
Chapter 4

Polygons

Although a line ℓ ⊂ R2 can be treated as an infinite point set, it has a finite description.
For instance, we may encode it by three coefficients a, b, c ∈ R with (a, b) ̸= (0, 0) and
interpret it as all the points satisfying the equation ax + by = c. Actually all of the
fundamental geometric objects that we mentioned in Chapter 1 can be described by a
constant number of parameters; hence they have constant description complexity or,
informally, just size.1

In this course we typically deal with objects that have unbounded size. Sometimes
they are formed by merely aggregating constant-size objects. For instance, aggregation
of points forms a finite point set. At other times we also demand additional structure
beyond aggregation. Probably the most fundamental example is what we call a polygon.
You probably learned this term in school, but what is a polygon precisely? Consider the
examples shown in Figure 4.1. Are these all polygons? If not, where would you draw
the line?

(a) (b) (c) (d) (e) (f)

Figure 4.1: What is a polygon?

4.1 Classes of Polygons

Ironically, there is no the right answer to the question, and there are different types of
polygons. Usually, the sloppy term “polygon” refers to what we call a simple polygon
defined below.

1Unless specified otherwise, we always assume that the dimension is a small constant. If we work in
high-dimensional space Rd where d varies, then their description complexity become Θ(d).
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Geometry: C&A 2024 4.2. Polygon Triangulation

Definition 4.1. A simple polygon is a compact region P ⊂ R2 whose boundary is a simple
closed curve ∂P : [0, 1]→ R2 consisting of finitely many consecutive line segments.

Out of the examples shown above only Polygon 4.1a is simple. For each of the
remaining polygons the bounding segments do not make a simple closed curve.

When describing a simple polygon P it is sufficient to describe only its boundary
∂P.2 As ∂P by definition consists of finitely many consecutive line segments, it can be
encoded by a sequence p1, . . . , pn of points, so that ∂P is formed by the line segments
p1p2, p2p3, . . . , pn−1pn, pnp1. These points and segments are referred to as the vertices
and the edges of the polygon, respectively. The set of vertices of a polygon P is denoted
by V(P), and the set of edges of P is denoted by E(P).

Recall from Theorem 2.1 (Jordan curve theorem) that any simple closed curve sep-
arates the plane R2 into a (bounded) interior and an (unbounded) exterior. To prove
this theorem in its full generality is surprisingly difficult. But for simple polygons the
situation is easier, and in fact we can readily tell apart the interior from the exterior
algorithmically, which we leave as an exercise.

Exercise 4.2. Describe an algorithm to decide whether a point lies inside or outside
of a simple polygon. More precisely, given a simple polygon P ⊂ R2 as a list of its
vertices (v1, v2, . . . , vn) in counterclockwise order and a query point q ∈ R2, decide
whether q is inside P, on the boundary of P, or outside. The runtime of your
algorithm should be O(n).

There are good reasons to ask for the boundary of a polygon to form a simple curve:
For instance, in the example depicted in Figure 4.1b there are several regions for which it
is completely unclear whether they should belong to the interior or to the exterior of the
polygon. A similar problem arises for the interior regions in Figure 4.1f. But there are
more general classes of polygons that some of the remaining examples fall into. We will
discuss only one such class here. It comprises polygons like the one from Figure 4.1d.

Definition 4.3. A region P ⊂ R2 is a simple polygon with holes if it can be described as
P = F \

⋃
H∈H H◦, where H is a finite collection of pairwise disjoint simple polygons

(called holes) and F is a simple polygon for which F◦ ⊃ ⋃H∈H H.

The way we define them through the notion of simple polygons makes a trichotomy
immediate, just as for simple polygons: Every point in the plane can be either inside,
on the boundary, or outside of P.

4.2 Polygon Triangulation

Topologically speaking, a simple polygon is nothing but a disk and thus a very elementary
object. But geometrically a simple polygon can be—as if mocking the label we attached

2In fact this is not obvious. To see the subtlety, consider a polygon P and the point set Q := P◦∪ (Q2∩
∂P). Note that ∂P = ∂Q, so it is possible to recover different sets out from the same boundary. The catch
here is that Q is not compact. One can show that we can recover only one compact set out from a given
boundary, and that is why we need compactness in the definition of a simple polygon.
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Chapter 4. Polygons Geometry: C&A 2024

Figure 4.2: A simple (?) polygon.

to it—pretty complicated in shape, see Figure 4.2 for an example. While it has a succinct
one-dimensional representation as the sequence of the boundary vertices, we often want
to work with a more structured representation that retains the two-dimensional shape.
For instance, computing the area of a general simple polygon is not so straighforward
out of a one-dimensional representation. But if we manage to represent the polygon as
a disjoint union of simpler geometric shapes such as triangles, rectangles or trapezoids,
then its area simply sums up all the area of the individual shapes, which are easy to
compute. This motivates the definition of a triangulation.

