
Chapter 5

Convexity and Convex Hulls

There is an incredible variety of point sets and polygons, but some of them are “nicer”
than others in some respect. Look at the two polygons below, for instance:

(a) A convex polygon. (b) A non-convex polygon.

Figure 5.1: Examples of polygons: Which one do you prefer?

The polygon shown on the left is visually and geometrically much simpler than the
one on the right. But let us take a more algorithmic stance, as aesthetics is hard to argue
about. When designing algorithms, the left polygon turns out to be much easier to deal
with. A particular exploitable property is that one can walk straight between any two
points in it without ever leaving it. A polygon, or more generally a point set, with this
property is called convex.

Definition 5.1. A point set P ⊆ Rd is convex if pq ⊆ P for every pair p, q ∈ P.
Equivalently, the intersection of P with any line is a connected segment.

The polygon in Figure 5.1b is not convex because the line segment between some pair
of points does not completely lie within the polygon. An immediate consequence of the
definition is the following:

Observation 5.2. For any family (Pi)i∈I of convex sets, the intersection
⋂
i∈I Pi is

convex.

74



Geometry: C&A 2023 5.1. Algebraic Characterizations

Many problems are comparatively easy to solve for convex sets but very hard in gen-
eral, and we will encounter some instances of this phenomenon in the course. However,
many polygons are not convex, and a discrete point set is never convex (unless it contains
one or no point). In such cases it is useful to approximate or encompass a given set P
by a convex set H ⊇ P. Ideally, H should differ from P as little as possible, so we want
it to be the smallest convex set encompassing P:

Definition 5.3. The convex hull conv(P) of a set P ⊆ Rd is the intersection of all convex
supersets of P.

At first glance this definition is a bit scary: There can be infinitely many convex
supersets, whose intersection might not yield something sensible to work with. But at
least, (i) the intersection is well-defined, as the whole space Rd is certainly a convex
superset which takes part in the intersection; (ii) the resulting intersection is convex due
to Observation 5.2; and so (iii) the convex hull is the inclusion-wise smallest convex set
containing P.

To see what it really looks like, we appeal to an algebraic characterization to be
introduced in the next section.

5.1 Algebraic Characterizations

In this section we develop algebraic characterizations of convexity. They are indispens-
able tools in studying convex sets in general dimension d.

Consider P ⊆ Rd. In linear algebra course you have learnt the notion of linear
hull lin(P), which is the smallest linear subspace of Rd that contains P. For instance,
the linear hull of {(1, 2)} ⊂ R2 is the line through (0, 0) and (1, 2); the linear hull of
{(1, 2), (3, 4)} is the whole space R2. One can show that lin(P) is exactly the set of all
linear combinations of P:

lin(P) =

{
n∑
i=1

λipi

∣∣∣∣∣ n ∈ N; pi ∈ P, λi ∈ R for 1 6 i 6 n

}
.

A finite set P = {p1, . . . , pN} is linearly independent if no point in P is a linear com-
bination of the others. Equivalently, the equation

∑N
i=1 λipi = 0 has only the trivial

solution λ1 = · · · = λN = 0. Indeed, if some λj 6= 0 then pj is a linear combination of the
other points with coefficients {−λi/λj}i 6=j. Vice versa, if pj is a linear combination of the
others, this gives us a non-trivial solution to the equation with λj = −1.

In analogue, the affine hull of P is the smallest affine subspace1 of Rd that contains
P. For instance, the affine hull of {(1, 2), (3, 4)} ⊂ R2 is the line through (1, 2) and (3, 4).

1An affine space is simply a linear space “shifted” by an offset. That is, adding a constant vector to all
vectors in a linear space yields an affine space; conversely, subtracting a fixed vector in the affine space
from all vectors sends us back to a linear space. In view of this correspondence, all concepts related to
linear space can be translated directly to affine space.
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One can show that aff(P) is exactly the set of all affine combinations of P.

aff(P) =

{
n∑
i=1

λipi

∣∣∣∣∣ n ∈ N; pi ∈ P, λi ∈ R for 1 6 i 6 n;
n∑
i=1

λi = 1

}
.

A finite set P = {p1, . . . , pN} is affinely independent if no point of P is an affine combi-
nation of the others. Equivalently, the equation system

∑N
i=1 λipi = 0,

∑N
i=1 λi = 0 has

only the trivial solution λ1 = · · · = λN = 0. This equivalence can be argued as we did
for linear independence. The following proposition is then immediate.

