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Being maximal planar is a property of an abstract graph. In contrast, a
geometric graph to which no straight-line edge can be added without crossing
is called a triangulation. Not every triangulation is maximal planar, as the
example depicted to the right shows.

It is also possible to triangulate a geometric graph in linear time. But this problem
is much more involved. Triangulating a single face of a geometric graph amounts to
what is called “triangulating a simple polygon”. This can be done in near-linear3 time
using standard techniques, and in linear time using Chazelle’s famous algorithm, whose
description spans a fourty pages paper [9].

Exercise 2.35. We discussed the DCEL structure to represent plane graphs in Sec-
tion 2.2.1. An alternative way to represent an embedding of a maximal planar
graph is the following: For each triangle, store pointers to its three vertices and
to its three neighboring triangles. Compare both approaches. Discuss different sce-
narios where you would prefer one over the other. In particular, analyze the space
requirements of both.

Connectivity serves as an important indicator for properties of planar graphs. Al-
ready Wagner showed that a 4-connected graph is planar if and only if it does not contain
K5 as a minor. That is, assuming 4-connectivity the second forbidden minor K3,3 be-
comes “irrelevant”. For subdivisions this is a different story. Independently Kelmans
and Semour conjectured in the 1970s that 5-connectivity allows to consider K5 subdi-
visions only. This conjecture was proven only recently4 by Dawei He, Yan Wang, and
Xingxing Yu.

Theorem 2.36 (He, Wang, and Yu [18]). Every 5-connected nonplanar graph contains
a subdivision of K5.

Exercise 2.37. Give a 4-connected nonplanar graph that does not contain a subdivision
of K5.

Another example that illustrates the importance of connectivity is the following fa-
mous theorem of Tutte that provides a sufficient condition for Hamiltonicity.

Theorem 2.38 (Tutte [32]). Every 4-connected planar graph is Hamiltonian.

Moreover, for a given 4-connected planar graph a Hamiltonian cycle can also be
computed in linear time [10].

2.5 Compact Straight-Line Drawings

As a next step we consider geometric plane embeddings, where every edge is drawn as a
straight-line segment. A classical theorem of Wagner and Fáry states that this is not a
restriction to plane embeddability.

3O(n logn) or—using more elaborate tools—O(n log⇤ n) time.
4The result was announced in 2015 and published in 2020.
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Theorem 2.39 (Fáry [13], Wagner [33]). Every planar graph has a plane straight-line
embedding.

This is quite surprising, considering how much more freedom a simple curve allows,
compared to a line segment which is completely determined by its endpoints. To further
increase the level of appreciation, let us remark that a similar “straightening” is generally
not possible if we fix the point set on which the vertices are to be embedded: On the one
hand, Pach and Wenger [27] showed that a given planar graph G on n vertices v1, . . . , vn
and a given point set {p1, . . . , pn} ⇢ R2, one can always find a plane embedding of G
such that vi 7! pi, for all i 2 {1, . . . , n}. On the other hand, this is not possible in
general with a plane straight-line embedding. For instance, K4 does not admit a plane
straight-line embedding on a set of points that form a convex quadrilateral, such as a
rectangle. In fact, it is NP-hard to decide whether a given planar graph admits a plane
straight-line embedding on a given point set [7].

Exercise 2.40. Show the following:

(a) For every natural number n > 4, there exist a planar graph G on n vertices
and a set P ⇢ R2 of n points in general position (no three points are collinear)
so that G does not admit a plane straight-line embedding on P.

(b) For every natural number n > 6, there exist a planar graph G on n vertices
and a set P ⇢ R2 of n points in general position (no three points are collinear)
so that (1) G does not admit a plane straight-line embedding on P; and (2)
there are three points in P forming a triangle that contains all other points
from P.

Exercise 2.41. Show that for every set P ⇢ R2 of n > 3 in general position (no three
points are collinear) the cycle on n vertices admits a plane straight-line embedding
on P.