Definition 4.4. A triangulation of a simple polygon P with vertex set V(P) is a collection
T of triangles, such that

(1) P =
⋃

T∈T T ;

(2) V(P) =
⋃

T∈T V(T); and

(3) for every distinct pair T1, T2 ∈ T, the intersection T1 ∩ T2 is either a common
vertex, a common edge, or empty.

Exercise 4.5. Show that each condition in Definition 4.4 is necessary in the following
sense: Give an example of a non-triangulation that would form a triangulation if
the condition was omitted. Is the definition equivalent if (3) is replaced by T◦

1 ∩T◦
2 =

∅, for every distinct pair T1, T2 ∈ T?

Beyond area computation, triangulations are incredibly useful in planar geometry.
The significance roots in the fact that every simple polygon admits a triangulation.

Theorem 4.6. Every simple polygon has a triangulation.

Proof. Let P be a simple polygon on n vertices. We prove the statement by induction
on n. For n = 3, the polygon P is a triangle, which forms a triangulation by itself.
For n > 3, consider the lexicographically smallest vertex v of P. That is, among all
vertices with the smallest x-coordinate we pick the one with the smallest y-coordinate.
Let vertices u and w be the predecessor and successor of v along a counterclockwise
traversal of ∂P, respectively, so that P is locally to the left of u → v → w. By choice
of v, the walk u→ v→ w forms a strict left turn. Hence T := uvw forms a triangle that
lies in P. We distinguish two cases.
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Geometry: C&A 2024 4.2. Polygon Triangulation

Case 1: relint(uw) ⊂ P◦ (Figure 4.3a). That is, the segment uw except for its two
endpoints is fully contained in P◦. Hence P can be split into two interior-disjoint
simple polygons: the triangle T and a polygon P ′ := (P \ T) ∪ uw on n − 1

vertices. By the inductive hypothesis, the polygon P ′ admits a triangulation. This
triangulation together with T yields a triangulation of P.

v

u

w

(a) Case 1.

v

u

w

p

(b) Case 2.

Figure 4.3: Cases in the proof of Theorem 4.6.

Case 2: relint(uw) ̸⊂ P◦ (Figure 4.3b). Then some point from ∂P must be in T◦ or
on uw. As ∂P is composed of line segments, some vertex of P must be in T◦ or
on uw. Among all such vertices select p to maximize the distance to the line uw.
Imagine a line through p that is parallel to uw. This line together with uv, vw

bounds a triangle that does not contain any part of ∂P in its interior. It follows
that relint(vp) ⊂ P◦. Therefore, the segment vp splits P into two interior-disjoint
polygons P1 and P2 on fewer than n vertices each (the vertex u does not appear in
one of them, whereas w does not appear in the other). By the inductive hypothesis,
both P1 and P2 have triangulations, and their union yields a triangulation of P.

Exercise 4.7. In the proof of Theorem 4.6, would the argument in Case 2 also work
if the point p was chosen to be a vertex of P in T◦ that minimizes the Euclidean
distance to v?

The configuration from Case 1 above is called an ear : three consecutive vertices
u, v,w of a simple polygon P such that the relative interior of uw lies in P◦. In fact, we
could have skipped the analysis for Case 2 by referring to the following theorem.

Theorem 4.8 (Meisters [13, 14]). Every simple polygon with n ⩾ 4 vertices has two ears
A and B such that A◦ ∩ B◦ = ∅.

But conversely, knowing Theorem 4.6 and the theorem below, we can recover Theo-
rem 4.8 as a direct consequence.

Theorem 4.9. Every triangulation of a simple polygon P with n ⩾ 4 vertices contains
at least two triangles that serve as ears in P.
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Chapter 4. Polygons Geometry: C&A 2024

Exercise 4.10. Prove Theorem 4.9.

Exercise 4.11. Let P be a simple polygon with vertices v1, v2, . . . , vn in counterclockwise
order, where vi has coordinates (xi, yi). Show that the area of P is

1

2

n∑
i=1

xiyi+1 − xi+1yi,

where we agree that (xn+1, yn+1) = (x1, y1).