Proposition 5.4. Let P ⊆ Rd be a finite point set, and obtain a point set P ′ ⊆ Rd+1
by appending a new coordinate 1 to each point in P. For example, from P =
{(2, 3), (0, 4)} ⊆ R2 we obtain P ′ = {(2, 3, 1), (0, 4, 1)} ⊆ R3. Then P is affinely inde-
pendent if and only if P ′ is linearly independent.

Corollary 5.5. Any set of d+ 2 points in Rd is affinely dependent, as any set of d+ 2
points in Rd+1 is linearly dependent.

It turns out that convex hulls can be described algebraically in a very similar way.

Proposition 5.6. For any P ⊆ Rd we have

conv(P) =

{
n∑
i=1

λipi

∣∣∣∣∣ n ∈ N; pi ∈ P, λi > 0 for 1 6 i 6 n;
n∑
i=1

λi = 1

}
.

the set of all convex combinations of P.

To prove it, we need a powerful characterization of convexity.

Proposition 5.7. A set P ⊆ Rd is convex if and only if it is closed under convex
combination (i.e. any convex combination of P lands in P).

Proof. “⇐”: Convexity only requires closure under convex combination of n = 2 points,
a special case of n ∈ N.

“⇒”: By induction on n, the number of points taking part in the convex combination.
For n = 1 the statement is trivial. For n > 2, consider an arbitrary convex combination
p :=

∑n
i=1 λipi where pi ∈ P and λi > 0 for 1 6 i 6 n, and

∑n
i=1 λi = 1. Here we

assumed λi > 0 because otherwise we can just omit those points whose coefficients are
zero. We need to show that p ∈ P.

Let us write

p =

(
n−1∑
i=1

λipi

)
+ λnpn = λ

(
n−1∑
i=1

λi

λ
pi

)
+ (1− λ)pn

where λ :=
∑n−1
i=1 λi = 1−λn ∈ [0, 1]. Note that q :=

∑n−1
i=1

λi
λ
pi is a convex combination

of n− 1 points of P, so q ∈ P by the inductive hypothesis. Consequently p = λq+ (1−
λ)pn ∈ P by convexity of P.
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Proof of Proposition 5.6. Denote the set on the right hand side by R.

conv(P) ⊇ R: Consider an arbitrary convex superset C ⊇ P. By Proposition 5.7 (“⇒”
direction), any convex combination of C (and in particular of P) is contained in C.
Hence C ⊇ R, and it follows that conv(P) ⊇ R.

conv(P) ⊆ R: Clearly R is a superset of P. We will show that R is convex, so it
participates in the intersection that defines conv(P).

To this end, take any two points p, q ∈ R. We may express p =:
∑n
i=1 λipi

and q =:
∑n
i=1 µipi as convex combinations of a common collection of points

p1, . . . , pn ∈ P. This is always possible because we may take the union of their
individual collections and set irrelevant coefficients to zero.

Now for any λ ∈ [0, 1] we have λp + (1 − λ)q =
∑n
i=1(λλi + (1 − λ)µi)pi ∈ R, as

λλi︸︷︷︸
>0

+(1− λ)︸ ︷︷ ︸
>0

µi︸︷︷︸
>0

> 0 for all 1 6 i 6 n, and
∑n
i=1(λλi+(1−λ)µi) = λ+(1−λ) = 1.

Therefore pq ∈ R, meaning that R is convex, indeed.

In a linear space, the notion of a basis plays a fundamental role. It is a minimal
description of the linear space of interest. Similarly, we want to describe convex sets
using as few entities as possible, which leads to the notion of extreme points.

Definition 5.8. The convex hull conv(P) of a finite point set P ⊂ Rd is called a convex
polytope (or a convex polygon when d = 2). Every p ∈ P such that p /∈ conv(P \ {p}) is
called an extreme point of P.

Exercise 5.9. Show that a “convex polygon” defined above is really a “simple polygon
that is convex”.

Proposition 5.10. Any convex polytope conv(P) is the convex hull of the extreme points
of P.

Proof. Let P = {p1, . . . , pn}. Assume without loss of generality that its extreme points
are p1, . . . , pk. We will prove by induction on i = n, . . . , k that conv(P) = conv{p1, . . . , pi}.

