
Chapter 2

Plane Embeddings

Graphs can be represented in various ways, for instance, as an adjacency matrix or using
adjacency lists. In this chapter we explore another class of representations that are quite
different in nature, namely geometric representations. In a geometric representation,
vertices and edges are represented by geometric objects, for example points and curves.
This approach is appealing because it succinctly visualizes a graph along with its many
properties. We have many degrees of freedom in selecting the geometric objects and the
details of their geometry. This freedom allows us to tailor the representation to meet
specific goals, such as emphasizing certain structural aspects of the graph at hand or
reducing the complexity of the obtained representation.

The most common geometric graph representation is a drawing, where vertices are
mapped to points and edges to curves in R2. It is desirable to make such a map injective
by avoiding edge crossings, both from a mathematically aesthetic viewpoint and for the
sake of the practical readability. Those graphs that allow such an embedding into the
Euclidean plane are known as planar. Our goal is to study the interplay between abstract
planar graphs and their plane embeddings. Specifically, we want to answer the following
questions:

• What is the combinatorial complexity (that is, the number of edges and faces) of
planar graphs?

• Under which conditions are plane embeddings unique (up to a certain sense of
equivalence)?

• How can we represent plane embeddings in a data structure?

• What is the geometric complexity (that is, the encoding size of the geometric
objects used to represent vertices and edges) of plane embeddings?

Most definitions we use directly extend to multigraphs. But for simplicity, we use the
term “graph” throughout.

17

Chapter 2. Plane Embeddings Geometry: C&A 2024

2.1 Drawings, Embeddings and Planarity

A curve is a set C ⊂ R2 of the form {γ(t) : 0 ⩽ t ⩽ 1}, where γ : [0, 1]→ R2 is a continuous
function. The function γ is called a parameterization of C. The points γ(0) and γ(1)
are the endpoints of the curve. A curve is closed if γ(0) = γ(1). A curve is simple if it
admits a parameterization γ that is injective on [0, 1]; for a closed simple curve we allow
as an exception that γ(0) = γ(1). The following famous theorem describes an important
property of the plane. A proof can, for instance, be found in the book of Mohar and
Thomassen [24].

Theorem 2.1 (Jordan). Any simple closed curve C partitions the plane into exactly
two regions (connected open sets), each bounded by C.

Figure 2.1: Left: a simple closed curve in the plane and two points in one of its faces.
Right: a simple closed curve that does not disconnect the torus.

Observe that, for instance, on the torus there are simple closed curves that do not
disconnect the surface, and thus the theorem does not hold there.

Drawings. As a first criterion for a reasonable geometric representation of a graph, we
would like to have a clear separation between different vertices and also between a vertex
and nonincident edges. Formally, a drawing of a graph G = (V, E) in the plane is a
function f that assigns

• a point f(v) ∈ R2 to every vertex v ∈ V and

• a simple curve f(uv) with endpoints f(u) and f(v) to every edge uv ∈ E,

such that

(1) f is injective on V and

(2) f(uv) ∩ f(V) = {f(u), f(v)}, for every edge uv ∈ E.

A common point f(e) ∩ f(e ′) between two curves that represent distinct edges e, e ′ ∈ E

is called a crossing if it is not a common endpoint of e and e ′.
Commonly, when discussing a drawing of a graph G = (V, E), we do not differentiate

a vertex/an edge from its geometric realization. That is, a vertex v ∈ V is identified with
the point f(v), and an edge e ∈ E is identified with the curve f(e). For instance, the last

18

Geometry: C&A 2024 2.1. Drawings, Embeddings and Planarity

sentence in the previous paragraph may be phrased as “A common point of two edges is
called a crossing if it is not their common endpoint.”

Often it is convenient to make additional assumptions about edge intersections in a
drawing. For example, we may demand nondegeneracy in the sense that no three edges
can meet at a single crossing, or that any two edges can intersect at only finitely many
points.

Planar vs. plane. A graph is planar if it admits a drawing in the plane without crossings.
Such a drawing is also called a crossing-free drawing or a (plane) embedding of the
graph. A planar graph together with a particular plane embedding is called a plane
graph. Note the distinction between “planar” and “plane”: the former refers to an ab-
stract graph and indicates the possibility of an embedding, whereas the latter refers to
a concrete embedding (Figure 2.2).

