
Chapter 3

Crossings

So far we have mostly studied planar graphs which allow us to avoid crossings altogether.
However, there are many interesting graphs that are not planar, and still we would like
to draw them in a reasonable fashion. An obvious quantitative approach is to minimize
the number of crossings, even if they are inevitable.

3.1 Crossing Numbers

For an abstract graph G = (V, E), the crossing number cr(G) is defined as the minimum
number of edge crossings over all drawings of G. Analogously, the rectilinear crossing
number cr(G) is defined as the minimum number of edge crossings over all straight-
line drawings of G. A drawing of G that achieves cr(G) or cr(G) crossings is called a
minimum-crossing drawing or minimum-crossing straight-line drawing, respectively.

These notions are well-defined since cr(G) ⩽ cr(G) ⩽
(
|E|
2

)
are finite. To see the upper

bound, we construct a straight-line drawing of G as follows. Bijectively map the vertices
of V onto a set of n = |V | points in general position (that is, such that no three points
are collinear), then draw every edge as a straight-line segment. This is a valid drawing
in which every pair of distinct edges share at most one point.

Actually, this last property also holds for all minimum-crossing drawings, as the
following lemma demonstrates.

Lemma 3.1. In any minimum-crossing drawing of G, every pair of distinct edges
share at most one point.

Proof. Consider any minimum-crossing drawing Γ of G, and suppose for contradiction
that two edges e ̸= f share distinct points p ̸= q in Γ . Let eqp be the part of curve e

from p to q; similarly define fqp. Without loss of generality, suppose that eqp has no more
crossings than fqp does. Then we redraw fqp to closely follow eqp by its side; see Figure 3.1
for illustration.

• If p (or q) is a common vertex of the edges e and f, then we can choose the side
so that the crossing at q (or p) is eliminated.
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Geometry: C&A 2024 3.1. Crossing Numbers

• Otherwise, both p and q are crossing points. Depending on how f approaches p

and q, we are able to eliminate either one (if approached from the same side of e)
or two (if approached from opposite sides of e) of these crossings.

Note that the number of crossings other than p and q shall not increase, due to our
assumption that eqp has no more crossings than fqp does. Hence the total number of
crossings strictly decreases.

Finally, if f unluckily crosses itself due to this modification, we can eliminate them by
omitting the curve between the two occurrences of a self-crossing. The result is a proper
drawing with strictly fewer crossings than Γ , a contradiction to Γ being a minimum-
crossing drawing.
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Figure 3.1: Redraw fqp by the side of eqp to reduce the overall number of crossings.
(a) and (b) depict the situation where both edges e and f are incident to
vertex p, in which case the crossing at q can be eliminated. (c) and (d)
depict the situation where both p and q are crossings; in the particular
example we may remove a crossing at p or q.

A drawing in which every pair of edges has at most one point in common is called
simple, and a graph drawn as such is called a simple topological graph. Using this
terminology we can rephrase Lemma 3.1 as follows: “Every minimum-crossing drawing
is simple.”

A simple drawing implies that no two adjacent edges cross. Drawings that satisfy
this latter (and weaker) property are called star-simple because the incident edges to
any vertex form a plane star.1

It is quite easy to certify an upper bound on the crossing number of a graph—just
present a drawing that has a small number of crossings. But it is conceptually harder to
certify a lower bound because it needs to account for all possible drawings of this graph.
The following lower bound, though, can be obtained by simple counting.

Lemma 3.2. For a graph G with n ⩾ 3 vertices and e edges, we have cr(G) ⩾ e−(3n−6).

Proof. Consider a drawing of G = (V, E) with cr(G) crossings. For each crossing, we pick
one of the two involved edges arbitrarily. Obtain a new graph G ′ = (V, E ′) from G by
removing all picked edges. By construction G ′ is plane and, therefore, |E ′| ⩽ 3n − 6 by

1In the literature also the terms semi-simple or semisimple are used.
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Chapter 3. Crossings Geometry: C&A 2024

Corollary 2.5. As at most cr(G) edges were picked (“at most” because some edge might
be picked by several crossings), we have |E ′| ⩾ |E| − cr(G). Combining both bounds
completes the proof.