For i = n the statement is trivial. For k 6 i < n, we have conv(P) = conv{p1, . . . , pi+1}
by induction hypothesis. Since the point pi+1 is not extreme, it can be expressed as a
convex combination pi+1 =

∑i
j=1 λjpj. Thus any x ∈ conv(P) can be expressed as

x =

i+1∑
j=1

µjpj =

i∑
j=1

µjpj + µi+1pi+1 =

i∑
j=1

(µj + µi+1λj)pj.

Note that the coefficients are non-negative and sum up to 1, thus x ∈ conv{p1, . . . , pi}.
So we conclude conv(P) ⊆ conv{p1, . . . , pi}; the reverse inclusion is trivial.
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5.2 Classic Theorems for Convex Sets

Next we will discuss a few fundamental theorems about convex sets in Rd. The proofs
typically employ the algebraic characterization of convexity and some techniques from
linear algebra.

Theorem 5.11 (Radon [8]). Any set P ⊂ Rd of d+ 2 points can be partitioned into two
disjoint subsets P+ and P− such that conv(P+) ∩ conv(P−) 6= ∅.

Proof. Let P = {p1, . . . , pd+2}, which by Corollary 5.5 is affinely dependent. Hence∑d+2
i=1 λipi = 0 and

∑d+2
i=1 λi = 0 for some λ1, . . . , λd+2 ∈ R that are not all zero. In

particular, there exist strictly positive and strictly negative coefficients.
Let P+ be the set of all points pi for which λi > 0, and denote P− := P \ P+.

Then P+, P− 6= ∅ and
∑
pi∈P+ λipi =

∑
pi∈P−(−λi)pi. Observe that

∑
pi∈P+ λi =∑

pi∈P− −λi =: s > 0. So with renormalized coefficients

µi :=

{
λi/s pi ∈ P+

−λi/s pi ∈ P−
> 0

we have
∑
pi∈P+ µipi =

∑
pi∈P− µipi, which describes a common point of conv(P+) and

conv(P−).

Theorem 5.12 (Carathéodory [3]). For any P ⊂ Rd and q ∈ conv(P) there exist k 6 d+1
points p1, . . . , pk ∈ P such that q ∈ conv(p1, . . . , pk).

Exercise 5.13. Prove Theorem 5.12.

Theorem 5.14 (Helly). Consider a collection C = {C1, . . . , Cn} of n > d + 1 convex
subsets of Rd, such that any d+ 1 sets from C have non-empty intersection. Then⋂n
i=1Ci 6= ∅, i.e. all sets from C have non-empty intersection.

Proof. Induction on n. The base case n = d + 1 holds by assumption. Hence suppose
that n > d + 2. Define sets Di =

⋂
j6=iCj, for i ∈ {1, . . . , n}. As Di is an intersection of

n−1 sets from C, by the inductive hypothesis we know that Di 6= ∅. Hence we may take
an arbitrary point pi ∈ Di, for each i ∈ {1, . . . , n}. By Theorem 5.11 the set {p1, . . . , pn}
can be partitioned into two disjoint subsets P+ and P− such that there exists a point
p ∈ conv(P+) ∩ conv(P−). We claim that p ∈

⋂n
i=1Ci, which completes the proof.

Fix any i ∈ {1, . . . , n} and consider Ci. By construction pi ′ ∈ Di ′ ⊆ Ci for all
i ′ 6= i. Suppose, say, pi ∈ P−, then P+ ⊆ {pi ′}i ′ 6=i ⊆ Ci. By convexity of Ci we see
conv(P+) ⊆ Ci and thus p ∈ Ci. The other case that pi ∈ P+ is symmetric.

There is a nice application of Helly’s theorem showing the existence of so-called
centerpoints of finite point sets. Basically, a centerpoint is one way to generalize the
notion of a median to higher dimensions.
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Geometry: C&A 2023 5.2. Classic Theorems for Convex Sets

Definition 5.15. Let P ⊂ Rd be a set of n points. A point p ∈ Rd, not necessarily in
P, is a centerpoint of P if every open halfspace containing more than dn

d+1
points of P

also contains p.

Stated differently, every closed halfspace containing a centerpoint also contains at
least n

d+1
points of P (which is equivalent to containing at least

⌈
n
d+1

⌉
points). We have

the following result.

Theorem 5.16. Every set P ⊂ Rd of n points has a centerpoint.

Proof. We may assume that P contains at least d+ 1 points; otherwise, we may embed
P in a lower-than-d-dimensional affine subspace and reduce d.