Figure 2.2: A planar graph (left) and a plane embedding of it (right).

A geometric graph is a graph together with a drawing in which all edges are straight-
line segments. Note that such a drawing is fully determined by the vertex positions. A
plane graph which is also geometric is called a plane straight-line graph (PSLG). On
the other hand, a plane graph whose edges are arbitrary simple curves is emphasized as
topological plane graph.

The faces of a plane graph G are the maximally connected regions of R2 \ G, that
is, the plane without the points occupied by the embedding (as the image of a vertex or
an edge). Each embedding of a finite graph has exactly one unbounded face, also called
outer or infinite face. Using stereographic projection, we could show that any face can
be swapped out to serve as the unbounded face:

Theorem 2.2. If a graph G has a plane embedding in which some face is bounded by a
cycle (v1, . . . , vk), then G also has a plane embedding in which the unbounded face
is bounded by the cycle (v1, . . . , vk).

Proof Sketch. Take a plane embedding Γ of G and map it to the sphere using stereo-
graphic projection : Imagine R2 being the x/y-plane in R3 and place a unit sphere S

whose south pole touches the origin. We establish a bijection between R2 and S \ {n},
where n := (0, 0, 2) is the north pole position: A point p ∈ R2 is mapped to the intersec-
tion p ′ of the segment pn and S, see Figure 2.3. The map is continuous, so it preserves
incidence between vertices, edges and faces.

19

Chapter 2. Plane Embeddings Geometry: C&A 2024

n

p

p ′

(a) Three-dimensional view.

n

p

p ′

q

q ′

0
(b) Cross-section view.

Figure 2.3: Stereographic projection.

Consider the resulting embedding Γ ′ of G on S: The infinite face of Γ corresponds to
the face of Γ ′ that contains the north pole n of S. Now rotate the embedding Γ ′ on S

such that the desired face contains n. Mapping back to the plane using stereographic
projection results in an embedding in which the desired face is the outer face.

Exercise 2.3. Consider the plane graphs depicted in Figure 2.4. For both graphs give
a plane embedding in which the cycle (1, 2, 3) bounds the outer face.

2

3

5
4

1

(a)

2
3

5

4

1

6 7

8

(b)

Figure 2.4: Make (1, 2, 3) bound the outer face.

Duality. Every plane graph G has a dual G∗ whose vertices are the faces of G. For every
edge in G, we connect its two incident faces by an edge in the dual G∗. Note that in
general, G∗ is a multigraph (with loops and multiple edges) and may depend on the
embedding. So an abstract planar graph G may have several nonisomorphic duals; see
Figure 2.5 for an example. If G is a connected plane graph, then (G∗)∗ = G. We will
see later in Section 2.3 that the dual of a 3-connected planar graph is unique (up to
isomorphism).

The Euler Formula and its ramifications. One of the most important tools for planar graphs
(and more generally, graphs embedded on a surface) is the Euler–Poincaré Formula.

20

Geometry: C&A 2024 2.1. Drawings, Embeddings and Planarity

G1

G1
∗

G2

G2
∗

Figure 2.5: Two plane drawings G1 and G2 of the same abstract planar graph and
their duals G1

∗ and G2
∗ with G1

∗ ̸≃ G2
∗. (To see this, for instance, count

the number of vertices of degree greater than three.)

Theorem 2.4 (Euler’s Formula). For every connected plane graph with n vertices, e

edges, and f faces, we have n− e+ f = 2.

Proof. Let G be a connected plane graph with n vertices, e edges, and f faces. Note
that e ⩾ n− 1 as G is connected.