Although Fáry-Wagner’s theorem has a nice inductive proof, we do not discuss it
here. Instead we will soon prove a stronger statement that implies the theorem.

A very desirable property of straight-line embeddings is that they are easy to repre-
sent: only the points/coordinates for the vertices are needed. But from an algorithmic
and complexity point of view it is also important to learn the space requirement for
the coordinates, since it affects the input and output size of algorithms that work on
embedded graphs. While the Fáry-Wagner Theorem guarantees the existence of a plane
straight-line embedding for every planar graph, it does not bound the size of the coordi-
nates. The following strengthening provides such bounds, via an explicit algorithm that
embeds (without crossing) a given planar graph on a linear size integer grid.

Theorem 2.42 (de Fraysseix, Pach, Pollack [15]). Every planar graph on n > 3 vertices
has a plane straight-line drawing on a (2n- 3)⇥ (n- 1) integer grid. In fact, it can
be computed in O(n) time.
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2.5.1 Canonical Orderings

The key concept behind the algorithm is the notion of a canonical ordering, which
is a vertex order that allows building the plane drawing inside out (hence canonical).
Reading it backwards one may imagine a shelling or peeling order that destructs the
graph from the outside. A canonical ordering also provides a succinct representation for
the combinatorial embedding.

Definition 2.43. A plane graph G is internally triangulated if it is biconnected and every
bounded face is a (topological) triangle. We denote by C�(G) its outer cycle, that
is, the cycle bounding its outer face.

Definition 2.44. Let G be an internally triangulated plane graph. A permutation ⇡ =
(v1, v2, . . . , vn) of V(G) is a canonical ordering for G if for all k 2 {3, . . . , n} we have

(CO1) Gk is internally triangulated;

(CO2) v1v2 2 C�(Gk); and

(CO3) vk is located in the outer face of Gk-1,

where Gk := G[{v1, . . . , vk}] is the induced drawing on the first k vertices.

Figure 2.18 shows an example with canonical ordering (1, 2, . . . , 8). Note that not
every permutation is a valid canonical ordering. For instance, if ⇡ chooses its first
seven vertices from {1, 2, 3, 5, 6, 7, 8}, then the induced subgraph G[{1, 2, 3, 5, 6, 7, 8}] is
not biconnected since 1 is a cut vertex, thus ⇡ is not a canonical ordering. (Alternatively
we may think about it backwards: Suppose we choose the initial three removals from
{9, 10, 11} as shown in Figure 2.18b, then the next removal cannot be 4 because it will
leave a cut vertex in the graph.)
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Figure 2.18: An internally triangulated plane graph with one of its canonical ordering
(1, 2, . . . , 8).

36



Geometry: C&A 2022 2.5. Compact Straight-Line Drawings

Theorem 2.45. For every internally triangulated plane graph G and every edge v1v2
on its outer cycle, there exists a canonical ordering for G that starts with v1, v2.
Moreover, such an ordering can be computed in linear time.

Proof. Induction on n, the number of vertices. For a triangle, any ordering is valid and
so the statement holds. Now consider an internally triangulated plane graph G = (V, E)
on n > 4 vertices. Assume we have found a vertex vn 2 C�(G) \ {v1, v2} such that
the plane graph Gn-1 := G \ {vn} is internally triangulated. (We will show later that it
always exists.) Then we may apply induction on Gn-1 and obtain a canonical ordering
(v1, v2, . . . , vn-1) for Gn-1. The extended ordering (v1, v2, . . . , vn) would satisfy (CO1)–
(CO3) for k 2 {3, . . . , n- 1} by induction hypothesis, but also for k = n by definition of
vn. Hence the induction would be complete, assuming the existence of vn.

It remains to argue that vn exists. We will show this in two steps:

(1) we can find a vn 2 C�(G) \ {v1, v2} that is not incident to a chord of C�(G); and
(2) such vn automatically guarantees that Gn-1 := G \ {vn} is internally triangulated.

