Chapter 10

Arrangements

During this course we encountered several situations where it was convenient to assume a
point set “in general position”. In the plane it usually means no three points are collinear
and/or no four points are cocircular. This raises an algorithmic question: How do we
test for n given points whether or not three of them are collinear?

The exact computational complexity of this innocent-looking problem is a major open
problem in theoretical computer science. Obviously we could test all triples in O(n3)
time, but can we do better? Yes, indeed! Via the so-called projective duality transform,
we are able to solve the problem in O(n?) time, although we do not know if a better
algorithm exists. Nevertheless, this transformation is interesting as it offers an equivalent
dual perspective to a problem. Sometimes the dual form is easier to work with, and its
solution can be efficiently translated back into a solution to the original or primal form.

So what is this transformation about? Recall that a hyperplane in R¢ is the set of
solutions x € R¢ to a linear equation Zi; hixi = hgy1, where at least one of hy,..., hg
is nonzero. If hy = 1, we call the hyperplane non-vertical. Now observe that points
and non-vertical hyperplanes in R¢ can both be described by d real numbers. It is
thus tempting to map them to each other. In R?, hyperplanes are lines and the standard
projective duality transform maps a point p = (a, b) to the non-vertical line p* : y = ax—b,
and a non-vertical line £ : y = ax + b to the point {* := (a,—b).

Proposition 10.1. The standard projective duality transform is

e incidence preserving: p € { < (* € p* and

e order preserving: p 1s above { <= {* 1s above p*.
Exercise 10.2. Prove Proposition 10.1.

Exercise 10.3. For each of the following point sets, what tmage do we get after applying
the duality transform pointwise?

(a) k > 3 collinear points;

(b) a line segment;

156

GEOMETRY: C&A 2023 10.1. Line Arrangements

(c) a halfplane;
(d) the boundary points of the upper convez hull of a finite point set.

One can also visualize duality in terms of the parabola P :y = %xz. Let p = (a,b)
be any point. If it is on P, then its dual line p* is the tangent to P at p. Otherwise we
consider its vertical projection p’ := (a, %az) onto P. As we argued, (p’)* is the tangent
to P at p’. Note that the slopes of p* and (p’)* are the same, and p* is just (p’)* shifted
vertically by 1a? —b.

Figure 10.1: Point <> line duality through the lens of the parabola P :y = %xz.

The problem of whether or not three points in the primal plane are collinear trans-
forms to whether or not three lines in the dual plane meet in a common point. We will
solve the latter problem with the help of line arrangements, as defined below.

10.1 Line Arrangements

The subdivision of the plane induced by a finite set L of lines is called the line arrangement
A(L). We may imagine its creation as follows. First, from the plane R? we subtract all
lines in L (considered as point sets), thus breaking R? into one or more open connected
regions. Note that every region is an intersection of open halfplanes and hence convex.
We call these regions the (2-dimensional) cells of the arrangement. Next, from each
line £ € L we subtract all the other lines, thus splitting £ into one or more open connected
components. These collectively form the 1-dimensional cells or edges. What remains are
the intersection points of lines from L. They are called the O0-dimensional cells or vertices.

The notion naturally generalizes to curve arrangements in R? and hyperplane ar-
rangements in RY. Without further specification, the word “arrangement” refers to line
arrangements in this chapter. The complexity of an arrangement is just the total number
of vertices, edges and cells (in general, the total number of cells of any dimension).

157

Chapter 10. Arrangements GEOMETRY: C&A 2023

A line arrangement is called simple if no two lines are parallel and no three lines meet
at a common point.

Theorem 10.4. Every simple arrangement of n lines has (121) vertices, n? edges, and
(5) +n+1 cells.

Proof. Since every pair of lines intersect and all the intersection points are distinct, there
are (}) vertices.

We count the number of edges by induction on n. For n = 1 we have 1?2 = 1
edge. By adding a new line to an arrangement of n — 1 lines, we split n — 1 existing
edges into two and also introduce n edges along the new line. So inductively there
are (N —1)?2+ (n—1) +n =n? edges in total.

The number f of cells can be obtained from Euler’s formula. For this we need to
treat the arrangement as a planar graph G = (V,E) by adding a vertex at “infinity”
which absorbs all unbounded edges. Then the faces of G one-to-one correspond to the

cells of the arrangement, with |V| = (721) + 1 and |[E| = n?. By Euler’s formula we
have |V| — |E| + f = 2. It follows that
f=2—|V|+|E|=1—<g)+n2:1+(g)+n. -

So the complexity of a simple arrangement is @(n?). Tweaking the above proof, it is
easy to see that the complexity of any line arrangement is O(n?).

Exercise 10.5. Consider a set of lines 1n R? with no three meeting at a common point.
Form a plane graph G whose vertices are the intersection points of the lines. Two
vertices are adjacent if and only if they appear consecutively along some line. Prove
that G 1s 3-colorable. That 1s, we can paint the vertices using at most three colors
so that adjacent vertices recewwve different colors.

10.2 Constructing Line Arrangements

How do we store a line arrangement in computers? Although some cells and edges are
unbounded, we can effectively bound the arrangement by a sufficiently large box that
cages all vertices. Such a box can be constructed in O(nlogn) time for n lines.

Exercise 10.6. How?

Moreover, as we have seen in the previous proof, we can view the arrangement as a
planar graph by adding a symbolic vertex that absorbs all (unbounded) edges leaving the
box. For algorithmic purposes, we usually represent the graph by a doubly connected
edge list (DCEL), cf. Section 2.2.1.

How do we construct an arrangement algorithmically? We would be satisified with
any O(n?) algorithm, as the worst case complexity of line arrangements is quadratic

158

GEOMETRY: C&A 2023 10.3. Zone Theorem

already. A natural approach is incremental construction: just insert the lines one by one
in some arbitrary order {;,...,{,.

At Step i, suppose that the edges leaving the left side of the bounding box were
ordered by slope. Hence we can locate in O(i) time the leftmost cell F in A{{;,...,¢; 1}
that {; intersects. Then we traverse the boundary of F counterclockwise, until we intersect
{; again when walking on some halfedge h (see Figure 10.2 for illustration). Insert a new
vertex at this intersection point, split F and h accordingly, and continue in the same way
with the cell on the twin side of h.

Figure 10.2: Incremental construction: Insertion of a line {. (Only part of the ar-
rangement is shown in order to increase readability.)

The insertion and splits are both constant time operations. But what is the time
needed for the traversal? The worst case complexity of A{{1,...,&_1}is Q(i?), but not
all cells and edges are relevant to our traversal. In fact, the relevant zone has linear
complexity only, as we will show next.

10.3 Zone Theorem

For an arrangement A(L) and an arbitrary line ¢ (not necessarily from L), the zone
Zy1)(£) is the set of cells from A(L) whose closure intersects (.

Theorem 10.7. Given an arrangement A(L) of n lines and a line {, there are at most
10n edges in all cells of Z 41)({).

Proof. Fix the line { and assume with loss of generality that it is horizontal (otherwise
rotate the plane accordingly). For each cell, orient its horizontal edges from left to right,
and the other edges from bottom to top. An oriented edge is left-bounding if the cell is
to its right; otherwise it is rght-bounding. Figure 10.3 gives an example.

159

Chapter 10. Arrangements GEOMETRY: C&A 2023

Figure 10.3: Left-bounding edges (blue and bold) of a cell.

We will show that there are at most 5n left-bounding edges in all cells of Z 4(1)(¢) by
induction on n = |L|. By symmetry, the same also holds for the number of right-bounding
edges, thus the theorem follows.

For n = 1, there is at most 1 < 5n left-bounding edge in Z4(1)(£). (The number
could be zero because the only line in L might be horizontal and above £.)

Now assume the statement is true for n — 1. If { does not intersect with L, then all
lines are horizontal and there is at most 1 < 5n left-bounding edge in Z4(1)({). Else let
p be the rightmost point where ¢ intersects with L. We distinguish two cases:

Case 1: there is a unique line r € L through p. Consider Z,1\(r)) (), namely the cells of the
arrangement A(L\ {r}) that touch {. They have at most 5n —5 left-bounding edges
by the induction hypothesis. Now we add r back to the arrangement and see what
happens. Let R be the rightmost cell in Z4(1\(})(£). The line r intersects oR in
at most two points and thus splits at most two edges of R (call them {, and ¢;),
both of which may be left-bounding. Further, the new edge r N R is left-bounding
for the rightmost cell R’ of Z4(1)(f). So locally the number of left-bounding edges
increases by at most three.

Note that r does not contribute left-bounding edges to any cell of Z4(({) other
than R’: To any cell of Z4(1)({) that lies to the left of r, the line r can contribute
right-bounding edges only; and any cell other than R’ that lies to the right of r is
shielded away from { by £, or {;, that is, it is not a cell in Z 41)({). Therefore, the
total number of left-bounding edges in Z4(1)(¢) is at most (5n —5) +3 < 5n.