We prove the statement by induction on e−n. In the base case e−n = −1, the graph
G is a (plane) tree and contains exactly one (unbounded) face, and so n−e+f = 1+1 = 2

as claimed.
In the general case, fix a spanning tree T of G, pick an arbitrary edge e of G \ T , and

consider the graph G− = G \ e. By construction it has n vertices and e − 1 edges. We
claim that it has f−1 faces. To see this observe that G− ⊃ T is connected. In particular,
the endpoints of e are connected by a path in G−, which together with e forms a cycle
in G. So in G, any two points sufficiently close to but on opposite sides of e are in
different faces, whereas they are in the same face of G−. In other words, the two incident
faces of e are distinct in G but merged into one in G−. All other faces remain untouched.
It follows that G− has f− 1 faces, as claimed. Then by the inductive assumption on G−,
we have n− e+ f = n− (e− 1) + (f− 1) = 2, which concludes the induction.

In particular, this shows that every plane embedding of a planar graph has the same
number of faces. In other words, the number of faces is an invariant of an abstract planar
graph. It also follows (as the corollary below) that planar graphs are sparse, that is,
they have a linear number of edges and faces only. So the asymptotic complexity of a
planar graph is already determined by its number of vertices.

Corollary 2.5. A simple planar graph on n ⩾ 3 vertices has at most 3n− 6 edges and
at most 2n− 4 faces.

Proof. Without loss of generality we may assume that G is connected. (If not, add edges
between components of G until the graph is connected. The number of edges increases
and the number of faces remains unchanged.) The statement is easily checked for n = 3,
where G is either a triangle or a path and therefore has no more than 3 ⩽ 3 · 3− 6 edges
and no more than 2 ⩽ 2 · 3− 4 faces. Next consider a simple connected planar graph G

21

Chapter 2. Plane Embeddings Geometry: C&A 2024

on n ⩾ 4 vertices, and fix any plane embedding of it. Denote by E its set of edges and
by F its set of faces. Let

X = {(e, f) ∈ E× F : e bounds f}

denote the set of incident edge-face pairs. We count X in two different ways.
First note that each edge bounds at most two faces and so |X| ⩽ 2 · |E|.
Second note that every face is bounded by at least three edges: If G contains a cycle,

then the boundary of every face shall contain a cycle and hence at least three edges. If
G is acyclic, then it must be a tree since we assumed it to be connected. Its only face
(the outer face) is bounded by all edges; and there are at least three since G contains at
least four vertices. In both cases we have |X| ⩾ 3 · |F|.

Therefore 3|F| ⩽ 2|E|. Using Euler’s Formula we conclude that

4 = 2(n− |E|+ |F|) ⩽ 2n− 3|F|+ 2|F| = 2n− |F| and
6 = 3(n− |E|+ |F|) ⩽ 3n− 3|E|+ 2|E| = 3n− |E| ,

which yield the claimed bounds.

Corollary 2.5 implies that the degree of a “typical” vertex in a planar graph is a small
constant.

Corollary 2.6. The average vertex degree in a simple planar graph is less than six.

Exercise 2.7. Prove Corollary 2.6.

There exist several variations of this statement, a few more of which we will encounter
during this course.

Exercise 2.8. Show that neither K5 (the complete graph on five vertices) nor K3,3 (the
complete bipartite graph where both classes have three vertices) is planar.

Exercise 2.9. Let P be a set of n ⩾ 3 points in the plane such that the distance between
every pair of points is at least one. Show that there are at most 3n − 6 pairs of
points in P at distance exactly one.

Characterizing planarity. The classical theorems of Kuratowski and Wagner provide a char-
acterization of planar graphs in terms of forbidden substructures. A subdivision of a
graph G = (V, E) is obtained from G by replacing each edge with a path.

Theorem 2.10 (Kuratowski [22, 31]). A graph is planar if and only if it does not contain
a subdivision of K3,3 or K5.

A minor of a graph G = (V, E) is obtained from G using zero or more edge contrac-
tions, edge deletions, and/or vertex deletions.

Theorem 2.11 (Wagner [34]). A graph is planar if and only if it does not contain K3,3

or K5 as a minor.

22

Geometry: C&A 2024 2.1. Drawings, Embeddings and Planarity

In some sense, Wagner’s Theorem is a special instance1 of a much more general
theorem.

Theorem 2.12 (Graph Minor Theorem, Robertson/Seymour [28]). Every minor-closed
family of graphs can be described in terms of a finite set of forbidden minors.

