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Figure 2.12: Equivalent embeddings?

(a) {(1, 4, 5, 6, 3), (1, 3, 6, 2), (1, 2, 6, 7, 8, 9, 7, 6, 5), (7, 9, 8), (1, 5, 4)}

(b) {(1, 4, 5, 6, 3), (1, 3, 6, 2), (1, 2, 6, 7, 8, 9, 7, 6, 5), (7, 9, 8), (1, 4, 5)}

Combinatorial embeddings are not only used to categorize plane graphs. They also
play a role in algorithm design. Quite often, algorithms dealing with planar graphs do not
need a full-fledged embedding to proceed. It is sufficient to operate on a combinatorial
embedding, which is more efficient to handle.

Many people prefer a dual representation which, instead of listing face boundaries,
enumerates the neighbors of v in cyclic order for each vertex v. It can avoid the issue of
a vertex appearing multiple times in the sequence. However, the following lemma shows
that such an issue does not arise when dealing with biconnected graphs.

Lemma 2.20. In a biconnected plane graph every face is bounded by a cycle.

We leave the proof as an exercise. Intuitively the statement is clear, but we believe
it is instructive to think about a formal argument. An easy consequence is stated below,
whose proof is also an exercise.

Corollary 2.21. For any vertex v in a 3-connected plane graph, there is a cycle that
contains all neighbours of v.

Exercise 2.22. Prove Lemma 2.20 and Corollary 2.21.

Given Lemma 2.20, one might wonder the converse question: Which cycles in a planar
graph G bound a face (in some plane embedding of G)? Such cycles are said to be facial ;
see Figure 2.13.

Exercise 2.23. Describe a linear time algorithm that, given an abstract planar graph
G and a cycle C in G, tests whether C is a facial cycle. (You may assume that
planarity can be tested in linear time.)

2.3 Unique Embeddings

As we have seen, an abstract planar graph may admit many different embeddings, even
in the combinatorial sense. Under what condition does it admit a unique combinatorial
embedding?
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Figure 2.13: The cycles (2, 3, 5) and (1, 2, 5, 3), for example, are both facial. One can
show that (2, 4, 3, 5) is not.

To answer the question, we start by studying cycles that bound a face in every
plane embedding of G. (Note that this is stronger than being facial.) The lemma below
provides a complete characterization of these cycles. Let us agree on some terminology
about a cycle C in a graph G. A chord of C is an edge in E(G) \E(C) that connects two
vertices of C. The cycle C is induced if it does not have any chord. It is separating if
G \ C is not connected.

Lemma 2.24. Let G be a planar graph which is neither a cycle, nor a cycle plus a
single chord. Then a cycle C in G bounds a face in every plane embedding of G if
and only if C is induced and not separating.

Proof. “⇐”: Consider any plane embedding Γ of G. By the Jordan Curve Theorem, the
cycle C splits the plane into an interior and an exterior region. As G \ C is connected,
it lies either entirely in the interior or entirely in the exterior. In either case, the other
region is bounded by C because C does not have any chord.

“⇒": Using contraposition, suppose that (1) C is not induced or (2) C is separating.
We aim to find a plane embedding of G in which C does not bound a face. To this end,
let us start from an arbitrary plane embedding Γ of G. If C does not bound a face in Γ

then we are done. So next we assume that C bounds a face in Γ .

(1) If C is not induced, then it has a chord c. As G ̸= C ∪ c, the graph G either has
some vertex v ̸∈ C or another chord d ̸= c of C. We modify Γ by rerouting the
chord c inside the face C and obtain an embedding in which C does not bound a
face: one of the two regions split by the Jordan curve C contains the chord c, and
the other contains either the vertex v or another chord d.