LT

Figure 10.4: At most three new left-bounding edges are created by adding r to A(L\{r}).

160

GEOMETRY: C&A 2023 10.4. General Position and Minimum Triangle

Case 2: there are multiple lines through p. We add these lines to the arrangement of the
remaining lines one by one. Adding the first line r creates at most three left-
bounding edges by Case 1. From then on, adding another line r’ that goes through
p would create at most five left-bounding edges. We can argue as in Case 1: The
line v’ splits at most two left-bounding edges of R, and it also splits the left-
bounding edge r of R’. Finally, the line r’ itself provides two left-bounding edges
(joined at the point p). Thus, the number of left-bounding edges increases by at
most five for each additional edge. Hence the claim follows.]

Corollary 10.8. The arrangement of n lines in R? can be constructed in optimal ©(n?)
time and space.

Proof. Use the incremental construction described earlier. At Stepi=1,...,n, we do
a linear search among i — 1 leftmost edges to find the starting cell and then traverse
(part of) the zone of the line ¢; in the arrangement A{{,...,¢ ;}. By Theorem 10.7
the complexity of this zone and hence the time complexity of Step i altogether is O(1).
Overall we obtain) ;" ; ci = O(n?) time (and space), for some constant ¢ > 0, which is
optimal by Theorem 10.4.]

Generally in R¢, a simple hyperplane arrangement has complexity ®(n?), and a zone
of a hyperplane has complexity O(nd-").

Exercise 10.9. For an arrangement A of a set of n lines in R?, let

J = U C

C is a bounded cell of A

be the union of the closure of all bounded cells. Show that the complezity (number
of vertices and edges of the arrangement lying on the boundary) of F is O(n).

10.4 General Position and Minimum Triangle

The real beauty and power of line arrangements manifest through the projective duality.
It is often convenient to assume that no two points in the primal plane have the same
x-coordinate, so that no line through two points in the primal is vertical (and hence
becomes an infinite point in the dual). This degeneracy can be discovered by sorting
the points according to x-coordinate, and resolved by rotating the whole plane by a
sufficiently small angle ¢. To select ¢, we can iterate over all non-vertical lines through
two points, compute its (absolute) angle to verticality, and then choose ¢ to be strictly
less than all these angles. The procedure clearly runs in O(n?) time.

Therefore, the following two problems can be solved in O(n?) time and space by
constructing the dual arrangement.

General position test. Given n points in R?, are there three collinear points? (Dual: do
three of the n dual lines meet at a common point?)

161

Chapter 10. Arrangements GEOMETRY: C&A 2023

Minimum area triangle. Given a set P C R? of n points, what is the minimum area
triangle spanned by three distinct points from P? This can be viewed as a quantified
version of general position test: the minimum area is zero if and only if there are three
collinear points.

Let us make the problem easier by fixing two distinct points p,q € P and ask for
a minimum area triangle pqr, where r € P\ {p,q}. With pq fixed, the area of pqr is
proportional to the distance between r and the line pq. Thus we want to find

a closest line £ parallel to pq and passing through some point r € P\ {p,q}. ()

Consider the set P* := {p*: p € P} of dual lines and their arrangement A. In A the
statement (*) translates to

a closest point {* with the same x-coordinate as the vertex p* N q* and lying
on some line r* € P*.

See Figure 10.5 for illustration. In other words, for the vertex p* N q* of A we want to
find a line r* € P* closest to it vertically—above or below. Of course, in the end we
want this information not only for one particular vertex (which provides the minimum
area triangle for fixed p, q) but for all vertices of A, that is, for all possible pairs of fixed

points {p, q} € (}).

L)

X

Wt
(a) primal (b) dual

Figure 10.5: Minimum area triangle spanned by two fized points p, q.

Luckily, such information can be maintained over the incremental construction of A.
When inserting a new line {, it may become the vertically closest line from vertices
of the already computed partial arrangement. However, only vertices in the zone of {
may be affected. The zone is traversed anyway, so in the same pass we can update the
information for vertices immediately and vertically above or below {, at no extra cost
asymptotically.

162

GEOMETRY: C&A 2023 10.5. Constructing Rotation Systems

By the end of the incremental construction, each vertex p* N q* has recorded a
vertically closest line, for {p,q} € (E) These correspond to minimum area triangles
for every fixed p,q. The smallest such candidate can be found by simply comparing

their areas, which takes O(n?) time.

Exercise 10.10. A set P of n points in the plane is said to be in e-general position for
e > 0 1f no three points of the form

P+ (x1,U1), g9+ (x2,Y2), v+ (x3,Y3)

are collinear, where p,q,r € P and |xil, lyi| < ¢, fori€{1,2,3}. In words: The set P
remains in general position under changing point coordinates by less than ¢ each.

Give an algorithm with runtime O(n?) for checking whether a given point set P
18 1n e-general position.

Exercise 10.11. Let F be a family of vertical line segments such that for each three
of them, there exists a line that intersects all three. Show that there exists a line
whach wntersects all line segments in F.

10.5 Constructing Rotation Systems

Here is an application of line arrangements with a different flavor. Recall the notion
of a combinatorial embedding from Chapter 2. It is specified by the circular order of
boundary edges of each face. Equivalently, we may represent it by the circular order of
edges around each vertex. This latter view is called a rotation system.

In a similar way we can also condense the geometry of a finite point set P C R?
combinatorially. For a point q € P let cp(q) denote the circular sequence of points from
P\ {q} around q (that is, in the order as they would be encountered by a ray sweeping
around q). The rotation system of P is nothing but {cp(q) : q € P}.?

Given a set P of n points, it is trivial to construct its rotation system in O(n?logn)
time, by sorting each of the n lists independently. But in fact we can do it optimally in
O(n?) time by duality transform.

Consider a directed line sweeping counterclockwise around a point q € P in the primal
plane, initially vertically downward. The slope increases from —oo to co until the line
becomes vertically upward. This finishes the right half of the circular sweep. The left
half is similar: the slope changes from —oo to oo, until the line completes a full circle.

In the dual plane, this corresponds to traversing the line q* from —oo to co twice.
(The sweeping line { always goes through the point q in the primal, so {* always sits on
q* in the dual, and its x-coordinate reflects the slope of {.) Hence we may retrieve the
circular sequence cp(q) by two passes in the dual arrangement: In the first (respectively
the second) traversal of q* we record the sequence of intersections with p* for all p € P

You may also think of it as the “combinatorial embedding” of the complete geometric graph on P. But
as these graphs are not planar for |P| > 5, they do not have the notion of faces.

163

Chapter 10. Arrangements GEOMETRY: C&A 2023

to the right (respectively left) of q. The circular sequence is exactly the concatenation
of the two. Clearly, the traversals along all lines in the dual arrangement can be done in
O(n?) time.

10.6 Segment Endpoint Visibility Graphs

In this section we present a more complex application of duality and line arrangements,
in the context of motion planning. Here a fundamental problem is to find a short(est)
path between two given positions in some domain, subject to certain constraints. As
an example, suppose we are given two points p,q € R? and a set S C R? that models
obstacles. What is the shortest path between p and q that avoids S?

Observation 10.12. Let S be a finite set of polygonal obstacles. The shortest path
between two points that avoids S, if it exists, 1s a polygonal path whose vertices
(except the two ends) are obstacle vertices.

A simplest type of obstacles conceivable is a line segment. In general they might
separate the two query points, say when they form a closed curve that surrounds one of
the points. However, if we require the obstacles to be pairwise disjoint line segments then
there is always a free path between any query points. Hence by the above observation
we may restrict our attention to straight line edges connecting obstacle vertices—in our
case, segment endpoints.

Definition 10.13. Consider a set S of n disjoint line segments in R?. The segment
endpoint visibility graph V(S) 1s a geometric graph defined on the segment endpoints.
Two segment endpoints p and q are adjacent if they see each other; that is, if

e the line segment pq s 1n S, or

e pqNs C{p,q} for all s €S.

Figure 10.6: A set of disjoint line segments and their endpoint visibility graph.
If all segments are on the convex hull boundary, then the visibility graph is complete.

If the segments form parallel chords of a convex polygon, then the visibility graph consists
of copies of K4 glued together side by side, and the number of edges is linear only.

164

GEOMETRY: C&A 2023 10.6. Segment Endpoint Visibility Graphs

On another note, these graphs also arise in the context of the following question:
Given a set of disjoint line segments, can we link them at their endpoints via additional
segments to form a closed Jordan curve? This is not always possible: Just consider three
parallel chords of a convex polygon (Figure 10.7a). However, if we do not insist that all
segments appear in the curve, but allow them to be diagonals or epigonals of the curve,
then it is always possible [11, 12]. To rephrase: the segment endpoint visibility graph
of disjoint line segments is Hamiltonian (unless all segments are collinear). It is actually
essential to allow epigonals and not only diagonals [9, 20] (Figure 10.7b).