Being minor-closed means that any minor of any graph from the family also belongs
to the family. For instance, the family of planar graphs is minor-closed because planarity
is preserved under removal of edges and vertices and under edge contractions.

Exercise 2.13. A graph is 1-planar if it admits a drawing in the plane in which every
edge has at most one crossing. Prove or disprove: The family of 1-planar graphs
is minor-closed.

The Graph Minor Theorem is a celebrated result established by Robertson and Sey-
mour in a series of twenty papers, see also the survey by Lovász [23]. They also describe
an O(n3) algorithm (with horrendous constants, though) to decide whether a graph on
n vertices contains a fixed (constant-size) minor. As a consequence, every minor-closed
property can be tested in polynomial time. Later, Kawarabayashi et al. [20] showed that
this problem can be solved in O(n2) time.

Unfortunately, the Graph Minor Theorem is nonconstructive in the sense that in
general we do not know how to obtain the set of forbidden minors for a given family.
For instance, for the family of toroidal graphs (graphs that can be embedded without
crossings on the torus) more than 16 ′000 forbidden minors are known, and the theorem
tells us that the number is finite, but we still do not know the concrete number. So while
we know that there exists a quadratic time algorithm to test membership for minor-closed
families, we have no idea what such an algorithm looks like in general.

Graph families other than planar graphs for which the forbidden minors are known
include forests (free of K3 minors) and outerplanar graphs (free of K2,3 and K4 minors).
A graph is outerplanar if it admits a plane embedding in which all vertices appear on
the outer face (Figure 2.6).

Figure 2.6: An outerplanar graph (left) and a plane embedding of it in which all
vertices are incident to the outer face (right).

Exercise 2.14. (a) Give an example of a 6-connected planar graph or argue that no
such graph exists.

1It is more than just a special instance because it also specifies the forbidden minors explicitly.

23

Chapter 2. Plane Embeddings Geometry: C&A 2024

(b) Give an example of a 5-connected planar graph or argue that no such graph
exists.

(c) Give an example of a 3-connected outerplanar graph or argue that no such
graph exists.

Planarity testing. To test a given graph for planarity we do not have to contend ourselves
with a quadratic-time algorithm. In fact, there exist a number of different linear time
algorithms that decide if a given abstract graph is planar; all of them—from a very
high-level point of view—can be regarded as an annotated depth-first-search. The first
such algorithm was described by Hopcroft and Tarjan [19], while the current state-of-
the-art is probably among the “path searching” method by Boyer and Myrwold [6] and
the “LR-partition” method by de Fraysseix et al. [14]. Although the overall idea in all
these approaches is easy to convey, many technical details make an in-depth discussion
rather painful to go through.

2.2 Graph Representations

There are two standard representations for an abstract graph G = (V, E) on n = |V |

vertices. For the adjacency matrix representation we consider the vertices to be ordered
as V = {v1, . . . , vn}. The adjacency matrix of an undirected graph is a symmetric n×n-
matrix A = (aij)1⩽i,j⩽n where aij = aji = 1, if {vi, vj} ∈ E, and aij = aji = 0 otherwise.
Storing such a matrix explicitly requires Ω(n2) space, but it allows testing in constant
time whether or not two given vertices are adjacent.

In an adjacency list representation, we store for each vertex a list of its neighbors
in G. This requires only O(n+ |E|) storage, which is better than for the adjacency matrix
in case that |E| = o(n2). On the other hand, the adjacency test for two given vertices is
not a constant-time operation, because it requires a search in one of the lists. Depending
on the implementation of the lists, the search time ranges from O(d) (for an unsorted
list) to O(logd) (for a sorted dynamic data structure such as a balanced search tree),
where d is the minimum degree of the two vertices.

Both representations have their merits. The choice typically depends on what one
wants to do with the graph. When dealing with embedded graphs, however, additional
information about the embedding is needed beyond the pure incidence structure of the
graph. The next section discusses a standard data structure to represent embedded
graphs.

