
Chapter 9

Convex Polytopes

Recall that we have defined a convex polytope to be the convex hull of a finite point
set P ⊂ Rd (Definition 5.7). In this chapter, we take a closer at convex polytopes and
their structure; in particular, we discuss their connections to Delaunay triangulations
and Voronoi diagrams. On the way, we are borrowing a lot of material from Ziegler’s
classical book Lectures on Polytopes [4]. In the sequel, we will omit the attribute
convex whenever we talk about polytopes.

We are already somewhat familiar with polytopes in dimensions d = 2, 3. For d = 2,
a polytope is just a convex polygon, see Figure 9.1.
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(a) Finite point set P ⊂ R2.
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(b) conv(P), a convex polygon with vertex set
Q ⊂ P

Figure 9.1: Convex polytopes in R2 are convex polygons.

Convex polygons are boring in the sense that they all look the same, combinatorially:
the vertex-edge graph of a convex polygon with n vertices is just a simple cycle of length
n. Therefore, from a graph-theoretical viewpoint, all convex polygons with n vertices
are isomorphic.

The situation is more interesting for d = 3 where infinitely many combinatorially
different polytopes exist. The most popular examples are the five platonic solids. Two
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of them are the octahedron1 and the dodecahedron2, see Figure 9.2.

Figure 9.2: Two 3-dimensional polytopes: The octahedron (left) and the dodecahe-
dron (right)

Vertex-edges graphs of 3-dimensional polytopes are well-understood, due to the fol-
lowing classical result. Ziegler’s book has a full lecture about it [4, Lecture 4].

Theorem 9.1 (Steinitz). A graph G is the vertex-edge graph of a 3-dimensional polytope
if and only if G is planar and 3-connected.

We have already encountered such graphs before and have shown that they have a
unique (combinatorial) embedding in the plane; see Theorem 2.26; here, we see that they
also have a geometric embedding as a polytope in R3. In particular, a polytope in R3

with n vertices has at most 3n− 6 edges and 2n− 4 faces, by Corollary 2.5.
Figure 9.3 shows the vertex-edge graph of the octahedron, drawn as a plane straight

line graph (PSLG).

Figure 9.3: The vertex-edge graph of the octahedron

What happens in higher dimensions? In particular, we want to understand how “com-
plicated” a polytope in Rd can be. For example, how many edges can a 4-dimensional

1By User:Stannered - Vectorisation of Image:Octahedron.jpg, CC BY-SA 3.0, https://commons.
wikimedia.org/w/index.php?curid=1742116

2By DTR, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2231561
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polytope with n vertices have? Is it still O(n), as for d = 2, 3? To discuss this, we
first have to define polytope “edges” formally—our intuition unfortunately stops in R3.
In fact, the vertices and edges are the 0-dimensional and 1-dimensional faces of the
polytope.

9.1 Faces of Polytopes

Let P ⊂ Rd and P = conv(P) a polytope. The dimension dim(P) of P is the dimension
of the affine hull aff(P). If dim(P) = d, P is called full-dimensional.

Definition 9.2. Let P ⊂ Rd be a polytope. F ⊂ Rd is a face of P if there exists a
hyperplane

h = {x ∈ Rd :

d∑
i=1

hixi = hd+1}

such that F = P ∩ h and P ⊂ h+, where

h+ = {x ∈ Rd :

d∑
i=1

hixi > hd+1}.

Here, h+ is the closed positive halfspace associated with the hyperplane h which is
said to support the face F.

Note that after multiplying all hi with −1, the negative halfspace is the positive halfs-
pace of some other hyperplane, so considering only positive halfspaces in the definition is
no loss of generality. The way you should think about it is that a face is the intersection
of P with some hyperplane “tangent” to P. Figure 9.4 illustrates this notion.

Figure 9.4: Two faces (an edge and a vertex) with supporting hyperplanes.

The dimension of a face is the dimension of its affine hull. A face of dimension k is
called a k-face. There are established names for faces of certain dimensions.
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Geometry: C&A 2022 9.1. Faces of Polytopes

� 0-faces are called vertices,

� 1-faces are called edges,

� (dim(P) − 2)-faces are called ridges, and

� (dim(P) − 1)-faces are called facets.

By V(P), we denote the set of vertices of a polytope P.
If P is full-dimensional, the affine hull of a facet has dimension d−1 (is a hyperplane),

from which we conclude the following.

Remark 9.3. Every facet of a full-dimensional polytope has a unique supporting hy-
perplane.

Exercise 9.4. Show that any ridge is incident to exactly 2 facets.

There are two degenerate hyperplanes obtained from setting h1 = · · · = hd = 0.3 If
hd+1 = 0, we have h = h+ = Rd, and if hd+1 < 0 we get h = ∅, h+ = Rd. It follows that
P is a face of itself, and that ∅ is also a face (by convention, its dimension is −1).

As an illustration, consider the octahedron; see Figure 9.2 (left). It has 8 facets, 12
edges (which are also ridges), and 6 vertices. The dodecahedron in Figure 9.2 (right) has
12 facets, 30 edges/ridges, and 20 vertices.

The careful reader might have noticed that previously (Definition 5.7), we have de-
fined a vertex of P = conv(P) differently, namely as an extreme point of P, one that is
not a convex combination of the others. We should make sure that Definition 9.2 agrees
with this, up to the formal subtlety that according to the latter, a vertex is not a point
but a singleton set (we will later sweep this under the rug, but it is good to have talked
about it once). The proof also shows how to argue with supporting hyperplanes.

Lemma 9.5. Let P = conv(P) be a polytope. Then p is an extreme point of P if and
only if {p} is a 0-face of P.

Proof. If p is an extreme point, then the disjoint sets C = {p} and D = conv(P \ {p}) are
both closed and bounded convex sets, hence compact. By the Separation Theorem 5.16,
there is a hyperplane that separates {p} from conv(P \ {p}). In formulas, there exist
hyperplane parameters h1, . . . , hd+1 such that

d∑
i=1

hipi < hd+1,

d∑
i=1

hiqi > hd+1 ∀q ∈ conv(P \ {p}).