(2) If C is separating, then G \ C is not connected. If G \ C = ∅ then G is either C

(which is excluded by assumption) or C plus some chords (which is handled by
Case (1)). So from now on we assume G \ C ̸= ∅ has two components A and B;
see Figure 2.14a. Γ induces plane embeddings ΓA of A ∪ C and ΓB of B ∪ C; the
cycle C bounds a face in both of them. By the transformation in Theorem 2.2 we
can make C bounding the outer face in ΓA yet an inner face in ΓB. Then we can glue
the two embeddings at C, that is, extend ΓB by adding ΓA within the (inner) face
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bounded by C (Figure 2.14b). The result is a plane embedding of G in which C

does not bound a face.
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Figure 2.14: A plane embedding in which C does not bound a face, in Case (2).

For those special graphs G excluded in Lemma 2.24, it is easy to see that all cycles
in G bound a face in every plane embedding. This completes the characterization. Since
these special graphs are not 3-connected, we have

Corollary 2.25. A cycle C of a 3-connected planar graph G bounds a face in every
plane embedding of G if and only if C is induced and not separating.

The following theorem tells us that a wide range of graphs have little choice when
embedded into the plane, from a combinatorial point of view. Geometrically, though,
there is still much freedom.

Theorem 2.26 (Whitney [36]). A 3-connected planar graph has a unique combinatorial
plane embedding (up to equivalence).

Proof. Let G be a 3-connected planar graph and suppose there exist two embeddings
Φ1 and Φ2 of G that are not equivalent. So there is a cycle C = (v1, . . . , vk) in G that,
say, bounds a face f in Φ1 but does not bound any face in Φ2. By Corollary 2.25 there
are only two options:

Case 1: C has a chord {vi, vj}. Denote A = {vx : i < x < j} and B = {vx : x < i ∨ j < x}

and observe that both A and B are nonempty because {vi, vj} is a chord and so vi
and vj are not adjacent in C. Given that G is 3-connected, there is at least one
path P from A to B that avoids both vi and vj. Let a denote the last vertex of P
that is in A, and let b denote the first vertex of P that is in B. As C bounds f in
Φ1, we can add a new vertex v inside f and connect it to each of vi, vj, a and b

by four pairwise internally disjoint curves. The result would be a plane graph that
contains a K5 subdivision with branch vertices v, vi, vj, a, and b. This contradicts
Kuratowski’s Theorem (Theorem 2.10).
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Figure 2.15: Illustration of the two cases in Theorem 2.26.

Case 2: C is induced and separating. Since C is induced and G is 3-connected, we must have
G \ C ̸= ∅. So G \ C contains two distinct components A and B. Choose vertices
a ∈ A and b ∈ B arbitrarily. Applying Menger’s Theorem (Theorem 1.5) on the
3-connected graph G, there exist three paths α1, α2, α3, pairwise internally vertex-
disjoint, from a to b. Let ci be some vertex where αi intersects C, for 1 ⩽ i ⩽ 3.
Note that c1, c2, c3 exist because C separates A and B, and they are pairwise distinct
because α1, α2, α3 are pairwise internally (vertex-)disjoint. Therefore, {a, b} and
{c1, c2, c3} form branch vertices of a K2,3 subdivision in G. We can add a new
vertex v inside f and connect it to each of c1, c2 and c3 by three pairwise internally
disjoint curves. The result would be a plane graph that contains a K3,3 subdivision.
This contradicts Kuratowski’s Theorem (Theorem 2.10).

In both cases we arrived at a contradiction and so there does not exist such a cycle C.
Thus Φ1 and Φ2 are equivalent.

Whitney’s Theorem does not provide a characterization of unique embeddability in
general, as there are biconnected graphs with unique combinatorial plane embedding
(such as cycles) as well as those with several, non-equivalent combinatorial plane embed-
dings (such as a triangulated pentagon).

Exercise 2.27. Describe a family of biconnected planar graphs with exponentially many
combinatorial plane embeddings. That is, show that there exists a constant c ∈ R
such that for every n ∈ N there exists a biconnected planar graph on n vertices that
has at least cn different combinatorial plane embeddings.

2.4 Triangulating a Planar Graph

We like to study worst case scenarios not so much to dwell on “how bad things could get”
but rather—phrased positively—because worst case examples provide universal bounds
of the form “things are always at least this good”. Most questions related to embeddings
get harder when the graph contains more edges because every additional edge poses an
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