Define a family of subsets of P by

A :=

{
P ∩H

∣∣∣ H an open halfspace, |P ∩H| > dn

d+ 1

}
.

Since |P| = n, the number of subsets in A =: {A1, . . . , Am} is also finite. For each
1 6 i 6 m, we denote Ci := conv(Ai) which, due to convexity, is contained in the open
halfspaces that define Ai.

Suppose there is a point c ∈
⋂m
i=1Ci, then c is also contained in every open halfspace

H : |P ∩H| > dn
d+1

and thus is a centerpoint. So it suffices to show the existence of c. To
this end, we will prove that any d + 1 sets in A have a common point; so do any d + 1
sets among C1, . . . , Cm. The claim then follows via Theorem 5.14.

For any d + 1 sets in A, each set by definition contains more than dn
d+1

points of P,
so the total number of point occurrences is more than (d + 1) dn

d+1
= dn. Therefore,

there exists a point p ∈ P that occurs more than d times, that is, in all d+ 1 sets. This
completes the proof.

Exercise 5.17. Show that the number of points in Definition 5.15 is best possible, that
is, for every n there is a set of n points in Rd such that for any p ∈ Rd there is an
open halfspace containing

⌊
dn
d+1

⌋
points but not p.

Theorem 5.18 (Separation Theorem). Any two compact convex sets C,D ⊂ Rd with
C ∩D = ∅ can be separated strictly by a hyperplane, that is, there exists a hyperplane
h such that C and D lie in the opposite open halfspaces bounded by h.

Proof. Consider the distance function δ : C × D → R with (c, d) 7→ ||c − d||. Since
C×D is compact and δ is continuous, the function δ attains its minimum at some point
(c0, d0) ∈ C ×D. Note that δ(c0, d0) > 0 because C ∩D = ∅. Let h be the hyperplane
perpendicular to the line segment c0d0 and passing through its midpoint; see Figure 5.2.
We claim that h strictly separates C and D.

To see this, suppose first that that there was a point c ′ ∈ C ∩ h, say. Then by
convexity of C we have c0c ′ ⊆ C. But some point along this segment is closer to d0 than
is c0, in contradiction to the choice of c0. Suppose, then, that C has points on both
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c0
d0

C
Dh

c ′

Figure 5.2: The hyperplane h strictly separates the compact convex sets C and D.

sides of h. Then by convexity of C it has also a point on h, but we just saw that it is
impossible. The argument for D is symmetric. Therefore, C and D must lie in opposite
open halfspaces bounded by h.

The statement above is wrong for arbitrary (not necessarily compact) convex sets.
Only if we allow non-strict separation (i.e. the hyperplane may intersect both sets), can
we guarantee such a separation. However, the proof is a bit more involved (cf. Matoušek’s
book [7], but also check the errata on his webpage).

Exercise 5.19. Show that the Separation Theorem does not hold in general if not both
of the sets are convex.

Exercise 5.20. Prove or disprove:

a) The convex hull of a compact subset of Rd is compact.

b) The convex hull of a closed subset of Rd is closed.

Altogether we obtain various equivalent definitions for the convex hull, summarized
in the following theorem.

Theorem 5.21. For a compact set P ⊂ Rd we can characterize conv(P) equivalently as
one of

1. the smallest (w. r. t. set inclusion) convex subset of Rd that contains P;

2. the set of all convex combinations of points from P;

3. the set of all convex combinations formed by d+ 1 or fewer points from P;

4. the intersection of all convex supersets of P;

5. the intersection of all closed halfspaces containing P.

Exercise 5.22. Prove Theorem 5.21.
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Geometry: C&A 2023 5.3. Planar Convex Hull

5.3 Planar Convex Hull

Although we know by now what is the convex hull of a point set, it is not yet clear how
to construct it algorithmically. As a first step, we have to find a suitable representation
for convex hulls. In this section we focus on the problem in R2, where the convex hull
of a finite point set forms a convex polygon. A convex polygon is easy to represent,
for instance, as a sequence of its vertices in counterclockwise orientation. In higher
dimensions finding a suitable representation for convex polytopes is a much more delicate
task.

Problem 5.23 (Convex hull).

Input: P = {p0, . . . , pn−1} ⊂ R2, for some n ∈ N.
Output: A sequence (q0, . . . , qh−1) of the vertices of conv(P), ordered counterclockwise.

q1

q2

q3

q4

q5

q6

q7

(a) Input.

q1

q2

q3

q4

q5

q6

q7

(b) Output.