First we show (1). If C�(G) does not have any chord, this is obvious because every
cycle has at least three vertices, one of which is neither v1 nor v2. So suppose that C�(G)
has a chord c. The endpoints of c split C�(G) into two paths, one of which does not
have v1 nor v2 as an internal vertex. We call this path the path associated to c. (Such a
path has at least two edges because there is always at least one vertex “behind” a chord.)
Among all chords of C�(G) we select c such that its associated path has minimal length.
Then by this choice of c its associated path together with c forms an induced cycle in G.
In particular, none of the (at least one) interior vertices of the path associated to c is
incident to a chord of C�(G) because such a chord would either cross c or it would have
an associated path that is strictly shorter than the one associated to c. So we can select
vn from these vertices. By definition the path associated to c does not contain v1 nor
v2, hence this procedure does not select either of these vertices.

Then we look at (2). The way Gn-1 is obtained from G, every bounded face f of
Gn-1 also appears as a bounded face of G. As G is internally triangulated, f is a triangle.
It remains to show that Gn-1 is biconnected.

Consider the circular sequence of neighbors around vn in G and break it into a linear
sequence u1, . . . , um, for some m > 2, that starts and ends with the neighbors of vn in
C�(G). As G is internally triangulated, each of the bounded faces spanned by vn, ui, ui+1,
for i 2 {1, . . . ,m - 1}, is a triangle and hence uiui+1 2 E. The boundary of the outer
face of Gn-1 is obtained from C�(G) by replacing vn with the (possibly empty) sequence
u2, . . . , um-1. As vn is not incident to a chord of C�(G) (and so none of u2, . . . , um-1

appeared along C�(G) already), the resulting sequence forms a cycle, indeed. Add a new
vertex v in the outer face of Gn-1 and connect v to every vertex of C�(Gn-1) to obtain
a maximal planar graph H � Gn-1. By Theorem 2.30 the graph H is 3-connected and
so Gn-1 is biconnected, as desired. This also completes the proof of the claim.

Regarding the runtime bound, we maintain for each vertex v whether it is on the
current outer cycle and what is the number of incident chords with respect to the current
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outer cycle. Given a combinatorial embedding of G, it is straighforward to initialize
this information in linear time. (Every edge is considered at most twice, once for each
endpoint on the outer cycle.) We also maintain an unordered list of the eligible vertices,
that is, those vertices that are on the outer cycle and not incident to any chord. This list
is straightforward to maintain: Whenever a vertex information is updated, check before
and after the update whether it is eligible and correspondingly add it to or remove it
from the list of eligible vertices. We store with each vertex a pointer to its position in the
list (nil if it is not eligible currently) so that we can remove it from the list in constant
time if needed.

When removing a vertex vn from G, there are two cases: Either vn has two neighbors
u1 and u2 only (Figure 2.19a), in which case the edge u1u2 ceases to be a chord. Thus,
the chord count for u1 and u2 has to be decremented by one. Otherwise, there are
m > 3 neighbors u1, . . . , nm (Figure 2.19b) and (1) all vertices u2, . . . , um-1 are new
on the outer cycle, and (2) every edge incident to ui, for i 2 {2, . . . ,m - 1}, and some
other vertex on the outer cycle other than ui-1 or ui+1 is a new chord. These latter
changes have to be reflected in the chord counters at the vertices. So to update these
counters, we inspect all edges incident to one of u2, . . . , um-1. For each such edge, we
check whether the other endpoint is on the outer cycle and, if so, increment the counter.

vn

u1
u2

C�(G)
(a)

vn

u1
u6

C�(G)

(b)

Figure 2.19: Processing a vertex when computing a canonical ordering.