3In defining a hyperplane in Section 1.2, we haven’t allowed for such degenerate hyperplanes, but here
we need them.
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After decreasing hd+1 and restricting to q ∈ P \ {p} ⊂ conv(P \ {p}), we get
d∑
i=1

hipi = hd+1, (9.6)

d∑
i=1

hiqi > hd+1, q ∈ P \ {p}. (9.7)

We claim that the hyperplane h = {x ∈ Rd :
∑d
i=1 hixi = hd+1} supports {p}, so {p} is a

0-face. Indeed, p is on the hyperplane by (9.6), and any other point p ′ ∈ P is a convex
combination p ′ =

∑
q∈P λqq,

∑
q∈P λq = 1, with λq > 0 for all q, and λr > 0 for some

r 6= p. Then (9.6) and (9.7) yield

d∑
i=1

hip
′
i =

d∑
i=1

hi
∑
q∈P

λqqi =
∑
q∈P

λq

d∑
i=1

hiqi >
∑
q∈P

λqhd+1 = hd+1.

For the inequality, we used λr > 0 and r 6= p. Hence, h ∩ P = {p} and P ⊂ h+.
For the other direction, suppose that p is not an extreme point, meaning that p is

a convex combination of some other points Q ⊂ P \ {p}, p =
∑
q∈Q λqq,

∑
q∈Q λq = 1,

with λq > 0 for all q ∈ Q. Any candidate for a hyperplane supporting {p} must satisfy
h ∩ P ⊇ {p} and Q ⊂ h+. If h1, . . . , hd+1 are the parameters of h, this translates to

hd+1 =

d∑
i=1

hipi =

d∑
i=1

hi
∑
q∈Q

λqqi =
∑
q∈Q

λq

d∑
i=1

hiqi >
∑
q∈Q

λqhd+1 = hd+1.

But this means that the inequality in the previous equation is in fact an equality, and
as a consequence, h does not only contain p but also all points in Q. Hence, there is no
hyperplane supporting {p}, so {p} is not a 0-face.

In a similar fashion, we could also convince ourselves that the concept of a 1-face
indeed agrees with what we previously called an edge (a line segment connecting two
vertices); but we refrain from doing so, hoping that the previous proof has provided
enough credibility in this direction.

9.1.1 Faces and vertex sets

Here is an important fact: Every face F of a polytope P is a polytope itself whose vertices
are exactly the vertices of P contained in F [4, Proposition 2.3. (i)]. Hence, a face is the
convex hull of the vertices that it contains and is in particular uniquely identified by
these vertices. As a consequence, if P has n vertices, then P has at most 2n faces.

In the octahedron, each facet is a triangle, and it is a polytope (the convex hull of its
three vertices). Each edge is the convex hull of its two endpoints and as such a polytope
itself.
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Geometry: C&A 2022 9.2. Polyhedra and the Main Theorem

Exercise 9.8. Let P be a polytope with n vertices. Show that P has at most
(
n
k+1

)
many k-faces, for every k = 0, . . . ,dim(P) − 1.

This means, the total number of faces (excluding ∅ and P) is at most

dim(P)−1∑
k=0

(
n

k+ 1

)
= O

(
ndim(P)

)
,

which is asymptotically (for n → ∞) substantially less than 2n. Also, a polytope with
n vertices can have at most

(
n
2

)
edges which doesn’t surprise us: the vertex-edge graph

cannot be more than complete. But we know that for d = 2, 3, this is a gross overestimate
for large n, because in these dimensions, there are only O(n) many edges.

Here is another very important property of faces [4, Proposition 2.3 (ii)].

Lemma 9.9. Let F,G be two faces of a polytope P. Then F ∩G is also a face of P.

It also follows from the previous discussion that V(F ∩G) = V(F) ∩ V(G).

9.1.2 The Euler-Poincaré formula

For polytopes in R3, Eulers formula gives us a relation between the number of vertices,
edges and facets. In higher dimension this is generalized by the Euler-Poincaré formula.
Let us denote by fk the number of k-faces of a polytope P.

Theorem 9.10 (Euler-Poincaré formula). For every d-dimensional polytope we have

f0 − f1 + . . .+ (−1)d−1fd−1 = 1− (−1)d.

For a proof of this formula, we refer to [4], Corollary 8.17.

Exercise 9.11. Let P ⊂ R4 be a finite set of points in general position and let P be the
polytope defined by the convex hull of P. Show that f3 > f0.

9.2 Polyhedra and the Main Theorem

We already know that a polytope can be written as an intersection of halfspaces, see
Definition 5.7 and Theorem 5.19. Of particular interest for us is the finite case.

Definition 9.12. A polyhedron is the intersection of finitely many halfspaces in Rd.

Unlike polytopes, polyhedra may be unbounded. For example, the whole space Rd is
a polyhedron (the intersection of no halfspaces), and every halfspace is also a polyhedron
(the intersection of one halfspace); see Figure 9.5 for an example in R2.

The faces can be defined for a polyhedron P in the same way as for polytopes: F is a
face if there exists a hyperplane h such that F = P ∩ h and P ⊂ h+. For example, the
polyhedron in Figure 9.5 has 4 vertices and 5 edges (= facets), two of them unbounded.
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Figure 9.5: An (unbounded) polyhedron in R2 (intersection of 5 halfspaces)

By extrapolating from the case d = 2 (which is always a bit dangerous, but let’s try
anyway), it seems that the only thing that can stop a polyhedron from being a polytope
is its unboundedness. This is indeed true in any dimension! Vice versa, every polytope is
in particular a polyhedron. So polytopes and bounded polyhedra are the same objects.
This is arguably the most fundamental result in polytope theory, and for this reason,
Ziegler calls it the Main Theorem [4, Theorem 1.1].

Theorem 9.13 (Main Theorem). A subset P ⊂ Rd is the convex hull of a finite set of
points P ⊂ Rd (a V-polytope) if and only if P is a bounded intersection of finitely
many halfspaces (an H-polytope).

Exercise 9.14. Let P = ∩mi=1h+
i be a full-dimensional polytope, represented as the

intersection of m halfspaces h+
1 , . . . , h

+
m, according to the Main Theorem. Prove

that each facet of P is supported by one of the m hyperplanes hi. (As a hyperplane
can by definition support only one facet, P has at most m facets.)