(a) (b)

Figure 10.7: Sets of disjoint line segments that do not admait certain polygons.

Back to motion planning, our problem essentially reduces to finding a shortest path
in the visibility graph V(S). But first of all, we need to construct the graph. Doing it in
brute force takes O(n3) time where n denotes the number of segments in S. (Take all
pairs of endpoints and check all other segments for obstruction.)

Theorem 10.14 (Welzl [21]). The segment endpoint vistbility graph of n disjoint line
segments can be constructed in worst case optimal O(n?) time.

Proof. Let P be the set of endpoints of S. As before we assume general position, so
that no three points in P are collinear and no two have the same x-coordinate. (One can
handle such degeneracy explicitly.)

Conceptually we perform a rotational sweep. That is, we rotate a direction vector
v, initially pointing vertically downwards, in a counterclockwise fashion until it points
vertically upwards. While rotating, we maintain for each point p € P the segment s(p)
that it “sees” in direction v (if any). Figure 10.8 shows an example. If v is parallel to
some segment pq, say pointing in the direction of]ﬁ , then we assign s(p) := pq.

During the sweep, we can output the edges of the visibility graph on the fly: If
currently q is an endpoint of the segment s(p), and v is in the direction of ﬁ , then we
output the edge {p, q}.

Why does it work? Every output edge {p, q} must be in V(S) because p sees s(p) > q
by definition. Conversely, let {p, q} be an edge in V(S) where p is to the left of g, say.
Assume that q is an endpoint of segment s. When v sweeps over the direction of]ﬁ , We
must have s(p) = s and the output condition is met.

To perform the actual sweep, we first observe that changes of visible segments can
only occur discretely. Indeed, for any point p € P, the segment s(p) can only change
when p sees some point q € P exactly in direction v. Hence, we only need to consider
directions ﬁ with p,q € P.

165

Chapter 10. Arrangements GEOMETRY: C&A 2023

p/
S(P\
\

Figure 10.8: Visible segments along a rotating direction v. The arrow from an end-
pownt p tndicates the segment s(p) it sees; if the arrow extends to infinity,
then no segment 1s visible from p.

Hence let us call a pair (p, q) € (Z), g to the right of p, an event. Its slope is the slope
of the line through p and q. Then the sweep can be implemented as follows: process the
events in order of increasing slope (by general position, all slopes are distinct); whenever
we get to process an event (p, q), there are four cases (Figure 10.9):

(1) p and g belong to the same input segment — output the edge {p, q}.
(2) q is obscured from p by s(p) = no change.

(3) g is an endpoint of s(p) = output {p, q} and update s(p) to s(q).
(4)

4) q is an endpoint of a segment s that now obscures s(p) = output {p,q} and
update s(p) to s.

s(p) s(p) 81
[]
o A S e IR oy (R SRR T
(1) (2) (3) (4)

Figure 10.9: Processing an event during the rotational sweep. Arrows indicate the
segment s(p) just before the event.

What is the runtime of this rotational sweep? We have O(n?) events, and sorting
them in increasing slope takes O(n?logn) time. After this, the actual sweep takes O(n?)
time, as each event is processed in constant time.

To get rid of the O(logn) factor—we promised an O(n?) algorithm—we replace the
sweep by a topological sweep, based on the observation that we do not strictly need
to proceed by increasing slope. We just need property (a) below in order to correctly
handle cases (1)(2)(4), while property (b) takes care of case (3).

166

GEOMETRY: C&A 2023 10.7. 3-Sum

(a) For each fixed p € P, the events (p, q) are processed in order of increasing slope.

(b) When processing event (p, q), we have already processed the events (q,) of smaller
slope but not any event (q,r) of larger slope.

Any order of events that satisfies properties (a) and (b) will work. We can easily
come by such an order when we interpret these properties in the arrangement A(P*),
where P* := {p* : p € P} is the projective dual of P. Recall that the slope of a line
through two points p,q € P corresponds to the x-coordinate of the intersection of the
dual lines p*, q*. Moreover, q is to the right of p if and only if q* has larger slope than
p*. Hence, events in the dual are pairs of lines (p*, q*) where q* has larger slope than p*.
The x-coordinate of an event is defined as the x-coordinate of the arrangement vertex
p* N q*. Then, properties (a) and (b) translate to

(a*) For each fixed p* € P*, the events (p*, q*) are processed in increasing x-coodinate.

(b*) When processing event (p*, q*), we have already processed the events (q*,r*) of
smaller x-coordinate but not any event (q*,r*) of larger x-coodinate.

As the dual events correspond to arrangement vertices, properties (a*) and (b*)
essentially say that if vertex u is to the left of vertex v on the same line, then u
should appear before v. This notion coincides with the topological order on the directed
arrangement graph with all edges directed from left to right. Clearly this directed graph
is acyclic, so a topological order exists and can be computed, for instance, via (reversed)
post order DFS in time linear in the size of the graph, which in our case is O(n?). [

Although the topological sweep is easy, the reader may ask whether the real sweep is
also possible in O(n?) time. In other words: given a set of n points, is it possible to sort
the (721) lines defined by the points according to slope in O(n?) time? Standard lower
bounds for sorting do not apply, since the (721) slopes are highly interdependent. The
answer is unknown, and according to Exercise 10.15, the problem is at least as hard as
another, rather prominent, open problem.

Exercise 10.15. The X+Y sorting problem 1s the following: given two sets X and Y of
n distinct numbers each, sort the set X+ Y ={x+y:x € X, y €Y} It s an open
problem whether this can be done with o(n?logn) comparisons.

Prove that X +Y sorting reduces (in O(n) time) to the problem of sorting the
(22“) lines pq by slope, for all pairs {p,q} from a set of 2n points.

10.7 3-Sum

We have seen a quadratic time algorithm to test whether a point set is in general position
(no three points on a common line). But as we mentioned, the exact computational
complexity of this problem is unsettled. In fact, it is closely related to an abstract
problem called 3-Sum, in the sense that resolving the complexity of one of the problems

167

https://topp.openproblem.net/p41
https://topp.openproblem.net/p41

Chapter 10. Arrangements GEOMETRY: C&A 2023

also resolves the complexity of the other. However, doing so is one of the major open
problems in theoretical computer science.

The 3-Sum problem is the following: Given a set S of n integers, is there a triple? of
elements from S that sum up to zero? Obviously, by testing all triples this can be solved
in O(n?®) time. If we pick the triples to be tested more cleverly, we obtain an O(n?)
algorithm. To this end, we sort the elements from S in increasing order and obtain the
sequence s; < ... < s,. This takes O(nlogn) time. Then we test the triples as follows.

Fori=1,...,n{
j=1, k=mn.
While k >j {
If s; +s; + sy = 0 then output the triple s, sj, s and stop.
Ifsi+sj+sk>0thenk=k—1elsej=j+1.
}
¥

The runtime is clearly quadratic. Regarding the correctness, observe the following
invariant at the start of every iteration of the inner loop: s; + sy + sx < O for all
x €{i,...,j— 1} and si+sj+sy >0forall x e {k+1,...,n}

Interestingly, until recently this was the fastest algorithm known for 3-Sum. But
at FOCS 2014, Grgnlund and Pettie [8] presented a deterministic algorithm that solves
3-Sum in O(n?(loglogn/logn)?/3) time.

They also gave an upper bound of O(n3/?y/logn) on the decision tree complexity
of 3-Sum, which since then has been further improved in a series of papers. The latest
improvement is due to Kane, Lovett, and Moran [13] who showed that O(n log” n) linear
queries suffice (each query amounts to asking for the sign of the weighted sum of six
numbers in S, with coefficients in {—1,0,1}). In this decision tree model, only queries
that involve the input numbers are counted, all other computation, for instance, using
these query results to analyze the parameter space are for free. So the results demonstrate
that the (supposed) hardness of 3-Sum does not originate from the complexity of the
decision tree.

The big open question remains whether an O(n?~¢) algorithm can be achieved. Only
in some very restricted models of computation—such as the 3-linear decision tree model
where a decision can only be based on the sign of a linear expression in 3 input variables—
it is known that 3-Sum requires quadratic time [6].

There is a whole class of problems that are equivalent to 3-Sum up to sub-quadratic
time reductions [7]; such problems are referred to as 3-Sum-hard.

Definition 10.16. A problem X is 3-Sum-hard if every 3-Sum instance of size n reduces
to solving a constant number of X instances of size O(n), within O(n?~¢) reduction
time for some constant ¢ > 0.

2That is, an element of S may be chosen twice or even three times, although the latter makes sense for
the number O only.