During the course of the algorithm every vertex appears once as a new vertex on the
outer cycle. At this point all incident edges (in the current graph Gi) are examined.
Similarly, when a vertex vk is removed from GK, all edges incident to vk in Gk are
inspected; and each vertex is removed at most once. Therefore, every edge is inspected
at most three times: when one of its two endpoints appears first on the outer cycle, and
when the first endpoint (and therefore the edge) is removed. Altogether this takes linear
time because the number of edges in G is linear by Corollary 2.5.

Using one of the linear time planarity testing algorithms, we can obtain a combinato-
rial embedding for a given maximal planar graph G. As every maximal planar graph is
3-connected (Theorem 2.30), this embedding is unique (Theorem 2.26). Then, as every
maximal plane graph is also internally triangulated, we can use Theorem 2.45 to provide
us with a canonical ordering for (the unique embedding of) G, in overall linear time.
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Corollary 2.46. Every maximal planar graph admits a canonical ordering. Moreover,
such an ordering can be computed in linear time.

Exercise 2.47. (a) Compute a canonical ordering for the following internally trian-
gulated plane graphs:

(b) Design an infinite family of internally triangulated plane graphs on 2k vertices
with at least k! canonical orderings.

(c) Design an infinite family of internally triangulated plane graphs, along with
specific choices for v1, v2, so that each graph in the family has a unique canon-
ical ordering starting from v1, v2.

Exercise 2.48. (a) Describe a plane graph G with n vertices that can be embedded
(while preserving the outer face) in straight-line on a grid of size (2n/3- 1)⇥
(2n/3- 1), but not on a smaller grid.

(b) Can you draw G on a smaller grid if you are allowed to change the outer face?

As simple as they may appear, canonical orderings are a powerful and versatile tool
to work with plane graphs. As an example, consider the following partitioning theorem.

Theorem 2.49 (Schnyder [30]). For every maximal planar graph G on at least three
vertices and every fixed face f of G, the multigraph obtained from G by doubling
the (three) edges of f can be partitioned into three spanning trees.

Exercise 2.50. Prove Theorem 2.49. Hint: Fix a canonical ordering; for every vertex
vk take the edge to its first neighbor on C�(Gk-1); argue that the edges form a
spanning tree.

Of a similar flavor is the following question.

Problem 2.51 (In memoriam Ferran Hurtado (1951–2014)).
Can every complete geometric graph on n = 2k vertices (in general position) be parti-
tioned into k plane spanning trees?

39



Chapter 2. Plane Embeddings Geometry: C&A 2022

There are several positive results for special point sets [1, 5], and it is also known
that there are always bn/3c edge disjoint plane spanning trees [4]. The general statement
above has been refuted very recently [26]. However, it remains open if there always exists
a partition into k + 1 plane trees—or more generally, what is the minimum number of
plane trees that always suffices.

2.5.2 The Shift-Algorithm

Let (v1, . . . , vn) be a canonical ordering of maximal planar graph G. The plan is to insert
vertices in this order and extend the embedding incrementally, starting from the triangle
P(v1) = (0, 0), P(v3) = (1, 1), P(v2) = (2, 0); see Figure 2.20.

P(v3) = (1, 1)

P(v2) = (2, 0)P(v1) = (0, 0)

Figure 2.20: Initialization of the shift algorithm.

At each step, some vertices are shifted to the right, making room for the insertion of
a fresh vertex. When vertex vk is being inserted, we define a list L(vk) to memorize all
vertices that need to move rigidly with vk in the future. For the first three vertices we
define L(vi) = {vi}, 1 6 i 6 3. Once defined, a list will not change any more.

We ensure the following invariants after Step k (that is, after we have inserted vk):

(i) We obtain a straight-line embedding of Gk := G[{v1, . . . , vk}] on the integer grid,
combinatorially equivalent to the one considered in the canonical ordering. More-
over, P(v1) = (0, 0) and P(v2) = (2k- 4, 0).