Figure 5.3: Convex Hull of a set of points in R2.

Another possible algorithmic formulation of the problem is to ignore the structure of
the convex hull and just consider it as a point set.

Problem 5.24 (Extreme points).

Input: P = {p0, . . . , pn−1} ⊂ R2, for some n ∈ N.
Output: The set of vertices of conv(P).

Degeneracies. A couple of further clarifications regarding the above problem definitions
are in order.

First of all, for efficiency reasons an input is usually specified as a sequence of points.
Do we insist that this sequence forms a set or are duplications of points allowed?

What if three points are collinear? Are all of them considered extreme? They are
not, according to our definition from above; and that is what we will stick to. But there
may be situations where one wants to include these points nevertheless.
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By the Separation Theorem, every extreme point p can be separated from the convex
hull of the remaining points by a line. If we translate the line so that it passes through
p, then every point in P other than p shall strictly lie in one side of it. In R2 it turns
out convenient to work with the following “directed” reformulation.

Proposition 5.25. Let P ⊂ R2 be a finite point set. A point p ∈ P is extreme for P
⇐⇒ there is a directed line ` through p such that P \ {p} is (strictly) to the left of `.

c
r

The interior angle at a vertex v of a polygon P is the angle
between the two edges of P incident to v whose corresponding
angular domain lies in P◦. If this angle is smaller than π, the
vertex is called convex ; if the angle is larger than π, the vertex
is called reflex. In the polygon depicted on the right, the vertex
c is convex whereas the vertex r is reflex.

Exercise 5.26.
A set S ⊂ R2 is star-shaped if there exists a point c ∈ S,
such that for every point p ∈ S the line segment cp is
contained in S. A simple polygon with exactly three convex
vertices is called a pseudotriangle (see the example shown
on the right).
In the following we consider subsets of R2. Prove or disprove:

a) Every convex vertex of a simple polygon lies on its convex hull.

b) Every star-shaped set is convex.

c) Every convex set is star-shaped.

d) The intersection of two convex sets is convex.

e) The union of two convex sets is convex.

f) The intersection of two star-shaped sets is star-shaped.

g) The intersection of a convex set with a star-shaped set is star-shaped.

h) Every triangle is a pseudotriangle.

i) Every pseudotriangle is star-shaped.

5.4 Trivial algorithms

One can compute the extreme points using Carathéodory’s Theorem as follows: Test for
every point p ∈ P whether there are q, r, s ∈ P \ {p} such that p is inside the triangle
qrs. Runtime O(n4).

Another option, inspired by the Separation Theorem: Test for every pair (p, q) ∈ P2
whether all points from P \ {p, q} are to the left of the directed line −→pq (or on the line
segment pq). Runtime O(n3).
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Exercise 5.27. Let P = (p0, . . . , pn−1) be a sequence of n points in R2. Someone claims
that you can check by means of the following algorithm whether or not P describes
the boundary of a convex polygon in counterclockwise order:

bool IsConvex(p0, . . . , pn−1) {
for i = 0, . . . , n− 1:

if (pi, p(i+1)modn, p(i+2)modn) form a rightturn:
return false;

return true;
}

Disprove the claim and describe a correct algorithm to solve the problem.

Exercise 5.28. Let P ⊂ R2 be a convex polygon, given as an array p[0 . . . n − 1] of its
n vertices in counterclockwise order.

a) Describe an O(logn) time algorithm to determine whether a point q lies inside,
outside or on the boundary of P.

b) Describe an O(logn) time algorithm to find a (right) tangent to P from a query
point q located outside P. That is, find a vertex p[i], such that P is contained
in the closed halfplane to the left of the oriented line qp[i].

5.5 Jarvis’ Wrap

We are now ready to describe a first simple algorithm to construct the convex hull. It is
inspired by Proposition 5.25 and works as follows:

Find a vertex q0 of conv(P) (e.g., the point in P with smallest x-coordinate).
“Wrap” P starting from q0, i.e., always find the next vertex qi of conv(P)
as the rightmost point with respect to the directed line −−−−−−→qi−2qi−1.