2.2.1 The Doubly-Connected Edge List

The doubly-connected edge list (DCEL) is a data structure to represent a plane graph
in such a way that it is easy to traverse and to manipulate. To avoid complications,
let us discuss only connected graphs that contain at least two vertices. It is not hard
to extend the data structure to be able to represent all plane graphs. We also assume

24

Geometry: C&A 2024 2.2. Graph Representations

that we deal with a straight-line embedding and thus the geometry of edges is defined
by the positions of their endpoints already. For more general embeddings, the geometric
description of edges has to be stored in addition.

The main building block of a DCEL is a list of halfedges. Every actual edge is split
into two halfedges going in opposite direction, and these are called twins, see Figure 2.7.
Along the boundary of each face, halfedges are oriented counterclockwise, that is, the
face always stays to the left.

h

next(h)

prev(h)

twin(h)

target(h)

face(h)

Figure 2.7: A halfedge in a DCEL.

A DCEL also stores a list of vertices and a list of faces. These three lists are unordered
but interconnected by various pointers. A vertex v stores a pointer halfedge(v) to an
arbitrary halfedge originating from v. Every vertex also records its coordinates point(v),
that is, the point it is mapped to in the embedding. A face f stores a pointer halfedge(f)
to an arbitrary halfedge within the face. A halfedge h stores five pointers:

• a pointer target(h) to its target vertex,

• a pointer face(h) to its incident face,

• a pointer twin(h) to its twin halfedge,

• a pointer next(h) to the halfedge following h along the boundary of face(h), and

• a pointer prev(h) to the halfedge preceding h along the boundary of face(h).

A constant amount of information is stored for every vertex, (half-)edge, and face of the
graph. Therefore the whole DCEL needs storage proportional to |V |+ |E|+ |F|, which is
O(n) for a plane graph with n vertices by Corollary 2.5.

This information is sufficient for most tasks. For example, traversing all edges around
a face f can be done as follows:

s← halfedge(f)
h← s

do

25

Chapter 2. Plane Embeddings Geometry: C&A 2024

something with h

h← next(h)
while h ̸= s

Exercise 2.15. Give pseudocode to traverse all edges incident to a given vertex v of a
DCEL.

Exercise 2.16. Why is the previous halfedge prev(·) stored explicitly whereas the source
vertex of a halfedge is not?

2.2.2 Manipulating a DCEL

In many applications, plane graphs do not just appear as static objects but rather evolve
over the course of an algorithm. Therefore the data structure must allow for efficient
updates. These include, but are not limited to, appending new vertices, edges and faces
to the corresponding list within the DCEL and—symmetrically—the ability to delete an
existing entity.

First, it should be easy to add a new vertex v to the graph within a given face f

and (as we maintain a connected graph) connect v to an existing vertex u. For such a
connection to be valid, we require that the open line segment uv lies completely in f.
Given that we need access to both f and u, it would be convenient to pass the already
existing halfedge h that satisfies face(h) = f and target(h) = u as an argument. Assuming
that point(v) has already been set to the desired location of the new vertex, our operation
then becomes

add-vertex-at(v, h)
Precondition: the open line segment point(v)point(u), where u := target(h),

lies completely in f := face(h).
Postcondition: the new vertex v has been inserted into f, connected by an

edge to u.

u

v

h f

. . .

. . .

(a) before

u

v

h

f

h1

h2

. . .

. . .

(b) after

Figure 2.8: Add a new vertex connected to an existing vertex u.

See also Figure 2.8. It can be realized by manipulating a constant number of pointers as
follows.

26

Geometry: C&A 2024 2.2. Graph Representations

add-vertex-at(v, h) {
h1 ← a new halfedge
h2 ← a new halfedge
halfedge(v)← h2

twin(h1)← h2

twin(h2)← h1

target(h1)← v

target(h2)← u

face(h1)← f

face(h2)← f

next(h1)← h2

next(h2)← next(h)
prev(h1)← h

prev(h2)← h1

next(h)← h1

prev(next(h2))← h2

}

Similarly, it should be possible to add an edge between two existing vertices u and v,
provided the open line segment uv lies completely within a face f of the graph, see
Figure 2.9. Since such an edge insertion splits f into two faces, the operation is called
split-face. Again we pass as an argument the halfedge h satisfying face(h) = f and
target(h) = u.

split-face(h, v)
Precondition: v is incident to f := face(h) but not adjacent to u := target(h).