(ii) Denote the outer cycle by C�(Gk) =: (w1, . . . , wt) where w1 = v1 and wt = v2.
The x-coordinates of w1, . . . , wt are strictly increasing.5

(iii) Each edge of C�(Gk) is drawn as a line segment with slope ±1. In particular, the
Manhattan distance6 between any two points on C�(Gk) is even.

(iv) The lists L(w1), . . . , L(wt) partitions {v1, . . . , vk}.

Clearly these invariants hold for G3, embedded as described above.

Idea for Step k + 1. We are about to place vertex vk+1. Its neighbors wp, . . . , wq lie
consecutively on C�(Gk) by the property of canonical ordering. Put vk+1 at position

5The notation is a bit sloppy because both t and the wi depend on k. So in principle we should write
wk

i instead of wi. But as the k would just make a constant appearance throughout, we omit it to avoid
clutter.

6The Manhattan distance of two points (x1, y1) and (x2, y2) is |x2 - x1|+ |y2 - y1|.
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µ(P(wp), P(wq)), where

µ((xp, yp), (xq, yq)) :=

✓
xp - yp + xq + yq

2
,
xp + yp + xq + yq

2

◆

is the intersection between the line y = x- xp + yp of slope 1 through (xp, yp) and the
line y = xq - x+ yq of slope -1 through (xq, yq).

Proposition 2.52. If the Manhattan distance between P(wp) and P(wq) is even, then
µ(P(wp), P(wq)) is on the integer grid.

Proof. By (ii) we know that xp < xq. Suppose without loss of generality that yp 6 yq.
The Manhattan distance of the two points is d := xq - xp +yq -yp, an even number by
assumption. Adding an even number 2xp to d yields the even number xq+xp+yq-yp,
half of which is the x-coordinate of µ((xp, yp), (xq, yq)). Adding an even number 2yp

to d yields the even number xq - xp + yq + yp, half of which is the y-coordinate of
µ((xp, yp), (xq, yq)).

However, µ(P(wp), P(wq)) may be unable to “see” all of wp, . . . , wq, in case that the
slope of wpwp+1 is 1 and/or the slope of wq-1wq is -1 (Figure 2.21).

wp

wq

vk+1

(a)

wp

wq

vk+1

(b)

Figure 2.21: (a) The new vertex vk+1 is adjacent to all of wp, . . . , wq. If we place vk+1

at µ(P(wp), P(wq)), then some edges may overlap, in case that wp+1 lies
on the line of slope 1 through wp or wq-1 lies on the line of slope -1
through wq; (b) shifting wp+1, . . . , wq-1 by one and wq, . . . , wt by two
units to the right solves the problem.

In order to resolve these problems, we shift some points to the right so that wp+1 no
longer lies on the line of slope 1 through wp, and that wq-1 no longer lies on the line of
slope -1 through wq. The actual Step k+ 1 then reads:

1. Shift
Sq-1

i=p+1 L(wi) to the right by one unit.

2. Shift
St

i=q L(wi) to the right by two units.

3. P(vk+1) := µ(P(wp), P(wq)).

4. L(vk+1) := {vk+1} [
Sq-1

i=p+1 L(wi).
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Next we argue that the invariants (i)–(iv) are maintained after Step k+ 1.
For (i), note that the shifting always starts from wp+1 onward. So w1 = v1 is never

moved and stays at P(v1) = (0, 0). On the other hand, we shift every vertex by two
starting from (and including) wq, hence v2 moves two units to P(v2) = (2(k+ 1)- 4, 0).

Also, observe that the Manhattan distance between wp and wq remains even be-
cause the shift increases their horizontal distance by two and leaves the y-coordinates
unchanged. Therefore by Proposition 2.52 the vertex vk+1 is embedded on the integer
grid indeed.

After shifting, the absolute slopes of the edges wpwp+1 and wq-1wq (possibly the
same edge) become < 1, and the absolute slopes of all other edges on C�(Gk) remain
1. In contrast, the edges vk+1wp and vk+1wq both have absolute slope 1, and all edges
from vk+1 to wp+1, . . . , wq-1 have absolute slopes > 1. Hence, for all i 2 {p, . . . , q}, the
edge vk+1wi intersects C�(Gk) in exactly one point, which is wi. In other words, these
new edges will not cross anything in Gk.