It can also be shown [4, Theorem 2.15 (7)] that hyperplanes not supporting a facet
are redundant, meaning that we can always write a full-dimensional polytope with m
facets in the form P = ∩mi=1h+

i , where each hi supports one of the facets. Hence, in the
same way that non-extreme points are redundant in defining a V-polytope, hyperplanes
not supporting facets are redundant in defining an H-polytope.

Corollary 9.15. Let P be a full-dimensional polytope. Then every point p in the bound-
ary of P is contained in some facet.

Proof. We have P = ∩h∈Hh+ for the facet-supporting hyperplanes h ∈ H. Then p must
be contained in at least one of these hyperplanes h, otherwise, a small neighborhood
around p would still be in P. So, p ∈ P ∩ h =: F, the facet supported by h.
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9.3 Examples

Let’s look at two families of higher-dimensional polytopes that are the natural general-
izations of two other platonic solids, the cube4 and the tetrahedron5; see Figure 9.6.

Figure 9.6: The cube (left) and the tetrahedron (right)

9.3.1 Hypercubes

Given some dimension d > 1, the d-dimensional hypercube is the set

Cd = {x ∈ Rd : −1 6 xi 6 1, i = 1, . . . , d}.

Formally, Cd is a polyhedron, described as the intersection of 2d halfspaces. But as Cd
is bounded, the Main Theorem guarantees that Cd is a polytope. It has at most 2d
facets by Exercise 9.14, but it is easy to see that it has exactly 2d facets (try to make
the argument!). The next exercise is about the vertices of Cd.

Exercise 9.16. Prove that Cd has 2d vertices. What are they?

9.3.2 Simplices

A k-simplex is the convex hull of k + 1 affinely independent points in Rd. Note that
we must have k 6 d, since more than d+ 1 points cannot be affinely independent.

Exercise 9.17. Prove that a k-simplex has the largest possible number of faces, namely
2k+1, meaning that for every subset of vertices, there is a face with exactly these
vertices.

4By User:DTR - Vectorisation of Image:Hexahedron.jpg, CC BY-SA 3.0, https://commons.
wikimedia.org/w/index.php?curid=2231470

5By !Original:Kjell AndréVector: DTR - Vectorisation of Tetrahedron.jpg, CC BY-SA 3.0, https:
//commons.wikimedia.org/w/index.php?curid=2231463
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9.4 The graph of a polytope

For any polytope P in Rd, its vertices and edges form an undirected graph G(P), some-
times also called the 1-skeleton of P. For 3-dimensional polytopes , these graphs are
well understood: recall that Steinitz’ theorem states that a graph G is the graph of a
3-dimensional polytope if and only if it is planar and 3-connected. In higher dimensions,
the graph of a d-dimensional polytope has minimum degree at least d.

These graphs are very interesting from a computational viewpoint, as we’ll briefly
explain here, without going into details. Consider an instance of linear programming :
we want to maximize cTx subject to Ax 6 b. The inequalities Ax 6 b define a finite
set of halfspaces, whose intersection is the polyhedron of feasible regions. Let us assume
that this region is non-empty and bounded. Then, by the Main Theorem, the feasible
solutions form a polytope P. Let g0 be the maximum value that cTx can attain on P.
Then cTx = g0 defines a hyperplane whose intersection with P is the set of optimal
solutions. In particular, the set of optimal solutions is a face of P. Further, cTx defines
directions on the edges of G(P) where we orient v towards w whenever cTw > cTw.
Clearly this graph is acyclic. Further, every sink is an optimal solution (Exercise 9.18).
Thus, one way to find an optimal solution is to transverse the graph G(P) along its
directed edges, until we reach a sink. This is the main idea of an entire family of
algorithms for linear programming, called the simplex method.

Exercise 9.18. Let P be a polytope. Consider the directed graph induced by the linear
functional cTx. Show that for every vertex v ∈ P that is not an optimal solution,
there is an edge going out of v.

In order for the simplex method to work efficiently, the graph G(P) needs to have
small diameter. This was conjectured by Warren M. Hirsch in 1957, whose conjecture is
now known as the Hirsch conjecture : for a d-dimensional polytope P with n facets, the
diameter of the graph G(P) is at most n− d.

This conjecture was disproven in 2010 by Francisco Santos, who constructed a 43-
dimensional polytope with 86 facets whose graph has diameter larger than 43 [2]. How-
ever, the polynomial Hirsch conjecture, which states that for a d-dimensional polytope
P with n facets, the diameter of the graph G(P) is at most polynomial in n, is still open.

We conclude this section by showing Balinski’s theorem about the connectivity of
G(P).

Theorem 9.19 (Balinski). For any d-dimensional polytope P, its graph G(P) is d-
connected.

Proof. Let P = conv(V) ⊆ Rd, where V is the vertex set of P, with |V | > d + 1. We
want to show that deleting a subset S ⊂ V of d − 1 vertices does not disconnect G(P).
We distinguish two cases.

Case 1. Assume that all vertices in S are contained in a proper face F. Let h =
{x ∈ Rd :

∑d
i=1 hixi = hd+1} be a hyperplane that supports F. In particular, hd+1 is
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Geometry: C&A 2022 9.5. Polytope Structure

the smallest value that
∑d
i=1 hixi can attain on P. Denote by gd+1 > hd+1 the largest

value that
∑d
i=1 hixi can attain on P and let F0 be the face supported by the hyperplane

g = {x ∈ Rd :
∑d
i=1 hixi = gd+1}. For every vertex v ∈ V, let f(v) denote the unique

value such that v lies on the hyperplane {x ∈ Rd :
∑d
i=1 hixi = f(v)}. Now, by Exercise

9.18, every vertex v ∈ V is either in F0 or it has a neighbor w ∈ V with f(w) > f(v).
In particular, w lies in V \ S. Thus, from every vertex v there is a path to a vertex
u ∈ F0 along which f strictly increases and which avoids S. Finally, The graph on F0 is
connected by induction on d.

Case 2. Assume that the vertices in S are not contained in a proper face. Let h = {x ∈
Rd :

∑d
i=1 hixi = hd+1} be a hyperplane that contains S and at least one more vertex

v0 ∈ V \S. Such a hyperplane exists, as every set of d points is contained in a hyperplane.
Let gmax and gmin denote the maximum and minimum value that

∑d
i=1 hixi can attain

on P, respectively, and let Fmax and Fmin be the corresponding faces. By induction on d,
the graphs G(Fmax) and G(Fmin) are connected. Similar to Case 1, each vertex v ∈ V \ S

is either connected by an increasing path to Fmax or by a decreasing path to Fmin, and
these paths avoid S. Finally, v0 is connected to both Fmax and Fmin.