Exercise 3.3. Consider two edges e and f in a topological plane drawing so that e and
f cross at least twice. Prove or disprove: There always exist two distinct crossings
p and q of e and f so that the portion of e between p and q is not crossed by f, and
the portion of f between p and q is not crossed by e.

Exercise 3.4. Let G be a graph with n ⩾ 3 vertices, e edges, and cr(G) = e− (3n− 6).
Show that in every drawing of G with cr(G) crossings, every edge is crossed at most
once.

Exercise 3.5. Consider the abstract graph G that is obtained as follows: Start from
a plane embedding of the 3-dimensional cube, and add in every face a pair of
(crossing) diagonals. Show that cr(G) = 6 < cr(G).

Exercise 3.6. A graph is 1-planar if it can be drawn in the plane so that every edge is
crossed at most once. Show that a 1-planar graph G on n ⩾ 3 vertices has at most
4n− 8 edges and cr(G) ⩽ n− 2.

3.2 The Crossing Lemma

The bound in Lemma 3.2 is quite good if the number of edges is close to 3n but not so
good for dense graphs. For instance, for the complete graph Kn the lemma guarantees a
quadratic number of crossings, whereas the Guy-Harary-Hill Conjecture [8] claims

cr(Kn) =
1

4

⌊n
2

⌋ ⌊n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
∈ Θ(n4).

The conjecture has been verified, in part with extensive computer help, for the complete
graph on n ⩽ 14 vertices [2, 9, 11]; though it remains open for n ⩾ 15.

So for dense graphs G we ought to have sharper lower bounds. Given that the bound
in Lemma 3.2 is reasonably good for sparse graphs, why not apply it to some sparse
subgraph of G and then try scaling back to G? This simple idea turns out to work
astonishingly well, as the following theorem demonstrates.

Theorem 3.7 (Crossing Lemma [4]). For a graph G with n vertices and e ⩾ 4n edges,
we have cr(G) ⩾ e3/(64n2).

Proof. Consider a minimum-crossing drawing Γ of G, with cr(G) crossings. We select
each vertex independently with probability p (a suitable value for p will be determined
later). By this process we obtain a random subset U ⊆ V, the corresponding induced sub-
graph G[U], along with its induced drawing Γ [U]. Consider the following three random
variables:
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Geometry: C&A 2024 3.3. Applications of the Crossing Lemma

• N = |U|, the number of selected vertices, with E[N] = pn;

• M, the number of edges in G[U], with E[M] = p2e; and

• C, the number of crossings in Γ [U], with E[C] = p4cr(G). (Here we use Lemma 3.1,
which says that adjacent edges do not cross in the minimum-crossing drawing Γ .)

According to Lemma 3.2, these quantities satisfy C ⩾ cr(G[U]) ⩾ M − 3N under
all outcomes of the random experiment. Taking expectations on both sides and using
linearity of expectation yields E[C] ⩾ E[M]−3E[N] and so p4cr(G) ⩾ p2e−3pn. Setting
p = 4n/e (which is ⩽ 1 due to the assumption e ⩾ 4n) gives

cr(G) ⩾
e

p2
− 3

n

p3
=

e3

16n2
− 3

e3

64n2
=

e3

64n2
.

The beautiful proof described above is attributed to Chazelle, Sharir, and Welzl and
listed in “Proofs from THE BOOK” [3, Chapter 40], a collection inspired by Paul Erdős’
belief in “a place where God keeps aesthetically perfect proofs”. The original proof of the
Crossing Lemma was more complicated and had a worse constant.

Asymptotically the bound in Theorem 3.7 is tight: Pach and Tóth [10] describe
graphs with n≪ e≪ n2 that have crossing number at most

16

27π2

e3

n2
<

1

16.65

e3

n2
.

Hence it is not possible to replace 1/64 by 1/16.65 in the statement of the theorem.
However, the constant 1/64 is not the best possible: Ackerman [1] showed that 1/64 can
be replaced by 1/29, at the cost of requiring e ⩾ 6.95n. Very recently, Büngener and
Kaufmann [5] further improved the constant to 1/27.48, at the cost of requiring e ⩾
6.77n.