Of course, to conclude that the drawing is plane, we also need to argue that the edges
originally in Gk do not clash with each other after shifting. But as this is intuitively
clear, we postpone the formal argument for later. Now (i) is complete.

For (ii), clearly both the shifts and the insertion of vk+1 maintain the strict order
along the outer cycle. For (iii), note that the edges wpwp+1 and wq-1wq (possibly
equal) are the only edges on the outer cycle C�(Gk) whose slope is changed. But neither
edge appears on C�(Gk+1) any more, as they are shadowed by the two new edges vk+1wp

and vk+1wq; the new edges have slope 1 and -1, respectively. Regarding (iv), the list
L(vk+1) by definition includes the new vertex vk+1 and inherits the list items from all
outer cycle vertices that it shadows. So the lists on C�(Gk+1) partitions {v1, . . . , vk+1}.

So (i)–(iv) are invariants of the algorithm, indeed. Let us look at the consequences.
During the entire procedure, invariants (i)(ii) and the definition of µ ensures that each
point is placed on a (2n- 3)⇥ (n- 2) integer grid. In fact, the final vertex vn is always
placed at µ(P(v1), P(v2)) = µ((0, 0), (2n- 4, 0)) = (n- 2, n- 2) since both v1 and v2 are
its neighbors.

Finally, we return to provide a formal argument that the “interior part” of the drawing
remains plane under shifts.

Lemma 2.53. Let Gk, k > 3, be straight-line embedded on grid as described by the
algorithm. Assume C�(Gk) = (w1, . . . , wt), and let �1 6 . . . 6 �t be nonnegative
integers. If for each i we shift L(wi) by �i to the right, then the resulting straight-
line drawing is plane.

Proof. Induction on k. For the base case G3 this is obvious. Now for Gk, assume
vk = w`, where 2 < ` < t. Denote its m > 2 neighbors as u1, . . . , um where u1 = w`-1

and um = w`+1. Then we have

C�(Gk-1) = (w1, . . . , w`-1, u2, . . . , um-1| {z }
could be empty

, w`+1, . . . , wt).
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Recall that the algorithm defines L(vk) = {vk} [
Sm

i=1 L(ui). Hence, to shift each L(wi)
by �i is equivalent to applying the sequence

� := (�1, . . . , �`-1, �`, . . . , �`| {z }
m-2 times

, �`+1, . . . , �t)

to Gk-1 and then shifting vk by �`.
Clearly � is monotonically increasing, so by the inductive assumption the shifted

drawing of Gk-1 is plane. After shifting vk by �`, the drawing of Gk is plane: Vertex
vk moves rigidly (by exactly the same amount) with its neighbours u2, . . . , um-1 do,
and the two extreme neighbours u1 and um are moving relatively to the left and right,
respectively. The corresponding edges cannot cross any thing during this movement.

Linear time. The challenge in implementing the shift algorithm efficiently lies in the
eponymous shift operations, which modify the x-coordinates of potentially many ver-
tices. In fact, it is not hard to see that a naive implementation—which keeps track
of all coordinates explicitly—may use quadratic time. De Fraysseix et al. described an
implementation of the shift algorithm that uses O(n logn) time. Then Chrobak and
Payne [11] observed how to improve the runtime to linear, using the following ideas.

Recall that vk+1 is placed at the coordinates

x =
xp - yp + xq + yq

2
,

y =
(xq - xp) + yp + yq

2
, (2.54)

and thus

x- xp =
(xq - xp) + yq - yp

2
. (2.55)

In other words, to determine the y-coordinate and the x-offset relative to the leftmost
neighbour wp, we only need the y-coordinates of wp and wq together with x-offset of
wq relative to wp.