9.5 Polytope Structure

In this section, we will present some more advanced properties of polytopes, mostly
without proofs, as these would take us too far away from our actual subject (geometry).
But all of the following is classical material and can be found in full detail for example
in Ziegler’s book [4].

9.5.1 The face lattice

The face lattice of a polytope P is the partial order on the set F of faces of P, ordered by
inclusion. In this partial order, we have F 6 G if F ⊂ G. We say that F < G if F 6 G and
F 6= G. Partial orders are usually drawn as Hasse diagrams where larger elements are
higher up, smaller elements are further down, and cover relations (F < G but there is no
H such that F < H < G) are drawn as connections between the elements. For example,
the face lattice of the 3-dimensional cube is depicted in Figure 9.7.

What makes this partial order a lattice [4, Theorem 2.7] is the fact that for any two
faces F and G, there is (a) a unique inclusion-maximal face E such that E ⊂ F,G (the
meet of F and G), and (b) a unique inclusion-minimal face H such that F,G ⊂ H (the
join of F and G). The meet of F and G is F∩G which is also a face by Lemma 9.9, with
vertex set V(F) ∩ V(G). It may be tempting to believe that the join of F and G is the
face with vertex set V(F)∪V(G), but this is not true in general, as there may be no such
face. We already see this in the cube. The join of two incident edges (for example 12
and 13) is a face with four vertices (1234).

Exercise 9.20. While the existence of a meet of F and G easily follows from the fact
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1 2

3 4

5 6

7 8

1 2 3 4 5 6 7 8

∅

12 34 56 78 15 26 37 4813 24 57 68

1234 5678 1256 3478 1357 2468

[8]

Figure 9.7: The cube (left) and its face lattice (right). Faces are named with the
labels of their vertices.

that F ∩ G is a face (think about the precise argument!), the existence of a join is
less clear. However, this already follows from the existence of meets. To make this
formal (and at the same time review the poset terminology), you are asked to prove
the statement for general posets.

A poset (partially ordered set) is a pair (F,6) where 6 is a relation over F that
is reflexive (F 6 F always holds), antisymmetric (F 6 G and G 6 F implies F = G)
and transitive (F 6 G and G 6 H implies F 6 H). By F < G we mean F 6 G and
F 6= G. A maximal element in (F,6) is an element 1 such that there is no element
1 < H. Similarly, a minimal element is an element 0 such that there is no element
E < 0.

A largest lower bound of F and G is an element E such that E 6 F and E 6 G, but
no element E ′ > E has this property. If F and G have a unique largest lower bound,
we call it the meet of F and G. Similarly, a smallest upper bound of F and G is an
element H such that F 6 H and G 6 H, but no element H ′ < H has this property. If
F and G have a unique smallest upper bound, we call it the join of F and G.

Now for the actual exercise: Let (F,6) be a finite poset with a unique maximal
element 1. Further suppose that every two elements F and G have a meet. Prove
that then also every two elements F and G have a join!

The face lattice represents the combinatorial information contained in a polytope.
Two polytopes are called combinatorially equivalent if they have isomorphic face lat-
tices [4, Section 2.2]. Combinatorially equivalent polytopes may geometrically look quite
different. For examples, any two triangles in the plane are combinatorially equivalent,
but one of them could be a nice (Delaunay) triangle, and the other one a long and skinny
triangle.
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Geometry: C&A 2022 9.5. Polytope Structure

9.5.2 Polarity

For every polytope P 3 0, there is a polytope P4 3 0 (the polar polytope) whose face
lattice is that of P, turned upside down [4, Theorem 2.11]. This means, vertices of P
correspond to facets of P4, edges of P to ridges of P4, and so on.

If P = conv(P), then P4 = ∩p∈Ph+
p , where

h+
p = {x ∈ Rd :

d∑
i=1

pixi 6 1}.

This is not a positive halfspace as in Definition 9.2, but after multiplying all numbers
with −1, we arrive at an equivalent positive halfspace. It can be shown that P44 = P.

Geometrically, going to the polar polytope corresponds to replacing a point (con-
tributing to P as a convex hull) with a halfspace (contributing to P4 as an intersection
of halfspaces); see Figure 9.8.

p

h+
p

1

Figure 9.8: The polar halfspace h+
p corresponding to a point p has distance 1/‖p‖

from 0 and is perpendicular to the vector p. This operation is called
inversion at the unit sphere.

We can also “polarize” P if 0 /∈ P, by simply choosing the center of inversion as some
point in the interior of P. Depending on which point we choose, P4 will look different
but its combinatorial structure (face lattice) will always be the same.

We already know some pairs of mutually polar polytopes. Indeed, each platonic solid
is polar to another one; see Figure 9.9.

For example, the dodecahedron has 12 facets (hence its name), 30 edges and 20

141



Chapter 9. Convex Polytopes Geometry: C&A 2022

P

P4

Figure 9.9: Polarities among the platonic solids: the tetrahedron is polar to itelf (first
column); cube and octahadreon are polar to each other (second and third
column); dodehacedron and icosahedron are polar to each other (fourth
and fifth column).

vertices; it’s polar, the icosahedron6 has 20 facets (hence its name), 30 edges and 12
vertices.

Three of the platonic solids in Figure 9.9 generalize to polytopes in arbitrary dimen-
sion d, and we have already encountered two of these generalizations in Section 9.3:
simplices and hypercubes. Simplices are polar to simplices, and hypercubes are polar
to cross-polytopes that generalize the octahedron. The standard d-dimensional cross-
polytope is the convex hull of the d unit vectors in Rd and their negatives, so it has 2d
vertices (and 2d facets).

9.6 Simplicial and Simple Polytopes

An important question about polytopes that we want to answer is the following:

How many facets can a d-dimensional polytope with n vertices have?

We already know that for d = 2, the answer is n. For d = 3, it’s at most 2n − 4.
In both cases, the bound is linear in the number of vertices. For general d, we get a
bound of O(nd) from Exercise 9.8, but we see that already for d = 2, 3, this bound is an
overestimate.