168

GEOMETRY: C&A 2023 10.7. 3-Sum

Exercise 10.17. Show that the following wvariation of 3-Sum—call it 3-Sum®—is 3-
Sum-hard: Given a set S of n integers, are there three (distinct) elements of S that
sum up to zero?

As another example, consider the problem Geometry Base: Given n points on the
horizontal lines y =0, y = 1, and y = 2, is there a non-horizontal line that goes through
at least three points?

Given any 3-Sum instance S = {s1,...,sn}, we can reduce it to a Geometry Base
instance P of size 3n: For each s; we create three points (2s;,0), (—si, 1) and (2s;,2)
in P. Now, if there is a non-horizontal line through three points in P, then each level

contributes one, and so the three collinear points have form p = (2s4,0), ¢ = (—s;j, 1) and
—sj—2si __ 2sy+s;j

T = (2sy,2). The inverse slopes of lines pq and qr must be equal, hence —4—/— = =5,
or s; +s; + sx = 0. Conversely, if there is a triple s; + s; + s = 0, then by a reverse
argument we see that the points (2s;,0), (—sj, 1), (2sk,2) € P are collinear.

A very similar problem is General Position that we studied earlier. For a 3-Sum°®
instance S, we create a General Position instance P by lifting the numbers onto the curve
y = x>, that is P :={(a,a®)| a € S}. Three distinct points (a, a*), (b,b3), (c,c3) € P are
collinear if and only if the slopes of the lines through each pair are equal; that is

(b —a®)/(b—a) = (¢’ = b%)/(c —b)

— b2 +a’+ab=c*+b?+bc
— b=(c*—a?)/(a—c)
= b=—(a+c)

— a+b+c=0.

Hence P has a solution if and only if S has a solution. Note that the “if” part needs a, b, c
to be distinct, and this is why we reduce from 3-Sum®.

Minimum Area Triangle is a strict generalization of General Position and, therefore, also
3-Sum-hard.

In Segment Separation, we are given a set of n line segments and have to decide whether
there exists a line that does not intersect the segments but separates them into two non-
empty subsets. To show that this problem is 3-Sum-hard, we can reduce from Geometry
Base, where we emulate the points along the three levels y =0,y =1, and y = 2 by
punching sufficiently small “holes”. The resulting segments form the Segment Separation
instance. Horizontal splits can be prevented by constant size gadgets next to the left
and right ends:

169

Chapter 10. Arrangements GEOMETRY: C&A 2023

Constructing such an instance requires sorting the points along each of the three
levels, which can be done in O(nlogn) = O(n?7¢) time. It remains to specify how
“sufficiently small” are those holes. As all input numbers are integers, it is not hard to
show that punching a hole of range +1/4 around each point is small enough.

In Segment Visibility, we are given a set S of n horizontal line segments and two specific
s1,82 € S. The question is: Are there two points, p; € s; and p, € s, that can see each
other, that is, relint(p7pz) does not intersect any segment from S? The reduction from
Geometry Base is basically the same as for Segment Separation, just put s; above and
s> below the three levels.

In Motion Planning, we are given a robot (modeled as a line segment), some obstacles
(modeled as a set of disjoint line segments), and a source and a target position. The
question is: Can the robot move (by translation and rotation) from the source to the
target position, without ever intersecting the obstacles? To show that Motion Planning
is 3-Sum-hard, employ the reduction from Geometry Base as above. The holes on the
three punched lines form the doorways from “the top room” to “the bottom room”. Each
room is surrounded by walls on the outer sides, so a robot in the top room can only
reach the bottom room through the doorways. By specifying a long enough robot, the
only way that it can pass is via three collinear holes.

Exercise 10.18. The 3-Sum’ problem asks: Given three sets S1,S,,S3 of n integers
each, are there a; € Sy, a; € Sy, a3 € S3 such that a3 + a> + a3 = 02 Prove that
3-Sum’ and 3-Sum are equivalent, more precisely, that they are reducible to each
other in subquadratic time.

10.8 Ham Sandwich Theorem

Suppose two thieves have stolen a necklace that contains rubies and diamonds. Now it
is time to distribute the prey. Both, of course, should get the same number of rubies
and the same number of diamonds. On the other hand, it would be a pity to completely
disintegrate the beautiful necklace. Hence they want to use as few cuts as possible to
achieve a fair gem distribution.

To phrase the problem in a geometric (and somewhat more general) setting: Given
two finite sets R and D of points in R?, how do we find a line that bisects both sets?
This means that each side of the line contains half of the points from R and half of
the points from D. To solve this problem, we will make use of the concept of levels in
arrangements.

Definition 10.19. Consider an arrangement A(L) of a set L of n non-vertical lines in
the plane. We say that a point p ts on the k-level in A(L) if there are at most k — 1
lines below and at most n — k lines above p. The 1-level and the n-level are also
referred to as lower and upper envelope, respectively.

Another way to look at the k-level is to consider the lines as real functions; then the

170

GEOMETRY: C&A 2023 10.8. Ham Sandwich Theorem

Figure 10.10: The 3-level of an arrangement.

lower /upper envelope is the pointwise minimum/maximum of those functions, and the
k-level is defined by taking pointwise the k*"-smallest function value.

Theorem 10.20. Let R,D C R? be finite sets of points. Then there exists a line that
bisects both R and D. That is, in either open halfplane bounded by {, there are no
more than |R|/2 points from R and nmo more than |D|/2 points from D.

Proof. Without loss of generality suppose that both |R| and |D| are odd. (If, say, |R| is
even, simply remove an arbitrary point from R. Any bisector for the resulting set is also
a bisector for R.) We may also suppose that no two points from R U D have the same
x-coordinate; otherwise we rotate the plane infinitesimally.

Let R* and D* denote the set of lines dual to the points from R and D, respectively.
Consider the arrangement A(R*). Every point on the median level of A(R*) corresponds
to a primal line that bisects R. As |[R*| = |R| is odd, both the leftmost and the rightmost
segments of the median level are contributed by the same line {, € R*: the one with
median slope. Similarly there is a line {4 € D* that contributes to the leftmost and
rightmost segments of the median level in A(D*).

Since no two points from RUD have the same x-coordinate, no two lines from R*UD*
have the same slope, and thus {, and {4 intersect. Consequently, being piecewise linear
continuous functions, the median level of A(R*) and the median level of A(D*) also
intersect (see Figure 10.11 for an example). Any point that lies on this intersection
corresponds to a primal line that bisects both point sets simultaneously.]

How can the thieves use Theorem 10.207 If they are smart, they drape the necklace
along some convex curve, say a circle. Then by Theorem 10.20 there exists a line that
simultaneously bisects the set of diamonds and the set of rubies. As any line intersects
the circle at most twice, they need to cut the necklace at only two points.

You can also think of the two point sets as a discrete distribution of a ham sandwich
that is to be cut fairly, that is, in such a way that both parts have the same amount of
ham and the same amount of bread. That is where the name “ham sandwich cut” comes
from. The theorem generalizes both to higher dimension and to more general types of
measures (here we study the discrete setting only where we simply count points). These

171

Chapter 10. Arrangements GEOMETRY: C&A 2023

Figure 10.11: An arrangement of 3 red lines and an arrangement of 3 blue lines,
drawn in one picture. Their median levels are marked bold on the
right.

generalizations can be proven using the Borsuk-Ulam Theorem, which states that any
continuous map from S¢ to RY must map some pair of antipodal points to the same
point. For a proof of both theorems and many applications see Matousek’s book [17].

Theorem 10.21. Let Py,...,Pq C RY be finite sets of points. Then there ezists a
hyperplane h that simultaneously bisects all of P1,...,Pq. That s, in either open
halfspace defined by h there are no more than |Pi|/2 points from P;, for every i €

a,...,d.

This implies that the thieves can fairly distribute a necklace consisting of d types of
gems using at most d cuts.

Exercise 10.22. Prove or disprove the following statement: Given three finite sets
A, B, C of points in the plane, there is always a circle or a line that bisects A, B and
C simultaneously (that ts, no more than half of the points of each set are inside or
outside the circle or on either side of the line, respectively).

Knowing about the existence of a ham sandwich cut certainly is not good enough.
It is not hard to turn the proof given above into an O(n?) algorithm, but we can do
better...

10.9 Constructing Ham Sandwich Cuts in the Plane

The algorithm outlined below is interesting not only in itself, but also because it illus-
trates a fundamental paradigm for designing optimization algorithms: prune € search.
The basic idea behind prune & search is to exclude part of the search space from further
consideration (“prune”) at each step, and then search in the remaining space. A well-
known example is binary search: every step takes constant time and discards about half
of the possible solutions, resulting in a logarithmic runtime overall. As another example,

172

GEOMETRY: C&A 2023 10.9. Constructing Ham Sandwich Cuts in the Plane

if at each step some 1/d fraction of all potential solutions is discarded, and the step costs
linear time cn in the number n of (remaining) solutions, then the runtime T satisfies

Tn) < cn+T((1 —3—1> n) <cn§ (1 —%)lzcdn,

which gives a linear time performance.