Exercise 3.8. Show that the bound from the Crossing Lemma is asymptotically tight:
There exists a constant c so that for every n, e ∈ N with e ⩽

(
n
2

)
there is a graph with

n vertices and e edges that admits a plane drawing with at most ce3/n2 crossings.

Exercise 3.9. A graph is quasiplanar if it can be drawn in the plane such that no
three edges pairwise cross. Denote by qp(n) the maximum number of edges in a
quasiplanar graph on n vertices. Show that qp(n) ∈ O(n3/2).

3.3 Applications of the Crossing Lemma

In the remainder of this chapter, we will discuss several nontrivial bounds on the size of
combinatorial structures that can be obtained by judicious application of the Crossing
Lemma. These beautiful connections were observed by Székely [13]; their original proofs
were different and more involved.

We say that a point and a geometric object (such as a line or a circle) are incident
if the former lies on the latter.
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Theorem 3.10 (Szemerédi-Trotter [14]). The maximum number of incidences between
n points and m lines in R2 is at most 25/3 · n2/3m2/3 + 4n+m.

Proof. Let P denote the given set of n points, and let L denote the given set of m lines.
We may suppose that every line from L contains at least one point from P. (Discard all
lines that do not, as they contribute no incidence.) Denote by I the number of incidences
between P and L. Consider the graph G = (P, E) whose vertices are the points P, and
where two points p, q are joined by an edge if they appear consecutively along some line
ℓ ∈ L (that is, p, q ∈ ℓ and no other point from P lies on the line segment pq). The
arrangement of P and L naturally induces a straight-line drawing of G. It has at most(
m
2

)
crossings because every crossing must be an intersection of two lines, and any two

lines can intersect at most once.
Each line ℓ ∈ L is incident to some Iℓ ⩾ 1 point(s) from P and contributes Iℓ − 1

edge(s) to E. Hence |E| =
∑

ℓ∈L(Iℓ − 1) = I −m. If |E| ⩽ 4n, then I ⩽ 4n +m and the
theorem holds. Otherwise, we can apply the Crossing Lemma to obtain(

m

2

)
⩾ cr(G) ⩾

|E|3

64n2
=

(I−m)3

64n2

and so I ⩽ 25/3 n2/3m2/3 +m.

The bound in Theorem 3.10 is asymptotically tight, in the following sense [10, Re-
mark 4.2]. There exist sets of n points and m lines inR2 that have c·n2/3m2/3 incidences,
for some constant c > 0.42 that is independent of n and m.

Theorem 3.11. The maximum number of unit distances between n points in R2 is at
most 5n4/3.

Proof. Let P be the given set of n points, and consider the set C of n unit circles centered
at the points in P. Then the number I of incidences between P and C is exactly twice
the number of unit distances between points from P. So it suffices to upper bound I.

Define a graph G = (P, E) on P as follows. For each circle c ∈ C, we list the points
from P∩c in circular order, and add a new edge between every pair of consecutive points.
By construction, if c contains Ic points from P, then it contributes exactly Ic edges to
E, hence I = |E|. Note however that G is not necessarily simple, as it may contain loops
(if some Ic = 1) and parallel edges (if some Ic = 2, or if some p, q ∈ P are consecutive
along different circles).

Obtain a new graph G ′ = (P, E ′) from G by removing all edges along circles c ∈ C of
Ic ⩽ 2. Since at most |C| = n circles are removed and each removed circle contributed at
most two edges to E, we have |E ′| ⩾ |E|− 2n. In G ′ there are neither loops, nor parallel
edges contributed by the same circle. Therefore, now between any two points p and
q there are up to two parallel edges, since at most two different unit circles can pass
through p, q in R2.

Obtain a new graph G ′′ = (P, E ′′) from G ′ by removing one copy of every double
edge. Clearly G ′′ is a simple graph with |E ′′| ⩾ |E ′|/2 ⩾ |E|/2−n. Rearranging, we have
I = |E| ⩽ 2(|E ′′|+ n).
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Geometry: C&A 2024 3.3. Applications of the Crossing Lemma

If |E ′′| ⩽ 4n, then I ⩽ 10n < 10n4/3 and the theorem holds. Otherwise, by the
Crossing Lemma we have

n2 > 2

(
n

2

)
⩾ cr(G ′′) ⩾

|E ′′|3

64n2
.