To address the above question (that we will fully answer only in a later chapter), it
turns out that we can restrict our attention to simplicial polytopes. These are polytopes
where all facets are (d−1)-simplices. For example, the octahedron in Figure 9.2 (left) is
simplicial, since all its facets are triangles (2-simplices). The dodacehdron in Figure 9.2
(right) is not simplicial, since its facets are pentagons.

For a given number n of vertices, the number of facets can only be maximized by a
simplicial polytope. The reason is that a non-simplicial polytope can be “made simplicial”

6By User:DTR - Vectorisation of Image:Icosahedron.jpg by en:User:Cyp, CC BY-SA 3.0, https://
commons.wikimedia.org/w/index.php?curid=2231553
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by slightly perturbing its vertices (doing this randomly works with probability 1). What
happens under such a perturbation is that each non-simplicial facet “breaks apart” and
gets replaced by some simplicial facets (facets that are (d − 1)-simplices). Facets that
have been simplicial before remain simplicial.

Let’s look at this for the cube [0, 1]3. Suppose that we move the two vertices (0, 0, 0)
and (1, 1, 1) “slightly inwards” so that they become (ε, ε, ε) and (1 − ε, 1 − ε, 1 − ε),
respectively, for some small ε > 0, then we obtain the polytope in Figure 9.10.

Figure 9.10: Perturbing the cube vertices: by moving the lower left and the upper right
vertex slightly inwards, each square facet breaks up into two triangles,
and the resulting polytope is simplicial.

Exercise 9.21. What happens if we move the two vertices (0, 0, 0) and (1, 1, 1) “slightly
outwards” so that they become (−ε,−ε,−ε) and (1 + ε, 1 + ε, 1 + ε), respectively?
Draw the resulting simplicial polytope!

Similarly, for the dodecahedron, each pentagon facet gets replaced by three triangles
when we slightly perturb the vertices. In particular, the number of facets increases under
this perturbation, so any polytope with the largest number of facets for a given number
of vertices is simplicial (seee [4, Lemma 8.24] for a formal statement and reference to a
proof).

Simplicial polytopes are particularly nice. We have the following equivalent charac-
terization [4, Proposition 2.16].

Theorem 9.22. A polytope is simplicial if and only if every k-face has k+ 1 vertices,
0 6 k 6 d− 1.

In view of the fact that every face is the convex hull of its vertices, this just means that
in a simplicial polytope, not only the facets, but all faces are simplices of the appropriate
dimension.

Via polarity, our initial question can be reformulated as follows:

How many vertices can a d-dimensional polytope with n facets have?
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Here, the polytopes maximizing the count are the simple ones where every vertex is
incident to d edges. As the polarity transform turns the face lattice upside down, a
polytope is simple if and only if its polar polytope is simplicial. Checking Figure 9.9
again, we see that the tetrahedron is both simple and simplicial, the octahedron as well
as the icosahedron are simplicial, and their duals— the cube and the dodecahedron—are
simple.

Exercise 9.23. Characterize all polytopes in R3 that are both simple and simplicial.

9.7 Higher-dimensional (Delaunay) triangulations

In discussing Delaunay triangulations and proving the termination of the Lawson flip
algorithm in Section 6.3, we have argued that every triangulation in the plane gives
rise to a “lifted surface” that can pointwise only decrease in height under a Lawson flip,
so that eventually, no Lawson flips are possible anymore. In this section, we want to
discuss more systematically what the “lifted surface” actually is when we are done with
the Lawson flips, meaning that the triangulation has become Delaunay. In fact, we want
to do this for any dimension d.

We will give the big picture upfront, borrowing the very nice Figure 9.11 below from
Hang Si [3].

Let us assume general position (no three points on a line, no four points on a cir-
cle). In this situation, the Delaunay triangulation of a planar point set is unique, see
Corollary 6.19. An alternative way to look at it is the following: lift the points to the
unit paraboloid in R3 and consider the convex hull of the lifted points—a polytope in
R3. Its lower facets, when projected back to R2, give us the Delaunay triangulation; see
Figure 9.11 (lower right part).

So the “lifted surface” after the Lawson flip algorithm has terminated is actually
the lower convex hull of the lifted points. This also means that we can reduce the
computation of the Delaunay triangulation to the computation of a convex hull in R3.
This is what we will formally prove in this section, for general dimension d.

Figure 9.11 shows more. In the upper right part, we see what happens when we
project the upper facets back to R2. The result is what is called the farthest-point
Delaunay triangulation. It is in general not a triangulation of the point set, but only of
the points on the convex hull. Each triangle in this triangulation is an “anti-Delaunay”
triangle in the sense that its circumcircle contains all other points; see Exercise 9.40
below.

The left part of Figure 9.11 shows what happens if we lift the points not onto the unit
paraboloid in R3 but in some arbitrary way. The convex hull of the lifted point set is
still a polytope, and if the lifting is such that this polytope is simplicial, we can recover
two triangulations in the plane, coming from projecting the lower facets back to R2, and
from projecting the upper facets back to R2. Such triangulations are called regular ; the
(farthest-point) Delaunay triangulation is a specific regular triangulation.
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regular triangulation

farthest point regular triangulation

z = ∞

z = −∞

Pω =

z = ω1

Delaunay triangulation

farthest point Delaunay triangulation

z = −∞

z = x2 + y2

P =

z = ∞

lower faces

upper faces

Figure 9.11: Triangulations in Rd as projections of polytopes in Rd+1

After this pictorial outline, we will now formalize the above. In Definition 6.1, we have
introduced triangulations of point sets in the plane. We can generalize this definition to
higher dimensions in a straightforward way, replacing “triangles” by “d-simplices”. We
still call the resulting objects triangulations, for lack of a better name derived from the
word “simplex”.

Definition 9.24. A triangulation of a finite point set P ⊂ Rd is a collection T of d-
simplices, such that

(1) conv(P) =
⋃
T∈T T ;

(2) P =
⋃
T∈T V(T); and

(3) for every distinct pair T,U ∈ T, the intersection T ∩U is a face of both.