Theorem 10.23 (Edelsbrunner and Waupotitsch [5]). Let R,D C R? be finite sets of points
with n = |[R|+|D|. Then in O(nlogn) time one can find a line { that simultaneously
bisects R and D.

Proof. We design a recursive algorithm Find (L, kq; L;,k;; (x1,%2)) that, for sets of lines
L;,L,, non-negative integers k;,k, and an open interval (x7,x,), finds an intersection
between the k;-level of A(L;) and the k;-level of A(L;). It operates under two premises:

Distinct slopes: different lines in [; U L, have different slopes.

Odd-intersection: the two levels of interest should intersect an odd number of times in
(x1,%x2) and do not intersect at x; or x,. Equivalently, the level above the other at
X7 should run below at x,.

[RI+1T. my* [DI+1.
2 D Yy 2 (_

plane if necessary, we may assume without loss of generality that points in R U D have
distinct x-coordinates and thus lines in R* U D* have distinct slopes. Also, as shown in
the proof of Theorem 10.20, the odd-intersection property is satisfied.

Now we describe the algorithm. Let L := [; UL, and find the line p € L of median
slope. Partition L = L_ U{u}U L. depending on whether a line has slope less than or
greater than the median. Pair the lines in [_ with those in L. arbitrarily (with one
line unpaired if [L| is even). Denote by I the UL‘T_]J intersection points generated by the
pairs. and let j be the median x-coordinate of these points.

Find the point on the k;-level of A(L;) at j, and the point on the k;-level of A(L,) at
j. If the points coincide then we simply return it. Otherwise, if j € (x1,x2) then exactly
one of the open intervals (x1,j) or (j,x,) satisfies the odd-intersection property, and we
restrict our attention to it. If j ¢ (xq,x2), then we keep the original interval (x;,x,). In
either case, we may assume by symmetry that the interval of interest is to the left of j.

In the following it is our goal to discard a constant fraction of the lines in L from
future consideration. To this end, let [. denote the set of points from I with x-coordinate
greater than j. Let p’ be a line parallel to p that bisects I.. The two lines x =j and p’
subdivides the plane into four quadrants. By definition, each quadrant contains about a
quarter of points from I; that is, about |L|/8 points.

As we assumed, the interval of interest is (x;,t) for some t < j. In particular,
exactly one of the left two quadrants Q is interesting in the sense that ((x;,t) x R)NQ
contains an odd number of intersections between the two levels. We will later argue how
to algorithmically determine the interesting quadrant. For now, suppose that the upper

In the end, we are interested in Find <R*, 00, oo)). Rotating the

173

Chapter 10. Arrangements GEOMETRY: C&A 2023

L.

X =)

Figure 10.12: An example with a set L; of 4 red lines and a set L, of 3 blue lines.
Suppose that k1 = 3 and k, = 2. Then the interesting quadrant is the
top-left one (shaded) and the red line U’ (the line with the smallest slope
wn L) would be discarded because it does not intersect the interesting
quadrant.

left quadrant Q, is interesting (Figure 10.12). Consider its opposite (i.e. the lower right)
quadrant Q4. Any line in L. that passes through Q4 is completely below the interesting
quadrant Q, so all such lines can be safely discarded from further consideration. How
many are they? Recall that every point in I is generated by paired lines, one from L.
and the other from L_. So there are at least |[I N Q4| ~ |L|/8 such lines.

After we discard these lines, we want to resume our search recursively. For every
discarded line from L; (resp. L,), we decrease the parameter k; (resp. k,) by one. In
the other case where Q3 is interesting and we discard lines passing through Q, the
parameters k; and k, stay the same. Denote the remaining sets of lines by L] and L5,
and the adjusted parameters by k{ and kj.

We want to apply the algorithm recursively to compute an intersection between the
ki-level of A(L7) and the kj-level of A(Lj). However, discarding lines changes the ar-
rangement and its levels. As a result, it is not clear that the odd-intersection property
holds for the kj-level of A(L7) and the k5-level of A(L}) on the interval (x;,t). Note that
we do know that these levels intersect in the interesting quadrant, and this intersection
persists because none of the involved lines is removed. However, it is conceivable that
the removal of lines changes the parity of intersections in the non-interesting quadrant
of the interval (x7,t). Luckily, this issue can be resolved as a part of the algorithm to
determine the interesting quadrant, which we will discuss next. More specifically, we
will show how to determine an interval (x,x5) C (x7,%,) on which the odd-intersection
property holds for the k}-level of A(L;) and the k}-level of A(L3).

So let us argue how to determine the interesting quadrant, that is, how to test whether

174

GEOMETRY: C&A 2023 10.9. Constructing Ham Sandwich Cuts in the Plane

the kq-level of A(L;) and the k,-level of A(L,) intersect an odd number of times in
((x7,t) x R) N H', where H" is the open halfplane above p’. For this it is enough
to sweep the line p' from left to right in the arrangement A(L) (conceptually) while
keeping track of the relative ordering of the two levels and p’. Initially at x = x;, we
know which level is above the other. Then we inspect all intersections between p and L
from left to right. If the current intersection point is on one of the two levels, then the
relative ordering might change. So we check whether it is still consistent with that initial
ordering. For instance, if the initial ordering is “the k;-level above the k,-level above
w” and the k;-level intersects u’ before the k,-level does, then we can deduce that there
must be an intersection of the two levels above u’. As the relative position of the two
levels is reversed at x = x,, at some point an inconsistency, that is, the presence of an
intersection will be detected and we will be able to tell whether it is above or below p'.
(There could be many more intersections between the two levels, but finding just one
intersection is good enough.) Along with this above/below information we also obtain a
suitable interval (x7,x5) for which the odd-intersection property holds because the levels
of interest do not change in that interval.

The sweep amounts to computing all intersections of u' with L, sorting them by x-
coordinate, and keeping track of the number of lines from [; (resp. L,) below pn’. At
every point of intersection, these counters can be adjusted and the inconsistency can
be tested in constant time. Overall it takes O(|L|log|L|) time. This step dominates the
whole algorithm, noting that all other operations are based on rank-i element selection,
which can be done in linear time [4]. Altogether, we obtain as a recursion for the runtime

T(n) < cnlogn + T(7n/8).
Solving it gives T(n) = O(nlogn). O]

In the plane, a ham sandwich cut can actually be found in linear time using a so-
phisticated prune and search algorithm by Lo, Matousek and Steiger [16]. But in higher
dimension, the algorithmic problem gets harder. In fact, already for R> the complexity
of finding a ham sandwich cut is wide open: The best algorithm known, from the same
paper by Lo et al. [16], has runtime O(n3/2 log?n/log* n) and no non-trivial lower bound
is known. If the dimension d is not fixed, it is both NP-hard and W[1]-hard® in d to
decide the following question [15]: Given d € NN, finite point sets P1,...,Pq C R4, and
a point p € Uf:1 Pi, is there a ham sandwich cut through p?

Exercise 10.24. The goal of this exercise is to develop a data structure for halfspace
range counting.

(a) Given a set P C R? of n points in general position, show that it is possible
to partition this set by two lines such that each region contains at most [7]
pownts.

3Essentially this means that it is unlikely to be solvable in time O(f(d)p(n)), for an arbitrary function
f and a polynomial p.

175

Chapter 10. Arrangements GEOMETRY: C&A 2023

(b) Design a data structure of size O(n) that can be constructed in time O(nlogn)
and allows you, for any halfspace h, to output the number of points |P Nh| of
P contained in this halfspace h in time O(n%), for some 0 < ax < 1.

10.10 Davenport-Schinzel Sequences

The complexity of a simple arrangement of n lines in R? is ®(n?), so every algorithm
that uses the whole arrangement explicitly needs Q(n?) time. However, there are many
scenarios where we only need a local part of the arrangement. For instance, if we only
care about the cells touching a specific line, then the zone theorem ensures a linear
complexity overall. As another example, to construct a ham sandwich cut for two sets
in R? we only need the median levels of their dual line arrangements. As mentioned in
the previous section, the relevant information can actually be obtained in linear time.

Hence it can be rewarding to study the “local” complexity of arrangements. Here
we pursue one such direction: to analyze the complexity—the number of vertices and
edges—of a single cell in an arrangement of n simple curves in R2.

If the curves are lines then this is of little interest: Every line can appear at most once
on the boundary of each cell; and it is possible that all lines appear on the boundary of
one cell simultaneously.