The open line segment point(v)point(u) lies completely in f.
Postcondition: f has been split by a new edge uv.

u

v

fh

(a) before

u

v

f1

h
f2

h1

h2

(b) after

Figure 2.9: Split a face by an edge uv.

The implementation is slightly more complicated compared to add-vertex-at above, be-
cause the face f is destroyed and so we have to update the face information of all incident

27

Chapter 2. Plane Embeddings Geometry: C&A 2024

halfedges. In particular, this is not a constant time operation and has complexity pro-
portional to the size of f.

split-face(h, v) {
f1 ← a new face
f2 ← a new face
h1 ← a new halfedge
h2 ← a new halfedge
halfedge(f1)← h1

halfedge(f2)← h2

twin(h1)← h2

twin(h2)← h1

target(h1)← v

target(h2)← u

next(h2)← next(h)
prev(next(h2))← h2

prev(h1)← h

next(h)← h1

i← h2

loop
face(i)← f2
if target(i) = v break the loop
i← next(i)

endloop
next(h1)← next(i)
prev(next(h1))← h1

next(i)← h2

prev(h2)← i

i← h1

do
face(i)← f1
i← next(i)

until target(i) = u

delete the face f

}

In a similar fashion one can realize the inverse operation join-face(h) that removes the
edge represented by h, thereby joining the faces face(h) and face(twin(h)).

It is easy to see that every connected plane graph on at least two vertices can be
constructed using the operations add-vertex-at and split-face, starting from an embedding
of K2 (two vertices connected by an edge).

Exercise 2.17. Give pseudocode for the operation join-face(h). Specify preconditions if
needed.

28

Geometry: C&A 2024 2.2. Graph Representations

Exercise 2.18. Give pseudocode for the operation split-edge(h), that splits the edge
represented by h into two by a new vertex w, see Figure 2.10.

u

v

h

f2

f1

(a) before

u

v

w

h2

h1

k1

k2
f2

f1

(b) after

Figure 2.10: Split an edge by a new vertex.

2.2.3 Graphs with Unbounded Edges

In some cases it is convenient to consider plane graphs in which some edges are not
mapped to a line segment but to an unbounded curve, such as a ray. This setting is not
really much different from the one we studied before, except that one special vertex is
placed “at infinity”. One way to think of it is in terms of stereographic projection (see
the proof of Theorem 2.2). The further away a point in R2 is from the origin, the closer
its image on the sphere S gets to the north pole n of S. But there is no way to reach n

except in the limit. Therefore, we can imagine drawing the graph on S instead of in R2

and putting the “infinite vertex” at n.
All this is just for the sake of a proper geometric interpretation. As far as a DCEL

of such a graph is concerned, there is no need to consider spheres or anything beyond
what we have discussed. The only difference to the case with all finite edges is that there
is this special infinite vertex, which does not have any point/coordinates associated to
it. Other than that, the infinite vertex is treated in exactly the same way as the finite
vertices: it has in- and out-going halfedges along which the unbounded faces can be
traversed (Figure 2.11).

Remarks. It is actually not so easy to point exactly to where the DCEL data struc-
ture originates from. Often Muller and Preparata [25] are credited, but while they use
the term DCEL, the data structure they describe is different from what we discussed
above and from what people usually consider a DCEL nowadays. Overall, there are a
large number of variants of this data structure, which appear under the names winged
edge data structure [3], halfedge data structure [35], or quad-edge data structure [16].
Kettner [21] provides a comparison of all these with some additional references.

29

Chapter 2. Plane Embeddings Geometry: C&A 2024

∞

Figure 2.11: A DCEL with unbounded edges. Usually, we will not show the infinite
vertex and draw all edges as straight-line segments. This yields a geo-
metric drawing, like the one within the gray box.