Here the upper bound on cr(G ′′) is due to that every pair of circles can intersect at most
twice. Rearranging, it follows that |E ′′| < 4n4/3 and so I < 8n4/3 + 2n < 10n4/3.

Exercise 3.12. Show that the maximum number of unit distances determined by n

points in R2 is Ω(n logn). Hint: Consider the hypercube.

The final application comes from arithmetic combinatorics. Given a set A ⊂ R, we
denote the sum set by A + A := {a + a ′ : a, a ′ ∈ A} and similarly the product set
by A · A := {a · a ′ : a, a ′ ∈ A}. It is easy to construct ground sets that have a small,
that is, linear size sum set: Just take an arithmetic progression, such as 2, 4, 6, 8, 10, . . ..
Similarly, geometric progressions exhibit a small product set. However, it is much more
challenging to find a ground set A for which both the sum set and the product set are
small. In fact, Erdős conjectured [7] that for every set A of n numbers, we have max{|A+
A|, |A · A|} ∈ Ω(n2−ϵ), for every ϵ > 0. The general conjecture is still open. But the
statement is known to hold for some reasonably small values of ϵ. At a first glance, it
is not so clear why there should be a connection between this problem and questions
about crossings in drawings of graphs. But there is such a connection, as discovered by
Elekes [6]. He used the Crossing Lemma to give an elegant proof of the following bound.

Theorem 3.13 (Elekes [6]). For A ⊂ R with |A| = n ⩾ 3 we have

max {|A+A|, |A ·A|} ⩾
1

4
n

5
4 .

Proof. Let A = {a1, . . . , an}. Set X = A + A and Y = A · A. We will show that
|X||Y| ⩾ 1

16
n5/2, which proves the theorem. Let P = X × Y ⊂ R2 be the set of points

whose x-coordinate is in X and whose y-coordinate is in Y. So we have |P| = |X||Y|. Next
define a set L of lines by ℓij = {(x, y) ∈ R2 : y = ai(x−aj)}, for i, j ∈ {1, . . . , n}. Clearly,
we have |L| = n2.

On the one hand, every line ℓij contains at least n points from P because for each
k ∈ {1, . . . , n}, the point (xk, yk) := (aj + ak, aiak) ∈ X × Y satisfies the equation
yk = ai(xk−aj) and thus is on ℓij. Therefore the number I of incidences between P and
L is at least |L| · n = n3.

On the other hand, by the Szemerédi-Trotter Theorem we have

I ⩽ 25/3|P|2/3n4/3 + 4|P|+ n2 .

Combining both bounds we obtain

25/3|P|2/3n4/3 + 4|P|+ n2 ⩾ n3 .

59



Chapter 3. Crossings Geometry: C&A 2024

Hence, at least one of the two summands 25/3|P|2/3n4/3 and 4|P| + n2 is at least half of
the sum, that is, at least n3/2. If it is the latter, then we have

|P| ⩾
n2

4

(n
2
− 1
)
.

Using that n ⩾ 3 and therefore
√
n ⩾ 3/2, we continue to bound

n2

4

(n
2
− 1
)
=

n2

4

(√
n
√
n

6
+

n

3
− 1

)
⩾

n2

4

√
n

4
=

n5/2

16
.

To conclude the proof it remains to consider the former case, in which

|P|2/3 ⩾
n3

2 · 25/3 n4/3
=

(
n5

256

)1/3

=⇒ |P| ⩾
n5/2

16
.

The lower bound has been gradually improved in a series of papers. The current state
of the art is

max {|A+A|, |A ·A|} ⩾ n
4
3+

2
1167 > n1.335

by Rudnev and Stevens [12].

Questions

8. What is the crossing number of a graph? What is the rectilinear crossing
number? Give the definitions and examples. Explain the difference.

9. For a nonplanar graph, the more edges it has, the more crossings we would
expect. Can you quantify such a correspondence more precisely? State and
prove Lemma 3.2 and Theorem 3.7 (The Crossing Lemma).

10. Why is it called “Crossing Lemma” rather than “Crossing Theorem”? Explain
at least two applications of the Crossing Lemma, for instance, your pick out of the
Theorems 3.10, 3.11, and 3.13.
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