But if the curves are line segments rather than lines, the situation changes in a
surprising way. Certainly a single segment can appear several times along the boundary
of a cell, see the example in Figure 10.13. Make a guess: What is the maximal complexity
of a cell in an arrangement of n line segments in R?? You will find out the correct answer
soon, although we only prove part of it. But my guess would be that it is rather unlikely
that your guess is correct, unless, of course, you knew the answer already. :-)

Figure 10.13: A single cell in an arrangement of line segments.

To start our program, we will focus on one particular cell in the curve arrangement:
its lower envelope, or intuitively everything that can be seen vertically from below. To
analyze the lower envelopes we will describe them combinatorially using sequences with
forbidden substructures. These sequences, named after Davenport and Schinzel, are of
independent interest as they appear in a number of combinatorial problems [2] and in

176

GEOMETRY: C&A 2023 10.10. Davenport-Schinzel Sequences

the analyses of data structures [19]. The techniques apply not only to lower envelopes
but also to arbitrary cells of curve arrangements.

Definition 10.25. Let n,s € IN. An (n,s)-Davenport-Schinzel sequence is a sequence over
an alphabet of n symbols, such that

e no adjacent slots have the same symbol, and

e no subsequence of length s + 2 alternates between two different symbols.*
Let A\s(n) be the length of a longest (n,s)-Davenport-Schinzel sequence.

So, for instance, an (n,2)-Davenport-Schinzel sequence forbids alternations of the
form ...a...b...a...b.... As another example, consider the sequence abcbacb. It
is a (3,4)-Davenport-Schinzel sequence but not a (3,3)-Davenport-Schinzel sequence,
because it contains a subsequence bcbeb of length 5 that alternates between b and c.

Note that the Davenport-Schinzel property is invariant of the alphabet in the fol-
lowing sense. If a sequence o1,...,0, over alphabet A is (n,s)-Davenport-Schinzel and
@ : A — B is a bijection, then the sequence ¢@(07),...,@(0¢) over alphabet B is again
(n, s)-Davenport-Schinzel. In other words, we can change the alphabet whenever it is
convenient.

Exercise 10.26. Show that A;(n) =n and A\;(n) =2n — 1.

Exercise 10.27. Prove that As(n) s finite for alln,s € IN. Can you give explicit upper
and lower bounds?

Proposition 10.28. A (m) + As(n) < Ag(m +n).

Proof. Consider any (m, s)-Davenport-Schinzel sequence of length { and (n, s)-Davenport-
Schinzel sequence of length {’. Assume without loss of generality that their alphabets
are disjoint, so concatenating them yields a sequence of length ¢+ £’ over an alphabet of
m+mn symbols. It is straightforward to check that the sequence is (m+n, s)-Davenport-
Schinzel. O

Let us now see how Davenport-Schinzel sequences are connected to lower envelopes.
Consider a set F = {f;,...,f,} of real-valued continuous functions that are defined on a
common closed interval I C R. The lower envelope L5 of J is defined as the pointwise
minimum of the functions. Formally, £4(x) := min{fj(x) : 1 <j <n}for x € L

Suppose that the graphs of any two functions in F intersect at finitely many points.
Then each function can appear on the lower envelope L4 only finitely many times.
Imagine scanning the lower envelope from left to right, then the indices of functions that
appear on it form the lower envelope sequence &(F); see Figure 10.14 for an illustration.

BEach intersection between the graphs of f; and fy can lead to at most one alternation
between j and k in ¢(F). Hence we have the following:

4Note that a subsequence need not be contiguous. For example, geo is a subsequence of congestion.

177

Chapter 10. Arrangements GEOMETRY: C&A 2023

T

Figure 10.14: The lower envelope sequence (4,2,3,4,2) of a set of functions.

Observation 10.29. If the graphs of any two functions in F intersect at most s times,
then &(F) s an (n,s)-Davenport-Schinzel sequence.

But in order to deal with line segments (understood as linear functions over interval
domains), the above machinery needs slight extension because the segments may have
different domains. So let us allow each function in F having an individual closed interval
as its domain. The lower envelope L5, now defined over the real line, is given by
L5(x) = inf{fj(x) : 1 <j < n and x is in the domain of f;}. In the case where no fj is
defined at x, we have L4(x) = oco.

Again assuming that the graphs of any two functions intersect at finitely many points,
the lower envelope sequence ¢(F) records the indices of the functions that appear on
Lg as we scan from left to right. By convention we use index O for intervals where
L5(x) = 0o; see Figure 10.15 for an illustration.

T
3 s

0 2 11'3° 1.3 0. 4 0

Figure 10.15: The lower envelope sequence of a set of segments.

In Figure 10.15 we already see that two segments fj, f, despite crossing only once,
may lead to a lower envelope subsequence jkjk of length 4 (instead of 2 as it would be if
they were defined over a common interval). Generally we have:

Proposition 10.30. Let F be a collection of n real-valued continuous functions, each
defined on some closed interval, and the graphs of any two functions intersect at
most s times. Then &(F) s an (n+ 1,s + 2)-Davenport-Schinzel sequence.

Proof. We first show that there is no subsequence of length s+4 that alternates between
two symbols j, k € {1,...,n}. For this, we consider the at most s points at which fj, f, are

178

GEOMETRY: C&A 2023 10.10. Davenport-Schinzel Sequences

equal, plus the at most 4 domain endpoints of f; and fy. These together subdivide the
real line into at most s+5 intervals. Within each of the at most s+ 3 inner intervals, fj is
either always above or always below fy by continuity; only the lower one may appear on
L4 (possibly zero or multiple times). Hence in ¢(F), the symbols j, k cannot alternate
within this interval. It follows that any j-k alternating subsequence in ¢(F) has length
most s + 3.

Finally, we observe that ¢(J) cannot contain subsequence jOj for j € {1,...,n}, since
the domain of f; is an interval. Hence in particular there is no subsequence 0j0j or j0j0;
that is, no subsequence of length 4 that alternates between symbols 0 and j € {1,...,n}.
The statement then follows. O

So let us now focus on obtaining upper bounds for A;(n). You have seen linear bounds
for s = 1,2 in Exercise 10.26. But the situation for s = 3 is more complicated.

Lemma 10.31. A5(n) < 2n(1 +logn).

Proof. For n = 1 we have A3;(1) = 1 < 2. For n > 1 consider any (n,3)-Davenport-
Schinzel sequence o of length A3(n). Let a be a symbol that appears least frequently
in 0; so it appears at most %7\3(11) times. Delete all appearances of a from o to obtain a
sequence o’ of length at least (1 —%)7\3(71) over n— 1 symbols. But o’ is not necessarily a
Davenport-Schinzel sequence because it might contain consecutive bb for some symbol b;
this happens when o =...bab....

We claim that there are at most two places where such situation may arise. In fact,
the only two possible places are around the first and last appearances of a. Indeed, if
any intermediate appearance of a had resulted in consecutive bb after deletion, then
0=...a...bab...a.... So o would contain the subsequence ababa, in contradiction
to it being an (n,3)-Davenport-Schinzel sequence.

Given the claim, one can repair o’ by deleting at most two characters from it. This
produces an (n — 1, 3)-Davenport-Schinzel sequence of length at least (1 — %)7\3(n) -2,
which by definition cannot exceed Az(n — 1). So via rearranging we have the recursion

7\3(n)<7\3(ﬂ—1)+ 2 ‘
n n—1 n—1

A

Denoting Az(n) := %, this means

_ _ 2 - = 2
M) <hm-1)+ = < <MD+) = =T+2Hu
n—1 .

where H,,_; is the (n — 1)-st harmonic number. Together with 2H,,_; < 1+ 2logn we
obtain A3(n) < 2n(1 + logn). H

179

Chapter 10. Arrangements GEOMETRY: C&A 2023

Bounds for higher-order Davenport-Schinzel sequences. As we have seen, A;(n) (no aba)
and A,(n) (no abab) are both linear in n. It turns out that for s > 3, A¢(n) is slightly
superlinear in n (with s fixed). The bounds are known almost exactly, and they involve
the inverse Ackermann function «(n), which grows extremely slowly.

To define the inverse Ackermann function, we first define a hierarchy of functions
x1(n), x2(n), xz(n),... where ayx(n) grows much more slowly than oy 1(n) for every
fixed k.

We let o;(n) = [n/2]. Then, for each k > 2, we define a(n) as the number of
repeating applications of o, on n until the value becomes no larger than 1. In other
words, o (n) is defined recursively by:

o (1) = 0, ifn<T;
ARG | o (a_1(n)), otherwise.

Thus «;(n) = [log, n|, and az(n) =log" n.
Now fix n and consider the sequence «;(n), &z (n), x3(n),.... The sequence decreases
rapidly until it drops below 3. We define the inverse Ackermann function «(n) by

a(n) =min{k : o (n) < 3}.

Exercise 10.32.
(a) Show that for every fized k > 2 we have ax(n) = o(ox_1(n)); in fact, for
every fized k and t we have o (n) = o(oge_ (o _1(-- o 1(M)--+))), with t
applications of 1.