Besides comparing x-coordinates, the only geometric primitive needed is an orienta-
tion test: For three points p, q, r ∈ R2, the predicate rightturn(p, q, r) is true if and
only if r is (strictly) to the right of the directed line pq.

q[0]=p start

q next

q[1]

q[2]
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Code for Jarvis’ Wrap.

p[0..n-1] contains a sequence of n points.
p_start is the point with smallest x-coordinate.
q_next is some other point in p[0..n-1].

int h = 0;
Point q_now = p_start;
do {

q[h] = q_now;
h = h + 1;

for (int i = 0; i < n; i = i + 1)
if (rightturn(q_now, q_next, p[i]))

q_next = p[i];

q_now = q_next;
q_next = p_start;

} while (q_now != p_start);

q[0..h-1] describes a convex polygon bounding the convex hull of p[0..n-1].

Analysis. For every output point the above algorithm spends n rightturn tests, which is
O(nh) in total.

Theorem 5.29. [6] Jarvis’ Wrap computes the convex hull of n points in R2 using
O(nh) rightturn tests, where h is the number of hull vertices.

In the worst case we have h = n, that is, O(n2) rightturn tests. Jarvis’ Wrap has a
remarkable property called output sensitivity : the runtime depends not only on the size
of the input but also on the size of the output. For a huge point set whose convex hull
consists of a constant number of vertices only, the algorithm constructs the convex hull
in optimal linear time. But the worst case performance of Jarvis’ Wrap is suboptimal,
as we will see soon.

Degeneracies. The algorithm may have to cope with some degeneracies.

� Several points have smallest x-coordinate ⇒ sort by lexicographical order:

(xp, yp) < (xq, yq) ⇐⇒ (xp < xq)∨ (xp = xq ∧ yp < yq) .

� Three or more points collinear, so potentially multiple points are rightmost ⇒
choose the farthest one.
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Predicates. As mentioned above, the Jarvis’ Wrap (and most other 2D convex hull
algorithms) need the rightturn predicate, or more generally, orientation tests. The
rightturn computation amounts to evaluating a polynomial of degree two, see the ex-
ercise below. We therefore say that it has algebraic degree two. In contrast, the lexico-
graphic comparison has degree one only. Higher algebraic degree not only means more
time-consuming multiplications, but also creates large intermediate results which may
lead to overflows as well as challenges for storage and exact computation.

Exercise 5.30. Prove that for three points (xp, yp), (xq, yq), (xr, yr) ∈ R2, the sign of
the determinant∣∣∣∣∣∣

1 xp yp
1 xq yq
1 xr yr

∣∣∣∣∣∣
determines if r lies to the right, to the left or on the directed line −→pq.

Exercise 5.31. The InCircle predicate: Given four points p, q, r, s ∈ R2, is s located
inside the circle defined by p, q, r? The goal of this exercise is to derive an algebraic
formulation of this predicate as a determinant, similar to the rightturn predicate
in Exercise 5.30. To this end we employ the so-called parabolic lifting map, which
will also play a prominent role in later chapters.

The parabolic lifting map ` : R2 → R3 lifts a point p = (x, y) ∈ R2 to `(p) =
(x, y, x2 + y2) ∈ R3. For a circle C ⊆ R2 of positive radius, show that the “lifted
circle” `(C) := {`(p) | p ∈ C} is contained in a unique plane hC ⊆ R3. Moreover,
show that a point p ∈ R2 is strictly inside (outside, respectively) of C if and only if
the lifted point `(p) is strictly below (above, respectively) hC.

Use these insights to formulate the InCircle predicate for given points (xp, yp),
(xq, yq), (xr, yr), (xs, ys) ∈ R2 as a determinant.

5.6 Graham Scan (Successive Local Repair)

There exist many algorithms that exhibit a better worst-case runtime than Jarvis’ Wrap.
Here we discuss only one of them: a particularly elegant and easy-to-implement variant of
the so-called Graham Scan [5]. This algorithm is referred to as Successive Local Repair
because it starts with some (possibly non-convex) polygon enclosing all the points and
then step-by-step repairs the deficiencies by removing reflex vertices. It goes as follows:

Sort the points lexicographically to obtain a sequence p0, . . . , pn−1 and build
a corresponding circular sequence p0, . . . , pn−1, . . . , p0 that walks around
the point set in counterclockwise direction.
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p0

p1

p2

p3

p4

p5

p6

p7

p8

p0, p1, . . . , p7, p8, p7, . . . , p1, p0

As long as there is a consecutive triple (p, q, r) such that r is to the right
of or on the directed line −→pq, remove q from the sequence.