Note that this also allows for T ∩U = ∅, since ∅ is a face of every polytope.
At this point, it is not even clear whether every point set in Rd has a triangulation

if d > 3. For d = 2, we recover Definition 6.1, and also for d = 1, the general definition
makes sense. A point set {a1, a2, . . . , an} in R1 (where we assume that a1 < a2 < · · ·an)
has a unique triangulation T = {[ai, ai+1] : 1 6 i < n}.

We can also define Delaunay triangulations in the same way as before.
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Definition 9.25. A Delaunay triangulation of a finite point set P ⊂ Rd is a triangulation
T of P, with the property that the circumsphere of every d-simplex in T is empty of
points from P.

What is the circumsphere of a d-simplex T? This is the unique sphere that contains
all vertices V(T). Before you can even ask whether such a sphere always exists, and why
it is unique, if it exists, let us prove it.

Lemma 9.26. Let S ⊂ Rd be a set of d + 1 affinely independent points. Then there
exists a unique sphere containing S.

Proof. A sphere has a center c ∈ Rd and a real radius r > 0, and is formally defined as
the set

{x ∈ Rd : ‖x− c‖ = r}.
Squaring the condition, we are therefore looking for a (unique) point c ∈ Rd and a
(unique) number r2 such that

‖p− c‖2 = r2, p ∈ S. (9.27)

For a point x ∈ Rd (a column vector), let us denote by x> its transpose (a row vector).
Then x>y is the scalar product

∑d
i=1 xiyi of two points x, y ∈ Rd.

With this, the previous system of equations can equivalently be written as

p>p = 2p>c+ r2 − c>c︸ ︷︷ ︸
=:α

, p ∈ S. (9.28)

In still other words,

p>p = (2c>, α)

(
p

1

)
, p ∈ S.

This system of equations is of the form b = (2c>, α)B, where the entries of the row
vector b ∈ Rd+1 are the p>p, p ∈ S, and the columns of the (d + 1) × (d + 1) matrix

B are the
(
p

1

)
, p ∈ S. As the p ∈ S are affinely independent, the columns of B are

lineary independent (Proposition 5.3), and hence B is invertible. So there are is a unique
c ∈ Rd and a unique α ∈ R such that (9.28) holds, meaning that (9.27) holds with a
unique c and unique r2 := α+ c>c which must then be nonnegative.

Next we want to show that we can always find a unique Delaunay triangulation,
assuming sufficiently general position. To prepare this, we first define the concept of a
Delaunay simplex.

Definition 9.29. Let P ⊂ Rd be a set of points in general position, meaning that no
d + 1 points lie on a common hyperplane, and no d + 2 points lie on a common
sphere. A simplex conv(S) where S ∈

(
P
d+1

)
is called a Delaunay simplex for P if the

circumsphere of S is empty of points from P.
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Here is the crucial insight. Generalizing the lifting map (Lemma 6.12), we can show
that Delaunay simplices correspond to (lower) facets of a polytope in one dimension
higher, namely the convex hull of the lifted points. For p = (p1, . . . , pd) ∈ Rd, we define
the lifted point

`(p) = (p1, . . . , pd, p
>p) ∈ Rd+1. (9.30)

For d = 2, we recover the standard lifting map that lifts points in the plane to the
unit paraboloid in R3, see Section 6.3.

Lemma 9.31. Let P ⊂ Rd be in general position according to Definition 9.29, and
let P = conv(`(P)) be the convex hull of the lifted points. Then P has vertex set
`(P) = {`(p) : p ∈ P}.
Proof. By definition, V(P) ⊂ `(P), so it remains to show that `(p) is a vertex of P for
all p ∈ P. To this end, consider the hyperplane

h = {x ∈ Rd+1 : xd+1 −
d∑
i=1

2pixi = −p>p}. (9.32)

For any q ∈ Rd, and with x = `(q) we have

xd+1 −

d∑
i=1

2pixi + p
>p = q>q−

d∑
i=1

2piqi + p
>p = ‖p− q‖2

{
= 0, q = p,
> 0, q 6= p ,

meaning that h contains precisely one element of P, namely `(p). Indeed, we have just
shown all other candidate vertices `(p ′), p ′ ∈ P\{p} to be strictly above, and this implies
that any point in P\{`(p)} is strictly above; see the arguments in the proof of Lemma 9.5.
Hence, h ∩ P = {`(p)} and P ⊂ h+, so h is supporting the face {`(p)} of P.

Lemma 9.33. Let P ⊂ Rd be in general position according to Definition 9.29, and
let P = conv(`(P)) be the convex hull of the lifted points. Then P is a simplicial
polytope in Rd+1. Moreover, let S ∈

(
P
d+1

)
. Then the following two statements are

equivalent.

(i) conv(S) is a Delaunay simplex for P.

(ii) conv(`(S)) is a lower facet of P, where a lower facet is one that has a supporting
hyperplane of the form h = {x ∈ Rd+1 :∑d+1

i=1 hixi = hd+2} with hd+1 = 1.

Proof. We have already done most of the work in the proof of Lemma 9.26. Let c ∈ Rd
and r ∈ R be center and radius of S’s circumsphere, and let α = r2−c>c. Also considering
inequality variants of (9.27) and (9.28), we get that conv(S) is a Delaunay simplex for P
if and only if

p>p = 2p>c+ α, p ∈ S, (9.34)
p>p > 2p>c+ α, p ∈ P \ S. (9.35)
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An equality for p ∈ P \ S cannot happen by general position. Defining hi = −2ci for
i = 1, . . . , d, hd+1 = 1 and hd+2 = α, this yields

d+1∑
i=1

hi`(p)i = hd+2, p ∈ S, (9.36)

d+1∑
i=1

hi`(p)i > hd+2, p ∈ P \ S. (9.37)

Equivalently, the hyperplane h = {x ∈ Rd+1 :
∑d+1
i=1 hixi = hd+2} supports the face

conv(`(S)) spanned by d+ 1 (affinely independent) vertices `(S), so conv(`(S)) is a lower
facet of P.

We can also go backwards from (9.36) and (9.37) to (9.34) and (9.35) by defining
ci = −hi/2 and α = hd+2, so if conv(`(S)) is a (lower) facet, then the points in S are on
a common (empty) sphere. By general position, |S| = d + 1, and conv(S) is a Delaunay
simplex. This in particular also shows that P, the convex hull of the lifted points, is
simplicial.