(b) Show that for every fized k we have x(n) = ooy (n)).

Coming back to the bounds for Davenport-Schinzel sequences, for A3(n) it is known
that A3;(n) = O(na(n)) [10]. In fact we even know A3z(n) = 2na(n)£0(n/x(n)) [14, 18].
For A\4(n) we have A4(n) = O(n - 2*M)) [3].

For higher-order sequences the known upper and lower bounds are almost tight, and
they are of the form A (n) = n - 2P°W(x(M) where the degree of the polynomial in the
exponent is roughly s/2 [3, 18].

Realizing Davenport-Schinzel sequences as lower envelopes. There exists a construction of a
set of n segments in the plane whose lower-envelope sequence has length O(na(n)). (In
fact, the lower-envelope sequence has length na(n) — O(n), with a leading coefficient of
1; it is an open problem to get a leading coefficient of 2, or prove that this is impossible.)

It is an open problem to construct a set of n parabolic arcs in the plane whose
lower-envelope sequence has length Q(n - 2%(™)),

Exercise 10.33. Show that every (n,s)-Davenport-Schinzel sequence can be realized as
the lower envelope of n continuous functions from R to R, every pair of which
intersect at most s times.

Exercise 10.34. Show that every (n,2)-Davenport-Schinzel sequence can be realized as
the lower envelope of n parabolas.

180

GEOMETRY: C&A 2023 10.11. Constructing Lower Envelopes

Generalizations of Davenport-Schinzel sequences. Generalized Davenport-Schinzel sequences
have also been studied, for instance, where arbitrary subsequences (not necessarily an
alternating pattern) are forbidden. For a pattern 7t and n € IN define Ex(m,n) to be
the maximum length of a sequence over {1,...,n} that does not contain a subsequence
of the form 7. For example, Ex(ababa,n) = A3z(n). If 7t contains two meta-symbols
only, say a and b, then Ex(m,n) is super-linear if and only if 7t contains ababa as a
subsequence [1]. This highlights that the alternating forbidden pattern is of particular
interest.

10.11 Constructing Lower Envelopes

Theorem 10.35. Let F be a collection of n real-valued continuous functions defined
on a common closed interval. Assume that any two functions intersect at most s
times, and that each intersection point can be constructed in constant time. Then
the lower envelope L can be constructed in O(Ag(n)logn) time.

Proof. Divide and conquer. For simplicity, assume that n is a power of two. Split F
into two subsets J; and F, of n/2 functions each. Construct their lower envelopes £,
and L, recursively. After they return, we merge them by a scan from left to right. At
coordinate x, the defining function of £+ can change only when (1) the defining function
of L5, changes; (2) the defining function of L5, changes; or (3) L5, and L4, intersect.
So the scan concerns with discrete events only.

There are at most A;(n/2) events of type (1); and the same holds for type (2). (Note,
however, that they do not necessarily guarantee a change for £5.) Events of type (3) are
different: every occurrence does contribute to a change for £, thus we can upper bound
the number of occurrences by the complexity of L4, namely A;(n). So the total number
of events is at most 2A;(n/2) + As(n) < 2A¢(n) where we used Proposition 10.28.

Now that the scan costs time linear in A;(n), we obtain a recursion for the runtime
T(n) of the algorithm: T(n) < ZT(n/Z) + cA¢(n) for some constant ¢. Therefore, T(n) <
¢ Y B2 (n/2Y) < ¢ 1% Ag(n) = O(As(n)logn) where the second inequality is by
Propositlon 10.28. [

10.12 Complexity of a Single Cell

With all tools gathered, we can now go back to the initial question: What is the com-
plexity of a single cell in an arrangement of n simple curves?

Theorem 10.36. Let I' = {y1,...,Vn} be a collection of simple curves in R? such that
each pair intersects at most s times. Then the combinatorial complezity of any
single cell in the arrangement A(T) is O(Ag,2(n)).

Proof. Consider a cell f of A(T"). In general, of might consist of multiple connected
components. But as every y; can appear in at most one component, we may deal with

181

Chapter 10. Arrangements GEOMETRY: C&A 2023

each component separately and sum up their complexity by Proposition 10.28. Hence it
is no loss of generality to assume that of is connected.

Replace each y; by two opposite directed curves y;” and y; that together form a
closed curve that is infinitesimally close to y;. Denote by S the circular order that
these directed curves appear along a clockwise traversal of 0f. See Figure 10.16 for an

illustration.

Figure 10.16: An arrangement of two simple curves vi,yY2. The arrows indicate
the positive curves y7,v;, and their reversals are the megative curves
Y71,Y: - Traversing the boundary of the shaded cell clockwise from the

top-left corner, we encounter S = (Y{,Y5,Y3,Y1,Y3,Y1>Y2>Y1,Y32)-

Consistency Lemma. Fix i € {1,...,n}, and let & be one of the directed curves
vi or y;. The order of portions of & that appear in S is consistent with their
order along . Hence we can break the circular order S into a linear sequence
S(&) that, as we scan it from left to right, the portions of & appear in their
order along &.

Consider two portions &; and &, of & that appear consecutively in S (that is, there is
no other portion of in between). Choose points x; € &; and x, € &, and connect them
via two curves: a curve « following 9f clockwise, and a curve 3 sandwiched between y;"
and y; . Then o and P do not intersect internally and they are both contained in R?\ f°.
In other words, o U 3 forms a closed Jordan curve and f lies either in its interior or in
its exterior (Figure 10.17). In either case, the part of & between &; and &, is shielded
away from f by «U 3 and, therefore, no point from this part can appear anywhere along
of. In other words, the boundary portions &; and &, are also consecutive along &, which
proves the lemma.

Let us break the circular order S into a linear sequence S’ = (s1,...,s¢) arbitrarily.
Now we traverse a directed curve &, paying attention to its portions that appear in of. By
the Consistency Lemma, these portions correspond to (si,,...,Si, Siy 4y---)Si,), Where
1 <11 < <ip <1 <+ <1 <t. This “wrap-around” issue is caused by our
breaking the circular S into a linear S’. As a precaution, we replace all occurrences of ¢

182

GEOMETRY: C&A 2023 10.12. Complexity of a Single Cell

£, 2 & >
//L\
(a) f lies in the exterior of & U . (b) f lies in the interior of ot U 3.

Figure 10.17: Two cases in the proof of Consistency Lemma.

in S’ after index i, by a brand new symbol &’. Doing so for all directed curves results
in a sequence S* over 4n symbols. With this trick, any subsequence &§ ... ¢ (as well as
§'E.. &) of S* will agree with the traversal order of directed curve &.

Claim. S* is a (4n, s 4+ 2)-Davenport-Schinzel sequence.

Clearly no two adjacent symbols in S* are the same. Suppose S* contains a subse-
quence o of length s 4+ 4 that alternates between ¢ and n. For any occurrence of ¢ in o,
choose a point from the corresponding part of of. This gives a sequence X1, ..., X[(s+4)/2]
of points on 0f. Connect them in this order by a curve C(¢) sandwiched between £ and
its counterpart. (This is possible thanks to our precaution.) Similarly we may choose
points y1,...,Y|(s+4)/2) on Of that correspond to the occurrences of n in 0, and connect
them in this order by a curve C(n) sandwiched between n and its counterpart.

Now consider any quadruple xi,Yi, Xi+1,Yis1- (The case yi, Xi,Yit1,Xis1 1S symmet-
ric.) They must be appearing in this order along 0f. In addition, the pair x; xi;; is
connected by part of C(§), and similarly the pair y; yi 1 is connected by part of C(n);
both curves, except for their endpoints, lie in the exterior of f. Finally, we can place a
point u at the interior of f, and connect it to x;, yi, x4 1 and y;, via internally disjoint
curves inside the interior of f (Figure 10.18). By construction, no two of these curves
cross, except possibly for the curves x; xi;;; and y;yi,; in the exterior of f. In fact,
these two curves must intersect, because otherwise we are facing a plane embedding of
Ks which does not exist.

In other words, any quadruple of consecutive elements from the subsequence o induces
an intersection between C(&) and C(n). Clearly these intersections are distinct for all
quadruples, which altogether provide s +4 —3 = s + 1 intersections between C(&) and
C(n), in contradiction to the fact that these curves can intersect at most s times.]

Corollary 10.37. The combinatorial complezity of a single cell in an arrangement of
n line segments in R? is O(A3;(n)) = O(nx(n)).