Code for Graham Scan.

p[0..n-1] is a lexicographically sorted sequence of n > 2 distinct points.

q[0] = p[0];
int h = 0;
// Lower convex hull (left to right):
for (int i = 1; i < n; i = i + 1) {

while (h>0 && !leftturn(q[h-1], q[h], p[i]))
h = h - 1;

h = h + 1;
q[h] = p[i];

}

// Upper convex hull (right to left):
for (int i = n-2; i >= 0; i = i - 1) {

while (!leftturn(q[h-1], q[h], p[i]))
h = h - 1;

h = h + 1;
q[h] = p[i];

}

q[0..h-1] describes a convex polygon bounding the convex hull of p[0..n-1].

Correctness. We argue for the lower convex hull only. The argument for the upper hull is
symmetric. A point p is on the lower convex hull of P if there is a rightward directed line
g through p such that P \ {p} is strictly to the left of g. A directed line is rightward if it
forms an absolute angle of at most π with the positive x-axis. (Compare this statement
with the one in Proposition 5.25.)

First, we claim that every point that the algorithm discards does not appear on the
lower convex hull. A point qh is discarded only if there exist points qh−1 and pi with
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qh−1 < qh < pi (lexicographically) so that qh−1qhpi does not form a leftturn. Thus,
for every rightward directed line g through qh at least one of qh−1 or pi lies on or to
the right of g. It follows that qh is not on the lower convex hull, as claimed.

Upon finishing the construction of lower hull, in the sequence q0, . . . , qh−1 every
consecutive triple qiqi+1qi+2, for 0 6 i 6 h− 3, forms a leftturn with qi < qi+1 < qi+2.
Thus, for every such triple there exists a rightward directed line g through qi+1 such that
P\{p} is (strictly) to the left of g (for instance, take g to be perpendicular to the angular
bisector of \qi+2qi+1qi). It follows that every inner point of the sequence q0, . . . , qh−1
is on the lower convex hull. The extreme points q0 and qh−1 are the lexicographically
smallest and largest point of P, respectively, both of which are easily seen to be on the
lower convex hull as well. Therefore, q0, . . . , qh−1 form the lower convex hull of P, which
proves the correctness of the algorithm.

Analysis.

Theorem 5.32. The convex hull of a set P ⊂ R2 of n points can be computed using
O(n logn) geometric operations.

Proof. 1. Sorting and removal of duplicate points: O(n logn).

2. At the beginning we have a sequence of 2n − 1 points; at the end the sequence
consists of h points. Observe that for every “false” leftturn, one point is discarded
from the sequence for ever. Therefore, we have exactly 2n − h − 1 such tests. In
addition there are at most 2n − 2 “true” leftturn, as bounded by the number of
iterations of the outer for loop. Altogether we have at most 4n− h− 3 tests.

In total the algorithm uses O(n logn) geometric operations. Note that the number
of leftturn tests is linear only, whereas we need worst-case Θ(n logn) lexicographic
comparisons which dominates the runtime.

5.7 Lower Bound

It is not hard to see that the runtime of Graham Scan is asymptotically optimal in the
worst-case.

Theorem 5.33. Ω(n logn) geometric operations are needed to construct the convex
hull of n points in R2 (in the algebraic computation tree model).

Proof. Reduction from the sorting problem, for whichΩ(n logn) comparisons are needed
in the algebraic computation tree model. Given n real numbers x1, . . . , xn, we construct
a point set P = {(xi, x

2
i ) | 1 6 i 6 n} ⊆ R2. This construction can be regarded as

embedding the numbers into R2 along the x-axis and then lifting them vertically onto
the unit parabola. The counterclockwise order in which the points appear along the
lower convex hull of P corresponds to the sorted order of the xi’s. Therefore, if we could
construct the convex hull in o(n logn) time, then we could also sort in o(n logn) time,
a contradiction.
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Clearly this reduction does not work for the Extreme Points problem. But using a re-
duction from Element Uniqueness (see Section 1.1) instead, one can show thatΩ(n logn)
operations is also needed for computing merely the set of extreme points. This was first
shown by Avis [1] for linear computation trees, then by Yao [9] for quadratic computation
trees, and finally by Ben-Or [2] for general algebraic computation trees.

