like the values to somehow interpolate nicely.

Lemma 7.6. It holds that

E

[∑
∆

|K(∆)|

]
= O(n logn).

Proof. Throughout, we will make use of the following four random sets and functions:

� τs = {∆ ∈ DT(s)}, the set of Delaunay triangles in DT(s);

� τ∗s = τs \ τs−1, the set of newly created Delaunay triangles in DT(s);

� ϕs(q) = |{∆ ∈ τs : q ∈ K(∆)}|, the number of triangles in DT(s) whose circumcircle
contains a point q;

� ϕ∗s(q) = |{∆ ∈ τ∗s : q ∈ K(∆)}|, the number of newly created triangles in DT(s)
whose circumcircle contains a point q.

113

Chapter 7. Delaunay Triangulation: Construction Geometry: C&A 2022

Using this new notation, we can rewrite the expression from the lemma as follows:

E

[∑
∆

|K(∆)|

]
= E

 n∑
s=1

∑
∆∈τ∗s

|K(∆)|

 =

n∑
s=1

E

∑
∆∈τ∗s

|K(∆)|

 . (7.7)

This works because each triangle created by the algorithm is created in some iteration
and, hence, belongs to the set τ∗s for some s.

We recall that for every s, the sum
∑
∆∈τ∗s |K(∆)| counts (with multiplicity) the num-

ber of points in P that lie inside the circumcircles of the triangles in τ∗s. Since these
circumcircles belong to triangles of the Delaunay triangulation DT(s), they must not
contain any points from the set Ps and, hence, all points lying inside these circumcircles
belong to P \ Ps. Thus, we can further rewrite the sum in terms of the function ϕ∗s as

E

[∑
∆

|K(∆)|

]
=

n∑
s=1

E

∑
∆∈τ∗s

|K(∆)|

 =

n∑
s=1

E

 ∑
q∈P\Ps

ϕ∗s(q)

 . (7.8)

To further analyze the expected value in the above expression, we use conditional
expectations. That is, we condition on Ps (i.e., the random set of points inserted in the
first s iterations) being a specific set of s points from P and then, later, we take the
weighted average of all such conditional expectations.

More formally, let us fix any concrete set P̂s = {p̂1, . . . , p̂s} that is a subset of P of size
s, and define E to be the event that Ps = P̂s. Under the condition E, the set of points
Ps = P̂s and thus also the set of triangles τs = τ̂s and the function ϕs = ϕ̂s are fixed;
therefore, the random variable ϕ∗s(q) depends only on which of the points in P̂s was
inserted last. Since the order of insertion of P̂s is still uniformly at random, a triangle
∆ ∈ τ̂s is incident with the random point ps (and hence ∆ is newly created in iteration
s) with probability at most 3/s (only “at most” because the three incident vertices of ∆
might be equal to the artificial points p0, p−1, p−2). We therefore get

E

 ∑
q∈P\Ps

ϕ∗s(q)

∣∣∣∣∣ E
 =

∑
q∈P\P̂s

E [ϕ∗s(q) | E] =
∑

q∈P\P̂s

∑
∆∈τ̂s :
q∈K(∆)

Pr [∆ ∈ τ∗s | E]︸ ︷︷ ︸
63/s

6
3

s

∑
q∈P\P̂s

ϕ̂s(q).

(7.9)

Still conditioned on E, we note that any element q of P \ P̂s is equally likely to be
the point ps+1; that is, the point inserted in the next iteration. We therefore get that

E[ϕs(ps+1) | E] =
1

n− s

∑
q∈P\P̂s

ϕ̂s(q). (7.10)

114

Geometry: C&A 2022 7.3. Analysis of the algorithm

If we now combine equations (7.9) and (7.10), and then drop the condition E (which
is justified by the law of total expectation), we obtain

E

 ∑
q∈P\Ps

ϕ∗s(q)

 6
3(n− s)

s
E[ϕs(ps+1)]. (7.11)

Euler’s characteristic implies that the number of triangles increases by exactly two
whenever a new point is inserted into a triangulation. Therefore, we always have
ϕs(ps+1) + 2 = |τ∗s+1|, which is simply saying that in iteration s + 1, the number of
destroyed Delaunay triangles plus two is equal to the number of newly created De-
launay triangles. Moreover, as already noticed earlier in this chapter, we have in fact
|τ∗s+1| = ds+1; that is, the number of new Delaunay triangles is equal to the degree ds+1
of the newly inserted point ps+1. We may therefore rewrite inequality (7.11) as

E

 ∑
q∈P\Ps

ϕ∗s(q)

 6
3(n− s)

s
(E[|τ∗s+1|]−2) =

3(n− s)

s
(E[ds+1]︸ ︷︷ ︸

66

−2) 6
12(n− s)

s
, (7.12)

where we have used Lemma 7.4 in the last step.
We are finally able to plug (7.12) back into (7.8) in order to conclude the proof:

E

[∑
∆

|K(∆)|

]
6

n∑
s=1

12(n− s)

s
6 12n

n∑
s=1

1

s
= O(n logn).

The main theorem. Having the previous lemmas at hand, proving our main result is now
straightforward.

Theorem 7.13. The Delaunay triangulation of a set P of n points in the plane can be
computed in O(n logn) expected time, using O(n) expected space.

Proof. The correctness of the algorithm follows from the correctness of the Lawson flip
algorithm, and from the fact that we perform all possible Lawson flips in every iteration.
For the space consumption, we note that only the history graph could use more than
linear space, but Lemma 7.5 proves that its expected size is O(n), which yields the
desired bound.

To bound the running time of the algorithm, we first ignore the time used during the
point location queries. Ignoring this, from Observation 7.3 we know that the running
time is proportional to the number of triangles created. From Lemma 7.5 we again know
that only O(n) triangles are created in expectation. Hence, only O(n) additional time
is needed in expectation.

115

Chapter 7. Delaunay Triangulation: Construction Geometry: C&A 2022

It remains to account for the point location queries. Recall that we do this by using
the history graph. We start from its root, the triangle ∆(p0, p−1, p−2), and then traverse
a path in this graph that finishes in a node corresponding to the triangle of DT(s − 1)
that contains ps. Since the out-degree of all nodes in the history graph is O(1), the
running time of the point location query is proportional to the number of nodes visited.
As explained earlier, the number of nodes visited in this way over the whole run of the
algorithm is bounded by the expression O(n+

∑
∆ |K(∆)|). From Lemma 7.6 we get the

required upper bound of O(n logn) on the expected value of that expression.

Exercise 7.14. For a sequence of n pairwise distinct numbers y1, . . . , yn consider the
sequence of pairs (min{y1, . . . , yi},max{y1, . . . , yi})i=0,1,...,n (min ∅ := +∞,max ∅ :=
−∞). How often do these pairs change in expectation if the sequence is permuted
randomly, each permutation appearing with the same probability? Determine the
expected value.

Exercise 7.15. Given a set P of n points in convex position represented by the clockwise
sequence of the vertices of its convex hull, provide an algorithm to compute its
Delaunay triangulation in O(n) time.

Questions

31. How can we efficiently compute the three artificial points p0, p−1 and p−2
whose convex hull contains all points of P, while keeping their coordinates
“small”.

32. Describe the algorithm for the incremental construction of DT(P): how do we
find the triangle containing the point ps to be inserted into DT(s− 1)? How do we
transform DT(s − 1) into DT(s)? How many steps does the latter transformation
take?

33. What are the two types of triangles that the history graph contains?

116

	Delaunay Triangulation: Incremental Construction
	Incremental construction
	The History Graph
	Analysis of the algorithm