When counting the number of Davenport-Schinzel sequences of a certain type we
want to count essentially distinct sequences only. Therefore we call two sequences over
a common alphabet A equivalent if and only if one can be obtained from the other
by a permutation of A. Then two sequences are distinct if and only if they are not

183

Chapter 10. Arrangements GEOMETRY: C&A 2023

Figure 10.18: Every quadruple xi, Yi, Xi+1, Yir1 generates an intersection between
the curves & and 1.

equivalent. A typical way to select a representative from each equivalence class is to
order the alphabet and demand that the first appearance of a symbol in the sequence
follows that order. For example, ordering A ={a, b, c} alphabetically demands that the
first occurrence of a precedes the first occurrence of b, which in turn precedes the first
occurrence of c.

Exercise 10.38. Let P be a convex polygon with n+1 vertices. Find a biyjection between
the triangulations of P and the set of pairunse distinct (n,2)-Davenport-Schinzel
sequences of mazimum length (2n —1). It follows that the number of distinct
mazimum (n,2)-Davenport-Schinzel sequences is exactly C,, 1 = %(2;‘__]2), which 15

the (n — 1)-st Catalan number.

Questions

53. How can one construct an arrangement of lines in R?>? Describe the incre-
mental algorithm and prove that its time complexity is quadratic in the number of
lines (incl. statement and proof of the Zone Theorem).

54. How can one test whether there are three collinear points in a set of n given
points in R?? Describe an O(n?) time algorithm.

55. How can one compute the minimum area triangle spanned by three out of n
gwen points in R?? Describe an O(n?) time algorithm.

56. What 1s a ham sandwich cut? Does it always exist? How to compute 1t?
State and prove the theorem about the existence of a ham sandwich cut in R? and
describe an O(n?) algorithm to compute it.

57. What s the endpoint wvisibility graph for a set of disjoint line segments in
the plane and how can it be constructed? Give the definition and explain the

184

GEOMETRY: C&A 2023 10.12. Complexity of a Single Cell

58.

59.

60.

61.

62.

63.

relation to shortest paths. Describe the O(n?) algorithm by Welzl, including a
proof of Theorem 10.14.

Is there a subquadratic algorithm for General Position? Explain the term
3-Sum hard and its implications and give the reduction from 3-Sum to General
Position.

Which problems are known to be 3-Sum-hard? List at least three problems
(other than 3-Sum) and briefly sketch the corresponding reductions.

(This topic was not covered in HS23 and therefore the question will not be asked in the
exam.) What is an (n,s) Davenport-Schinzel sequence and how does it relate
to the lower envelope of real-valued continuous functions? Give the precise
definitions and some examples. Explain in particular how to apply the machinery
to line segments.

(This topic was not covered in HS523 and therefore the question will not be asked in the
exam.) What 1is the value of Ag(n), for 1 < s < 3?2 Derive the precise value
for s € {1,2} and prove an O(nlogn) upper bound for A3(n).

(This topic was not covered in HS23 and therefore the question will not be asked in the
exam.) What s the combinatorial complexity of the lower envelope of a set of
n lines/parabolas/line segments?

(This topic was not covered in HS23 and therefore the question will not be asked in the
exam.) What 1s the combinatorial complezxity of a single cell in an arrangement
of n line segments? State the result and sketch the proof (Theorem 10.36).

References

[1]

2]

[3]

[4]

[5]

[6]

Radek Adamec, Martin Klazar, and Pavel Valtr, Generalized Davenport-Schinzel
sequences with linear upper bound. Discrete Math., 108, (1992), 219-229.

Pankaj K. Agarwal and Micha Sharir, Davenport-Schinzel sequences and their
geometric applications, Cambridge University Press, New York, NY, 1995.

Pankaj K. Agarwal, Micha Sharir, and Peter W. Shor, Sharp upper and lower bounds
on the length of general Davenport-Schinzel sequences. J. Combin. Theory Ser.
A, 52/2, (1989), 228-274.

Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E.
Tarjan, Time bounds for selection. J. Comput. Syst. Sct., 7/4, (1973), 448-461.

Herbert Edelsbrunner and Roman Waupotitsch, Computing a ham-sandwich cut in
two dimensions. J. Symbolic Comput., 2, (1986), 171-178.

Jeff Erickson, Lower bounds for linear satisfiability problems. Chicago J. Theoret.
Comput. Sct., 1999/8.

185

https://doi.org/10.1016/0012-365X(92)90677-8
https://doi.org/10.1016/0012-365X(92)90677-8
https://doi.org/10.1016/0097-3165(89)90032-0
https://doi.org/10.1016/0097-3165(89)90032-0
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1016/S0747-7171(86)80020-7
https://doi.org/10.1016/S0747-7171(86)80020-7
http://dx.doi.org/10.4086/cjtcs.1999.008

Chapter 10. Arrangements GEOMETRY: C&A 2023

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
18]

[19]

[20]

[21]

Anka Gajentaan and Mark H. Overmars, On a class of O(n?) problems in compu-
tational geometry. Comput. Geom. Theory Appl., 5, (1995), 165-185.

Allan Grgnlund and Seth Pettie, Threesomes, degenerates, and love triangles. J.
ACM, 65/4, (2018), 22:1-22:25.

Branko Griinbaum, Hamiltonian polygons and polyhedra. Geombinatorics, 3/3,
(1994), 83-89.

Sergiu Hart and Micha Sharir, Nonlinearity of Davenport-Schinzel sequences and of
generalized path compression schemes. Combinatorica, 6, (1986), 151-177.

Michael Hoffmann, On the ezistence of paths and cycles. Ph.D. thesis, ETH
Zirich, 2005.

Michael Hoffmann and Csaba D. Toé6th, Segment endpoint visibility graphs are
Hamiltonian. Comput. Geom. Theory Appl., 26/1, (2003), 47-68.

Daniel M. Kane, Shachar Lovett, and Shay Moran, Near-optimal linear decision
trees for k-SUM and related problems. J. ACM, 66/3, (2019), 16:1-16:18.

Martin Klazar, On the maximum lengths of Davenport-Schinzel sequences. In
R. Graham et al., ed., Contemporary Trends in Discrete Mathematics, vol. 49 of
DIMACS Series tn Discrete Mathematics and Theoretical Computer Science,
pp. 169-178, Amer. Math. Soc., Providence, RI, 1999.

Christian Knauer, Hans Raj Tiwary, and Daniel Werner, On the computational
complexity of ham-sandwich cuts, Helly sets, and related problems. In Proc. 28th
Sympos. Theoret. Aspects Comput. Sci., vol. 9 of LIPIcs, pp. 649-660, Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2011.

Chi-Yuan Lo, Jifi Matousek, and William L. Steiger, Algorithms for ham-sandwich
cuts. Discrete Comput. Geom., 11, (1994), 433-452.

Jifi Matousek, Using the Borsuk—Ulam theorem, Springer, Berlin, 2003.

Gabriel Nivasch, Improved bounds and new techniques for Davenport-Schinzel se-
quences and their generalizations. J. ACM, 57/3, (2010), Article No. 17.

Seth Pettie, Splay trees, Davenport-Schinzel sequences, and the deque conjecture.
In Proc. 19th ACM-SIAM Sympos. Discrete Algorithms, pp. 1115-1124, 2008.

Masatsugu Urabe and Mamoru Watanabe, On a counterexample to a conjecture of
Mirzaian. Comput. Geom. Theory Appl., 2/1, (1992), 51-53.

Emo Welzl, Constructing the visibility graph for n line segments in O(n?) time.
Inform. Process. Lett., 20, (1985), 167-171.

186

https://doi.org/10.1016/0925-7721(95)00022-2
https://doi.org/10.1016/0925-7721(95)00022-2
https://doi.org/10.1145/3185378
https://doi.org/10.1007/BF02579170
https://doi.org/10.1007/BF02579170
https://doi.org/10.3929/ethz-a-004945082
https://doi.org/10.1016/S0925-7721(02)00172-4
https://doi.org/10.1016/S0925-7721(02)00172-4
https://doi.org/10.1145/3285953
https://doi.org/10.1145/3285953
https://doi.org/10.4230/LIPIcs.STACS.2011.649
https://doi.org/10.4230/LIPIcs.STACS.2011.649
https://doi.org/10.1007/BF02574017
https://doi.org/10.1007/BF02574017
https://doi.org/10.1007/978-3-540-76649-0
https://doi.org/10.1145/1706591.1706597
https://doi.org/10.1145/1706591.1706597
http://doi.acm.org/10.1145/1347082.1347204
https://doi.org/10.1016/0925-7721(92)90020-S
https://doi.org/10.1016/0925-7721(92)90020-S
https://doi.org/10.1016/0020-0190(85)90044-4

	Arrangements
	Line Arrangements
	Constructing Line Arrangements
	Zone Theorem
	General Position and Minimum Triangle
	Constructing Rotation Systems
	Segment Endpoint Visibility Graphs
	3-Sum
	Ham Sandwich Theorem
	Constructing Ham Sandwich Cuts in the Plane
	Davenport-Schinzel Sequences
	Constructing Lower Envelopes
	Complexity of a Single Cell