5.8 Chan’s Algorithm

Given matching upper and lower bounds we may be tempted to consider the algorithmic
complexity of the planar convex hull problem settled. However, there are fine-grained
structures to be discovered: Recall that the lower bound is a worst case bound. For
instance, the Jarvis’ Wrap runs in O(nh) time and thus beats the Ω(n logn) bound
whenever h = o(logn). The question remains whether one can achieve both output
sensitivity and optimal worst case performance at the same time. Indeed, Chan [4]
presented an algorithm to achieve this by cleverly combining the best of Jarvis’ Wrap
and Graham Scan. Let us look at this algorithm in detail. It first guesses an upper
bound H for the number of vertices h. Then it proceeds in two phases that are executed
one after another.

Divide. Input: a set P ⊂ R2 of n points and a number H ∈ {1, . . . , n}.

1. Divide P into k = dn/He sets P1, . . . , Pk with |Pi| 6 H.

2. Construct conv(Pi) using Graham Scan for i ∈ {1, . . . , k}.

Analysis. Step 1 takes O(n) time. Step 2 can be handled in O(H logH) time for each
Pi, hence O(kH logH) = O(n logH) time in total.

Conquer. Output: the first H vertices of conv(P) in counterclockwise order.

1. Find the lexicographically smallest point p< in P.

2. Starting from p<, find the first H vertices of conv(P) in counterclockwise order by
Jarvis’ Wrap on the convex polygons conv(P1), . . . , conv(Pk). Specifically, in each
wrap step, determine for every i the right tangent ti to conv(Pi) from the current
vertex (see Exercise 5.28 for definition, and the figure below for illustration). Select
our next vertex among the k candidates t1, . . . , tk such that it is rightmost with
respect to the direction of the last two vertices.

88



Geometry: C&A 2023 5.8. Chan’s Algorithm

Analysis. Step 1 takesO(n) time. Step 2 consists of at mostH wrap steps. Each wrap
step needs O(k logH) time for finding the right tangents (see Exercise 5.28) and O(k)
time for selecting the rightmost candidate. That amounts to O(Hk logH) = O(n logH)
time in total.

Remark. Using a more clever strategy instead of many tangency searches one can
handle the conquer phase in O(n) time, see Exercise 5.34 below. However, this is irrele-
vant as far as the asymptotic runtime is concerned, since already the divide phase takes
O(n logH) time.

Exercise 5.34. Consider k convex polygons P1, . . . Pk, for some constant k ∈ N, where
each polygon is given as a list of its vertices in counterclockwise order. Show how
to construct the convex hull of P1 ∪ . . . ∪ Pk in O(n) time, where n =

∑k
i=1 ni and

ni is the number of vertices of Pi, for 1 6 i 6 k.

Searching for h. While the runtime bound for H ≈ h is exactly what we were heading
for, we still need a means to estimate h closely, whose exact value is unknown in general.
Fortunately we can address this problem rather easily, by applying what is called a
doubly exponential search. It works as follows.

Try the algorithm from above iteratively with parameter H = min{22t , n}, for
t = 0, 1 . . . until the conquer phase finds all vertices of conv(P) (i.e., the
wrap returns to its starting point).

Analysis: Let 22s be the last parameter for which the algorithm is called. Since the
previous trial with H = 22

s−1 did not find all vertices, we know that 22s−1 < h, namely
2s−1 < logh, where h is the actual number of vertices of conv(P). The total runtime is
therefore at most

s∑
t=0

cn log 22
t

= cn

s∑
t=0

2t = cn(2s+1 − 1) < 4cn logh = O(n logh),

for some constant c ∈ R. In summary, we obtain the following theorem.

Theorem 5.35. The convex hull of a set P ⊂ R2 of n points can be computed using
O(n logh) geometric operations, where h is the number of convex hull vertices.
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Questions

17. How is convexity defined? What is the convex hull of a set in Rd? Give at
least three possible definitions and show that they are equivalent.

18. What is a centerpoint of a finite point set in Rd? State and prove the cen-
terpoint theorem (Theorem 5.16) and the two classic theorems used in its proof
(Theorems 5.11 and 5.14).

19. What does it mean to compute the convex hull of a set of points in R2? Discuss
input and expected output and possible degeneracies.

20. How can the convex hull of a set of n points in R2 be computed efficiently?
Describe and analyze (including proofs) Jarvis’ Wrap, Graham Scan, and Chan’s
Algorithm.

21. Is there a linear time algorithm to compute the convex hull of n points in R2?
Prove the lower bound and define/explain the model in which it holds.

22. Which geometric predicates are used to compute the convex hull of n points
in R2? Explain the two predicates and how to compute them.
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