A triangulation naturally induces a plane straight-line graph, whose vertices are the
polygon vertices and whose edges come from the sides of triangles. The number of
edges and triangles (faces) are completely determined by the number of vertices, as the
following simple lemma shows.

Lemma 4.12. Every triangulation of a simple polygon on n ⩾ 3 vertices consists of
n− 2 triangles and 2n− 3 edges.

Proof. We prove the statement by induction on n. For n = 3, a triangulation has n−2 =
1 triangle and 2n− 3 = 3 edges. Thus, the stamement holds.

In the general case, take any triangulation T of a simple polygon P on n ⩾ 4 vertices.
Let X be a triangle of T that serves as an ear of P, which exists by Theorem 4.9. Then T−X

is a triangulation of a simple polygon on n−1 vertices. By the inductive hypothesis, the
triangulation T − X consists of (n − 1) − 2 = n − 3 triangles and 2(n − 1) − 3 = 2n − 5

edges. Putting X back adds one more triangle and two more edges. Therefore, the
triangulation T consists of n− 3+ 1 = n− 2 triangles and 2n− 5+ 2 = 2n− 3 edges.

Tetrahedralizations inR3. The universal presence of triangulations is something particular
about the plane: The natural generalization of Theorem 4.6 to dimension three and
higher does not hold. Here we discuss the issue in R3.

A simple polygon is a topological disk in R2 that is locally bounded by patches of
lines. The corresponding term in R3 is a polyhedron, which can be informally defined
via a literal translation of the previous sentence: it is a topologically ball that is locally
bounded by patches of planes. A triangle in R2 corresponds to a tetrahedron in R3 and
a tetrahedralization is a nice partition into tetrahedra. Being “nice” means that the
union of the tetrahedra covers the object, the vertices of the tetrahedra are vertices of
the polyhedron, and any two distinct tetrahedra intersect in either a common triangular
face, a common edge, or a common vertex, or not at all.3

Unfortunately, there are polyhedra in R3 that do not admit a tetrahedralization.
The following construction is due to Schönhardt [18]. It is based on a triangular prism,
that is, two congruent triangles placed in parallel planes, where the corresponding sides
of both triangles are connected by a rectangle (Figure 4.4a). We slightly rotate one

3These “nice” subdivisions can be defined in an abstract combinatorial setting, where they are called
simplicial complexes.
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Geometry: C&A 2024 4.2. Polygon Triangulation

triangle within its plane, thus twisting the prism. As a consequence, the rectangles are
dented inward along their diagonal in direction of the rotation, and are no longer plane.
(Figure 4.4b). The other diagonals of the (former) rectangles—labeled ab ′, bc ′, and

(a)

a

b

c

a ′ c ′

b ′

(b)

Figure 4.4: The Schönhardt polyhedron cannot be subdivided into tetrahedra without
adding new vertices.

ca ′ —are now epigonals, that is, they lie in the exterior of the polyhedron. Since these
epigonals are the only missing edges between the vertices, there is no way to add edges
to form a tetrahedron for a subdivision. Clearly the polyhedron is not a tetrahedron
by itself, and so we conclude that it does not admit a tetrahedralization. Actually, it is
NP-complete to decide whether a non-convex polyhedron has a tetrahedralization [15].
However, if adding new vertices—which are called Steiner vertices—is allowed, then a
tetrahedralization is possible, both in this example and in general.

Even if a tetrahedralization of a polyhedron exists, there is another significant differ-
ence to polygons in R2. While the number of triangles in a triangulation of a polygon
depends only on the number of vertices, the number of tetrahedra in two different tetra-
hedralization of the same polyhedron may be different. See Figure 4.5 for a simple exam-
ple of a polyhedron that has tetrahedralizations with two or three tetrahedra. Deciding
whether a convex polyhedron has a tetrahedralization with at most a given number of
tetrahedra is NP-complete [6].

Exercise 4.13. Characterize all possible tetrahedralizations of the three-dimensional
cube.

Triangulation algorithms. Knowing that a triangulation exists is nice, but it is even nicer
to know that it can also be constructed efficiently.

Exercise 4.14. Convert Theorem 4.6 into an O(n2) time algorithm to construct a
triangulation for a given simple polygon with n vertices.

The runtime of this straightforward application of Theorem 4.6 is not optimal. For
those who are interested in more efficient algorithms, please refer to Appendices A and C.
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t

b

t

b

Figure 4.5: Two tetrahedralizations of the same polyhedron, a triangular bipyramid.
The left partition uses two polyhedra; both the top vertex t and the bottom
vertex b belong to only one tetrahedron. The right partition uses three
polyhedra that all share the dashed diagonal bt.