2.2.4 Combinatorial Embeddings

The basic DCEL omits geometric aspects (that is, positions and shapes of a vertex/edge/face)
and only stores incidences and adjacencies between vertices, edges, and faces of an em-
bedding. We call such information the combinatorial embedding of the actual plane
graph. Conventionally, we write it as a set of face boundaries, where each boundary is
encoded as a circular sequence of vertices in counterclockwise order. For instance, the
combinatorial embeddings of the plane graphs in Figure 2.12a are

(a) : {(1, 2, 3), (1, 3, 6, 4, 5, 4), (1, 4, 6, 3, 2)} ,

(b) : {(1, 2, 3, 6, 4, 5, 4), (1, 3, 2), (1, 4, 6, 3)} , and
(c) : {(1, 4, 5, 4, 6, 3), (1, 3, 2), (1, 2, 3, 6, 4)} .

Note that a vertex can appear several times along the boundary of a face (if it is a
cut-vertex).

This view allows us to compare embeddings easily. Two embeddings (plane graphs)
are combinatorially equivalent if their combinatorial embeddings are equal up to a
global change of orientation (reversing the order of all sequences simultaneously). For
example, (b) is not equivalent to (a) nor (c), because it is the only one with a face
bounded by seven vertices. However, (a) and (c) turn out to be equivalent: after reverting
orientations f1 takes the role of h2, f2 takes the role of h1, and f3 takes the role of h3.

Exercise 2.19. Let G be a planar graph with vertex set {1, . . . , 9}. Try to find an
embedding corresponding to the following list of circular sequences of faces:

30

Geometry: C&A 2024 2.3. Unique Embeddings

1

2

3

4

5
6f1 f2

f3

(a)

1

2

3

4

5
6

g2

g1

g3

(b)

1

2

3

4

6 5

h2

h1
h3

(c)

Figure 2.12: Equivalent embeddings?

(a) {(1, 4, 5, 6, 3), (1, 3, 6, 2), (1, 2, 6, 7, 8, 9, 7, 6, 5), (7, 9, 8), (1, 5, 4)}

(b) {(1, 4, 5, 6, 3), (1, 3, 6, 2), (1, 2, 6, 7, 8, 9, 7, 6, 5), (7, 9, 8), (1, 4, 5)}

Combinatorial embeddings are not only used to categorize plane graphs. They also
play a role in algorithm design. Quite often, algorithms dealing with planar graphs do not
need a full-fledged embedding to proceed. It is sufficient to operate on a combinatorial
embedding, which is more efficient to handle.

Many people prefer a dual representation which, instead of listing face boundaries,
enumerates the neighbors of v in cyclic order for each vertex v. It can avoid the issue of
a vertex appearing multiple times in the sequence. However, the following lemma shows
that such an issue does not arise when dealing with biconnected graphs.

Lemma 2.20. In a biconnected plane graph every face is bounded by a cycle.

We leave the proof as an exercise. Intuitively the statement is clear, but we believe
it is instructive to think about a formal argument. An easy consequence is stated below,
whose proof is also an exercise.

Corollary 2.21. For any vertex v in a 3-connected plane graph, there is a cycle that
contains all neighbours of v.

Exercise 2.22. Prove Lemma 2.20 and Corollary 2.21.

Given Lemma 2.20, one might wonder the converse question: Which cycles in a planar
graph G bound a face (in some plane embedding of G)? Such cycles are said to be facial ;
see Figure 2.13.

Exercise 2.23. Describe a linear time algorithm that, given an abstract planar graph
G and a cycle C in G, tests whether C is a facial cycle. (You may assume that
planarity can be tested in linear time.)

2.3 Unique Embeddings

As we have seen, an abstract planar graph may admit many different embeddings, even
in the combinatorial sense. Under what condition does it admit a unique combinatorial
embedding?