To exploit these relations, we organize the vertices in an abstract binary tree rooted
at v1, with the following structure. If we start from the root and always branch to the
right, then we traverse the current outer cycle from left to right. If we branch to the
left at some vertex v, then we leave the outer cycle and reach an inner vertex that was
“covered” by v, that is, enclosed and thus removed from the outer face by the insertion
of v. The subtree rooted at v follows the same structure recursively, so that we can
walk through the historical outer cycle by branching to the right, and tap into one layer
deeper by branching to the left.

More formally, for each vertex v in the tree, its left child is the leftmost vertex covered
by the insertion of v (in the terminology from above, the vertex wp+1). If no vertex is
covered by v, then it left child is set to nil. If v is on the current outer cycle, then its
right child is the successor of v along the current outer cycle. Otherwise, the right child
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of v is the successor of v along the outer cycle at the point when both were covered
together by the insertion of another vertex. If no such successor exists (for instance,
for v2 or if v is the rightmost vertex covered by some other vertex), then the right child
of v is set to nil. See Figure 2.22 for an example.

(a)

vk+1

(b)

Figure 2.22: Maintaining a binary tree representation when inserting a new vertex
vk+1. Red dashed arrows point to left children, blue solid arrows point
to right children.

Each tree node v also stores its x-offset dx(v) relative to its parent node. In this way,
a whole subtree (and thus a whole set L(·)) can be shifted virtually by changing a single
offset entry at its root.

Initially, dx(v1) = 0, dx(v2) = dx(v3) = 1, y(v1) = y(v2) = 0, y(v3) = 1, left(v1) =
left(v2) = left(v3) = nil, right(v1) = v3, right(v2) = nil, and right(v3) = v2.

Inserting a vertex vk+1 works as follows. As before, let w1, . . . , wt denote the vertices
on the outer cycle C�(Gk) and wp, . . . , wq be the neighbors of vk+1.

1. Increment dx(wp+1) and dx(wq) by one. (Implement the shift.)

2. Compute �pq =
Pq

i=p+1 dx(wi). (This is the total offset between wp and wq.)

3. Set dx(vk+1) 1
2
(�pq+y(wq)-y(wp)) and y(vk+1) 1

2
(�pq+y(wq)+y(wp)).

(This is exactly (2.54) and (2.55).)

4. Set right(wp) vk+1 and right(vk+1) wq. (Update the outer cycle.)

5. If p+ 1 = q, then set left(vk+1) nil;
else set left(vk+1) wp+1 and right(wq-1) nil.
(Update L(vk+1), the part that is covered by insertion of vk+1.)

6. Set dx(wq) �pq - dx(vk+1);
if p+ 1 6= q, then set dx(wp+1) dx(wp+1)- dx(vk+1).
(Update the offsets according to the changes in the previous two steps.)
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Observe that the only step that possibly takes more than constant time is Step 2. To
analyze it, note that all vertices but the last vertex wq for which we sum the offsets
are covered by the insertion of vk+1. As every vertex can be covered at most once, the
overall complexity of this step during the algorithm is linear. Therefore, this first phase
of the algorithm can be completed in linear time.

In a second phase, we recover the final x-coordinates from the offsets by a recursive
pre-order traversal of the tree. The pseudo-code given below is to be called with the root
vertex v1 and an offset of zero. Clearly this yields a linear time algorithm overall.

compute_coordinate(Vertex v, Offset d) {

if (v == nil) return;

x(v) = dx(v) + d;

compute_coordinate(left(v), x(v));

compute_coordinate(right(v), x(v));

}

2.5.3 Remarks and Open Problems

From a geometric complexity point of view, Theorem 2.42 provides very good news
for planar graphs in a similar way that the Euler Formula does from a combinatorial
complexity point of view. Euler’s Formula tells us that we can obtain a combinatorial
representation (for instance, as a DCEL) of any plane graph using O(n) space, where
n is the number of vertices. Now the shift algorithm tells us that for any planar graph
we can even find a geometric plane (straight-line) representation using O(n) space. In
addition to the combinatorial information, we only have to store 2n numbers from the
range {0, 1, . . . , 2n- 4}.