The best (in terms of worst-case runtime) algorithm known due to Chazelle [7] computes
a triangulation in linear time, but it is very complicated. There is also a somewhat
simpler randomized algorithm in expected linear time [4]. We will not cover either of
them in the notes. It remains open whether there exists a simple (which is not really
well-defined, except that Chazelle’s Algorithm does not qualify) deterministic linear time
algorithm to triangulate a simple polygon [10].

Polygons with holes. It is interesting to note that the complexity of the triangulation
problem changes to Θ(n logn), if the polygon may contain holes [5]. This means that
(1) there is an algorithm to construct a triangulation for a given simple polygon with
holes on n vertices (counting both the vertices on the outer boundary and on the holes’
boundaries) in O(n logn) time; and (2) there is a lower bound of Ω(n logn) operations
in any model of computation that is subject to the same lower bound for comparison-
based sorting. This difference in complexity is a very common pattern: There are many
problems that are (sometimes much) harder for simple polygons with holes than for
simple polygons. So maybe the term “simple” has some justification, after all. . .

General triangle covers. What if we drop the “niceness” conditions for triangulations and
just want to describe a given simple polygon as a union of triangles? It turns out this
is a rather drastic change. For instance, it is unlikely that we can efficiently find an
optimal/minimal description of this type: Christ has shown [8] that it is NP-hard to
decide whether for a simple polygon P with n vertices and a positive integer k, there
exists a set of at most k triangles whose union is P. In fact, the problem is not even
known to be in NP, because it is not clear whether the coordinates of solutions can always
be encoded succinctly.
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Geometry: C&A 2024 4.3. The Art Gallery Problem

4.3 The Art Gallery Problem

In 1973 Victor Klee posed the following question: “How many guards are necessary, and
how many are sufficient to patrol the paintings and works of art in an art gallery with
n walls?” Thinking in geometric terms, we may model “an art gallery with n walls” as
a simple polygon P bounded by n edges, hence also n vertices. And a guard is modeled
as a point g ∈ P where he stands. The edges are opaque and prevent one from seeing
what is behind, thus g watches over all the points p for which the line segment gp lies
completely in P; see Figure 4.6. The task is then to place as least points as possible so
that the entire P is being watched.

g

Figure 4.6: The region that a guard g can observe.

It is not hard to see that ⌊n/3⌋ guards are necessary in some cases.

Exercise 4.15. Describe a family (Pn)n⩾3 of simple polygons such that Pn has n vertices
and requires at least ⌊n/3⌋ guards.

What is more surprising: ⌊n/3⌋ guards are always sufficient for all P with n vertices.
Chvátal [9] was the first to show it, but then Fisk [11] gave a much simpler proof using—
as you may have guessed—triangulations. Fisk’s proof was considered so beautiful that
was selected in “Proofs from THE BOOK” [3]. It is based on the following lemma.

Lemma 4.16. Every triangulation of a simple polygon is 3-colorable. That is, each
vertex can be assigned one of three colors so that adjacent vertices receive different
colors.

Proof. Induction on n. For n = 3 the statement is obvious. For n > 3, by Theorem 4.9
the triangulation contains an ear uvw. Cutting off the ear creates a triangulation of a
polygon on n−1 vertices, which by the inductive hypothesis admits a proper 3-coloring.
Now whichever two colors the vertices u and w receive in this coloring, there remains a
spare color for v.

Theorem 4.17 (Fisk [11]). Every simple polygon with n vertices can be guarded using
at most ⌊n/3⌋ guards.
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Figure 4.7: A triangulation of a simple polygon on 17 vertices and a 3-coloring of it.
The orange vertices form the smallest color class and guard the polygon
using 5 ⩽ ⌊17/3⌋ guards.

Proof. Fix a triangulation of the polygon and then a 3-coloring of the vertices, as ensured
by Lemma 4.16. Place a guard at each vertex of the smallest color class, which clearly
amounts to at most ⌊n/3⌋ vertices. As any point p in the polygon lands in some triangle
T and exactly one of T ’s vertices has the selected color, the point p is watched by that
vertex. Hence the whole polygon is guarded.