From this lemma, we obtain the existence of a unique Delaunay triangulation for a
set P ⊂ Rd of n points in general position.

Theorem 9.38. Let P ⊂ Rd be in general position according to Definition 9.29, and
let P = conv(`(P)) be the convex hull of the lifted points (a polytope in Rd+1). Then
the set

T = {conv(S) : S ∈
(

P

d+ 1

)
, conv(`(S)) is a lower facet of P}

is the unique Delaunay triangulation of P.

Proof. If T is indeed a triangulation, then it is a Delaunay triangulation by Lemma 9.33
and in fact contains all possible Delaunay simplices; so another Delaunay triangulation
can only contain less simplices, but then it has “holes” and is not even a triangulation.

It remains to prove that T is a triangulation, so let’s look at the three required
properties in Definition 9.24. For property (1)—the simplices cover exactly conv(P)—
let q ∈ conv(P). We need to construct a simplex conv(S) ∈ T containing q. Choose
t ∈ R minimal such that the vertically lifted point (q, t) ∈ Rd+1 is in P. As P intersects
the vertical line through q in a closed interval (as a consequence of P being closed and
convex), t is attained at the lowest point of this interval. We have to argue that this
interval is nonempty, but this holds, since q ∈ conv(P) means that some (q, t) is in
conv(`(P)) = P.

The lifted point (q, t) is on the boundary of P and hence contained in one or more
facets, by Corollary 9.15. One of these facets must be a lower facet conv(`(S)) (Exer-
cise 9.39); as the lifted point is in conv(`(S)), the original point is in conv(S) ∈ T. This
shows that conv(P) ⊂ ⋃T∈T conv(T); to complete the proof of (1), it remains to prove
the inclusion ⊃ which follows from conv(S) ⊂ conv(P) for all S ∈

(
P
d+1

)
.
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For property (2)—P =
⋃
T∈T V(T)—we show that every vertex `(p), p ∈ P is the

vertex of some lower facet of P, implying that p is the vertex of some Delaunay simplex
in T. We first observe that if we choose t minimal such that (p, t) ∈ P, we obtain
(p, t) = `(p); indeed, t = p>p yields `(p), but no smaller t leads to a point in P, as such
a (p, t) is outside the unit paraboloids “bowl” U = {x ∈ Rd+1 : xd+1 >

∑d
i=1 x

2
i } while

P ⊂ U by convexity of the bowl U.
By the argument for (1), vertex `(p) is hence contained in some lower facet conv(`(S))

of P and is then also a vertex of this facet.
Property (3)—the intersection of any two simplices T,U in T is a face of both—

follows from polytope properties: let T ′ = `(T) and U ′ = `(U) be the (lower) facets
of P corresponding to the Delaunay simplices T and U. The intersection T ′ ∩ U ′ is a
face of P by Lemma 9.9, with vertex set `(V(U)) ∩ `(V(T)) = `(V(U) ∩ V(T)). Hence
T ′ ∩ U ′ = conv(`(V(U) ∩ V(T))) which implies that T ∩ U = conv(V(T) ∩ V(U)). This
is a face of both simplices T and U, since every subset of vertices of a simplex defines a
face (Exercise 9.17).

Exercise 9.39. Let P ⊂ Rd+1 be a polytope and (q, t) ∈ Rd+1 such that (q, t) ∈ P but
(q, t ′) /∈ P for t ′ < t. Prove that (q, t) is contained in some lower facet of P.

Exercise 9.40. Let P ⊂ Rd be a finite set of points in convex position (every point is
extreme), and in general position (no d + 1 points on a hyperplane, no d + 2 on a
sphere). A farthest-point Delaunay triangulation of P is a triangulation T of P with
the property that the circumsphere of every d-simplex T in T contains all points
P \ V(T):

Prove that P has a unique farthest-point Delaunay triangulation; Figure 9.11
provides the intuition. The name comes from the fact that in the plane, the
farthest-point Delaunay triangulation is dual to the farthest-point Voronoi diagram,
the subdivision of the plane into regions with the same farthest point.
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9.8 Complexity of 4-polytopes

The complexity of a polytope is defined as the number of faces. Indeed, if we talk about
computing a polytope, we typically mean that we want to compute its face lattice. In
dimensions d = 2, 3, each polytope with n vertices has complexity O(n). We have also
seen that for d = 4, the complexity is bounded by O(n4) (Exercise 9.8). But can we
actually have superlinear complexity Ω(n) for d = 4, or does the “nice” behavior in
dimensions d = 2, 3 continue?

Using the previously derived connection to 3-dimensional Delaunay triangulations,
we can answer this question.

Theorem 9.41. For every even natural number n > 4, there exists a 4-dimensional
simplicial polytope with n vertices and at least (n

2
− 1)2 = Θ(n2) facets.

Moreover, this polytope also has Θ(n2) edges which is asymptotically maximal since
Exercise 9.8 implies that there are O(n2) edges. In particular, vertex-edge graphs of
4-dimensional polytopes can be dense and highly non-planar. They can even be com-
plete [4, Corollary 0.8]. This may be somewhat counter-intuitve, as it seems to require
that many edges “go through” the polytope which they obviously cannot. On the other
hand, 4 dimensions are counterintuitive per se, so let’s not worry to much about intuition
here.

Proof. We construct a point set P ⊂ R3 in general position, |P| = n, for which there are
at least (n

2
− 1)2 Delaunay simplices. By Lemma 9.33, the convex hull of the lifted point

set `(P) is a 4-dimensional simplicial polytope with at least (n
2
− 1)2 (lower) facets.

Let `1, `2 be two skew (non-parallel, non-intersecting) lines in R3. We choose a set
P1 of n/2 points on `1, and another set P2 of n/2 points on `2. Then we set P = P1∪P2,
after slightly perturbing all points to ensure general position.

The claim is that if four points p, q, r, s ∈ P are chosen such that p, q are consecutive
along `1, and r, s are consecutive along `2, then conv({p, q, r, s}) is a Delaunay simplex.
As there are (n/2 − 1)2 ways to choose p, q, r, s in this way, P has the required number
of Delaunay simplices.