When we make such claims regarding space complexity we implicitly assume the so-
called word RAM model. In this model each memory cell stores a word of b bits, which
may represent any integer in {0, . . . , 2b-1}. One also assumes that b is sufficiently large,
in our case b > logn.

There are also different models such as the bit complexity model, where one is charged
for every bit used to store information. In our case that would already incur an additional
factor of logn for the combinatorial representation: for instance, for each halfedge we
store its endpoint, which is an index from {1, . . . , n}.

Edge lengths. Theorem 2.42 shows that planar graphs admit a plane straight-line drawing
where all vertices have integer coordinates. It is an open problem whether a similar
statement can be made for edge lengths.

Problem 2.56 (Harborth’s Conjecture [17]). Every planar graph admits a plane straight-
line drawing where all Euclidean edge lengths are integral.

Without the planarity restriction such a drawing is possible because for every n 2 N
one can find a set of n points in the plane, not all collinear, such that their distances are
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all integral. In fact, such a set of points can be constructed to lie on a circle of integral
radius [2]. When mapping the vertices of Kn onto such a point set, all edge lengths are
integral. In the same paper it is also shown that there exists no infinite set of points
in the plane so that all distances are integral, unless all of these points are collinear.
Unfortunately, collinear point sets are not very useful for drawing graphs. The existence
of a dense subset of the plane where all distances are rational would resolve Harborth’s
Conjecture. However, it is not known whether such a set exists, and in fact the suspected
answer is “no”.

Problem 2.57 (Erdős–Ulam Conjecture [12]). There is no dense set of points in the plane
whose Euclidean distances are all rational.

Generalizing the Fáry-Wagner Theorem. As discussed earlier, not every planar graph on
n vertices admits a plane straight-line embedding on every set of n points. But The-
orem 2.39 states that for every planar graph G on n vertices there exists a set P of n
points in the plane so that G admits a plane straight-line embedding on P. It is an open
problem whether this statement can be generalized to hold for several graphs, in the
following sense.

Problem 2.58. What is the largest number k 2 N for which the following statement
holds? For every collection of k planar graphs G1, . . . , Gk on n vertices each, there exists
a set P of n points so that Gi admits a plane straight-line embedding on P, for every
i 2 {1, . . . , k}.

By Theorem 2.39 we know that the statement holds for k = 1. Already for k = 2
it is not known whether the statement holds. However, it is known that k is finite [8].
Specifically, there exists a collection of 49 planar graphs on 11 vertices each so that for
every set P of 11 points in the plane at least one of these graphs does not admit a plane
straight-line embedding on P [29]. Therefore we have k 6 49.

Questions

1. What is an embedding? What is a planar/plane graph? Give the definitions
and explain the difference between planar and plane.

2. How many edges can a planar graph have? What is the average vertex degree
in a planar graph? Explain Euler’s formula and derive your answers from it.

3. How can plane graphs be represented on a computer? Explain the DCEL data
structure and how to work with it.

4. How can a given plane graph be (topologically) triangulated efficiently? Ex-
plain what it is, including the difference between topological and geometric trian-
gulation. Give a linear time algorithm, for instance, as in Theorem 2.33.
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5. What is a combinatorial embedding? When are two combinatorial embeddings
equivalent? Which graphs have a unique combinatorial plane embedding? Give
the definitions, explain and prove Whitney’s Theorem.

6. What is a canonical ordering and which graphs admit such an ordering? For
a given graph, how can one find a canonical ordering efficiently? Give the
definition. State and prove Theorem 2.45.

7. Which graphs admit a plane embedding using straight line edges? Can one
bound the size of the coordinates in such a representation? State and prove
Theorem 2.42.
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