31

	Fundamentals
	Models of Computation
	Basic Geometric Objects
	Topology
	Graphs

	Plane Embeddings
	Drawings, Embeddings and Planarity
	Graph Representations
	The Doubly-Connected Edge List
	Manipulating a DCEL
	Graphs with Unbounded Edges
	Combinatorial Embeddings

	Unique Embeddings
	Triangulating a Planar Graph
	Compact Straight-Line Drawings
	Canonical Orderings
	The Shift-Algorithm
	Remarks and Open Problems

	Crossings
	Crossing Numbers
	The Crossing Lemma
	Applications of the Crossing Lemma

	Polygons
	Classes of Polygons
	Polygon Triangulation
	The Art Gallery Problem
	Optimal Guarding

	Convexity and Convex Hulls
	Algebraic Characterizations
	Classic Theorems for Convex Sets
	Planar Convex Hull
	Trivial algorithms
	Jarvis' Wrap
	Graham Scan (Successive Local Repair)
	Lower Bound
	Chan's Algorithm

	Delaunay Triangulations
	The Empty Circle Property
	The Lawson Flip algorithm
	Termination of the Lawson Flip Algorithm
	Correctness of the Lawson Flip Algorithm
	The Delaunay Graph
	Every Delaunay Triangulation Maximizes the Smallest Angle
	Constrained Triangulations

	Incremental Construction of Delaunay Triangulation
	Incremental construction
	Organizing the Lawson flips
	The History Graph
	Analysis of the algorithm

	Voronoi Diagrams
	The Post Office Problem
	Voronoi Diagram
	Duality With Delaunay Triangulations
	A Lifting Map View
	Planar Point Location
	Kirkpatrick's Hierarchy

	Convex Polytopes
	Faces of a Polytope
	The Main Theorem
	Two Examples
	Polytope Structure
	The Graph of a Polytope
	The Face Lattice
	Polarity

	Simplicial and Simple Polytopes
	High-Dimensional Delaunay Triangulations
	Complexity of 4-Dimensional Polytopes
	High Dimensional Voronoi Diagrams

	Arrangements
	Line Arrangements
	Constructing Line Arrangements
	Zone Theorem
	General Position and Minimum Triangle
	Constructing Rotation Systems
	Segment Endpoint Visibility Graphs
	3-Sum
	Ham Sandwich Theorem
	Constructing Ham Sandwich Cuts in the Plane
	Davenport-Schinzel Sequences
	Constructing Lower Envelopes
	Complexity of a Single Cell

	Counting
	Introduction
	Embracing Sets in the Plane
	Adding a Dimension
	The Upper Bound

	Embracing Sets in Higher Dimension
	Embracing Sets vs. Faces of Polytopes
	Warm-up
	Gale Duality

	Faster Counting in the Plane
	Characterizing -Vectors
	More Vector Identities

	Line Sweep
	Interval Intersections
	Segment Intersections
	Improvements
	Algebraic degree of geometric primitives
	Red-Blue Intersections

	The Configuration Space Framework
	The Delaunay triangulation — an abstract view
	Configuration Spaces
	Expected structural change
	Bounding location costs by conflict counting
	Expected number of conflicts

	Trapezoidal Maps
	The Trapezoidal Map
	Applications of trapezoidal maps
	Incremental Construction of the Trapezoidal Map
	Using trapezoidal maps for point location
	Analysis of the incremental construction
	Defining The Right Configurations
	Update Cost
	The History Graph
	Cost of the Find step
	Applying the General Bounds

	Analysis of the point location
	The trapezoidal map of a simple polygon

	Translational Motion Planning
	Complexity of Minkowski sums
	Minkowski sum of two convex polygons
	Constructing a single face

	Linear Programming
	Linear Separability of Point Sets
	Linear Programming
	Minimum-area Enclosing Annulus
	Solving a Linear Program

	A randomized Algorithm for Linear Programming
	Helly's Theorem
	Convexity, once more
	The Algorithm
	Runtime Analysis
	Violation Tests
	Basis Computations
	The Overall Bound

	Smallest Enclosing Balls
	The trivial algorithm
	Welzl's Algorithm
	The Swiss Algorithm
	The Forever Swiss Algorithm
	Smallest Enclosing Balls in the Manhattan Distance

	Epsilon Nets
	Motivation
	Range spaces and -nets.
	Either almost all is needed or a constant suffices.
	What makes the difference: VC-dimension
	VC-dimension of Geometric Range Spaces
	Small -Nets, an Easy Warm-up Version
	Even Smaller -Nets