It remains to prove the claim. For this, we refer to the (2-dimensional cartoon)
Figure 9.12.

p
q

r s

Figure 9.12: Proof of Theorem 9.41
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As a consequence of the lines being skew, p, q, r, s are affinely independent and hence
have a unique circumsphere. The line `1 intersects this sphere in exactly the points p
and q, and as p, q are consecutive along `1, there is no point of P1 inside the sphere. For
the same reason, no point of P2 is inside, so the sphere is empty, and conv({p, q, r, s}) is
a Delaunay simplex.

It is actually the case that a 4-dimensional polytope with n vertices has O(n2) facets,
so the lower bound provided by Theorem 9.41 is asymptotically best possible. We will
not prove this here but in a later chapter give a (tight) upper bound on the number of
facets that a d-dimensional polytope with n vertices can have.

9.9 Higher-dimensional Voronoi diagrams

We can also obtain the Voronoi diagram of a finite point set P ⊂ Rd from the facets
of a polyhedron in dimension d + 1. In fact, Theorem 8.17 has already done this for
d = 2, without explicitly mentioning polyhedra. Here, we simply reprove this theorem
for general d; no new ideas appear, so the reader is invited to consider this section as
a repetition of Section 8.4, but formulated in the language of polytopes and polyhedra,
and replacing “2” by “d”.

Let’s start by generalizing Voronoi regions to higher-dimensions which is a straight-
forward adaptation of Definition 8.3.

Definition 9.42. Let P ⊂ Rd, |P| = n. For p ∈ P denote the Voronoi cell VP(p) of p by

VP(p) :=
{
q ∈ R2 : ||q− p|| 6 ||q− p ′|| for all p ′ ∈ P

}
.

In words, VP(p) is the set of points in Rd for which p is a (not necessarily unique)
closest point among all points in P.

Theorem 9.43. Let P ⊂ Rd, |P| = n. For p ∈ P, let hp be the hyperplane

hp = {x ∈ Rd+1 : xd+1 −
d∑
i=1

2pixi = −p>p},

and let P = ∩p∈Ph+
p (a polyhedron in Rd+1). Then all the hp, p ∈ P, are (lower)

facet-supporting hyperplanes of P.
Moreover, let q ∈ Rd, and choose t ∈ R minimal such that the vertically lifted

point (q, t) ∈ Rd+1 is in P. Then the following two statements are equivalent.

(i) q ∈ VP(p).

(ii) (q, t) ∈ hp, meaning that (q, t) is in the facet of P supported by hp.
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This says that the Voronoi cell VP(p) is obtained as the projection of the facet P∩hp
of P to Rd. Hence, if we project all the facets of P to Rd, we obtain the Voronoi diagram
of P, the subdivsion of Rd into regions where the closest point among all points in P is
the same.

Figure 9.13, borrowed from the book by Joswig and Theobald [1, Page 87], visualizes
this for d = 3.

Figure 9.13: A view from the “outside” on (a part of) the polyhedron P ⊂ R3 in
Theorem 9.43, and (a part of) the Voronoi diagram resulting from the
projections of the facets to R2

Proof of Theorem 9.43. We first show that all hp are actually facet-supporting hyper-
planes. For this, it suffices to show that none of the halfspaces h+

p is redundant; see
Section 9.2. Actually, we have employed the hyperplane hp before in (9.32) to show that
`(p) ∈ hp but `(q) ∈ h+

p \ hp for all q 6= p where ` is the lifting map (9.30). Applying
this argument for p ′ ∈ P \ {p} and q = p, we see that `(p) ∈ h+

p ′ \ hp ′ for all p ′ ∈ P \ {p},
so `(p) is in fact in the interior of ∩p ′∈P\{p}h

+
p ′ but on the boundary of ∩p ′∈Ph

+
p ′, so hp

is not redundant.
For the equivalence of (i) and (ii), we claim that the vertical distance of `(q) to hp

is precisely ‖q − p‖2 (see Lemma 8.15 and Figure 8.7 for the 2-dimensional case). As
`(q) is above all the hp (see first part of the proof), it follows that a hyperplane hp is
vertically closest to `(q) and hence highest at q if and only if q ∈ VP(p). As (q, t) is
in the highest hyperplane at q (that’s where P “starts” when we come from below), we
indeed have q ∈ VP(p)⇔ (q, t) ∈ hp.
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To prove the claim, we compute the height of hp at q as the value of xd+1 when we
plug q into the hyperplane equation, resulting in

xd+1 =

d∑
i=1

2piqi − p
>p = 2p>q− p>p.

As `(q) is at height q>q, we have that the vertical distance to hp is

q>q− 2p>q+ p>p = ‖q− p‖2.

Questions

40. What is a polytope? Give a definition and provide a few examples.

41. What is a face of a polytope? What is a vertex, an edge, a ridge, a facet?
Give precise definitions!

42. Can you characterize vertex-edge graphs of 3-dimensional polytopes? Explain
Steinitz’ Theorem.

43. What is a hypercube? What is a simplex? Define these polytope and explain
what their faces are.

44. How many k-faces can a d-dimensional polytope with n vertices have? Prove
a nontrivial upper bound.

45. What is the face lattice of a polytope? Give a precise definition, explain what
the lattice property is, and why it holds for the face lattice of a polytope.

46. What is the polar of a given polytope? Explain the polarity transform and how
face lattices of the original polytope and its polar relate to each other. Show a
pair of mutually polar polytopes and interpret the aforementioned relation in the
example.

47. What are simple and simplicial polytopes? Explain why they are relevant with
respect to counting the maximal number of facets (or vertices) that a d-dimensional
polytope with n vertices (or facets) can have.

48. How connected is the graph of a polytope? State and prove Balinski’s theorem.

49. What is a d-dimensional (Delaunay) triangulation? Give a precise definition.

50. Does every point set P ⊆ Rd have a Delaunay triangulation? Explain why the
answer is yes under general position, why the Delaunay triangulation is unique in
this case, and how you can obtain it from a polytope in one dimension higher.
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51. How many facets can a 4-dimensional polytope with n vertices have? Prove a
lower bound of Ω(n2).

52. (This topic was not covered in this year’s course in HS22 and therefore the following question
will not be asked in the exam.)What is a d-dimensional Voronoi diagram? Give
a definition and explain how the Voronoi diagram relates to a polyhedron in one
dimension higher!
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