4.4 Optimal Guarding

While Exercise 4.15 shows that the bound in Theorem 4.17 is tight in general, it is easy
to see that Fisk’s method does not necessarily minimize the number of guards. Also,
we do not have to restrict ourselves to place the guards at vertices only, but can rather
place them anywhere on the boundary or even in the interior of the polygon. In all
these cases, we can ask for the minimum number of guards required to guard a given
polygon P. These problems have been shown to be NP-hard by Lee and Lin [12] already
in the 1980s. Actually, if the guards are not constrained to lie on vertices, it is not even
clear whether the corresponding decision problem is in NP. In fact, recent results by
Abrahamsen et al. suggest the opposite. In the remainder of this section we will briefly
discuss some of these results.

Recall that a decision problem is in NP if for any “yes” instance, one can present a
certificate that allows polynomial-time verification of the “yes” status.4 In our context,
if we restrict the guards to be on vertices, a natural certificate is the set of vertices where
the guards stand. It allows us to verify that the guards indeed watch the entire polygon
and that the number of guards is within the specified limit.

However, if we drop the restriction, a natural certificate would be the coordinates
of the guards. Since no more than ⌊n/3⌋ guards are required, this seems a reasonable
certificate. But what if the number of bits needed to explicitly represent these coordinates
are exponential in input size? One might be tempted to think that any reasonable guard
can be placed at an intersection point of some lines that are defined by polygon vertices.

4And of course, for any “no” instance there should not be any fake certificate that tricks the verification...
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g`

gm gr

Figure 4.8: To guard this polygon with three guards, there must be one guard on each
of the green dashed segments. The middle guard gm must be to the left of
the blue curve, to the right of the red curve, and on the dashed green line.
The intersection point of these three curves has irrational coordinates.

Alas, in general this is not correct: some guards with irrational coordinates may be
required, even if all vertices of P have integral coordinates! This surprising result has
been presented in 2017 and we will sketch its main ideas, referring to the paper by
Abrahamsen, Adamaszek, and Miltzow [1] for more details and the exact construction.

Consider the polygon shown in Figure 4.8, which consists of a main rectangular region
with triangular, rectangular, and trapezoidal regions attached. On the one hand, it can
be watched by three guards. On the other hand, we will argue that, if this polygon is
guarded with less than four guards, at least one of the guards has an irrational coordinate.
The polygon contains three pairs of triangular regions with the following structure. Each
pair is connected by a green dashed segment in the figure. This segment contains one
edge of each of the two triangles and separates their interiors. Hence, a single guard
that sees both of these triangles has to be placed on this separating segment. Further,
there is no other point that can guard two of these six triangles. Therefore, if we have
only three guards, each of them must be placed on one of these three disjoint segments.
The small rectangular regions to the left, top, and bottom outside the main rectangular
region further constrain the positions of the guards along these segments.

Let the guards be gℓ, gm, and gr, as in the figure. The guard gℓ cannot see all the
points inside the left two trapezoidal regions, and thus gm has to be placed appropriately.
For each position of gℓ on its segment, we get a unique rightmost position on which a
second guard can be placed to guard the two trapezoids. The union of these points defines
an arc that is a segment of a quadratic curve (the roots of a quadratic polynomial). We
get an analogous curve for gr and the two trapezoids attached to the right. By a careful
choice of the vertex coordinates, these two curves cross at a point p that also lies on the
segment for the guard gm and has irrational coordinates. It then follows from a detailed
argument (see [1]) that p is the only feasible placement of gm. Let us point out that the
choice of the vertex coordinates to achieve this is far from trivial. For example, there
can only be a single line defined by two points with rational coordinates that passes
through p, and this is the line on which the guard gm is constrained to lie on.
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Exercise 4.18. Let P be a polygon with vertices on the integer grid, and let g be a
point inside that polygon with at least one irrational coordinate. Show that there
can be at most one diagonal of P passing through g.

Nevertheless, the sketched construction leads to the following result.

Theorem 4.19 (Abrahamsen et al. [1]). For any k, there is a simple polygon P with
integer vertex coordinates such that P can be guarded by 3k guards, while a guard
set having only rational coordinates requires 4k guards.

Abrahamsen, Adamaszek, and Miltzow [2] showed recently that the art gallery prob-
lem is actually complete in a complexity class called ∃R. The existential theory of the
reals (see [16, 17] for details) is the set of true sentences of the form ∃x1, . . . , xn ∈ R :
ϕ(x1, . . . , xn) for a quantifier-free Boolean formula ϕ without negation5 that can use
the constants 0 and 1 as well as the operators +, ∗, and <. For example, ∃x, y : (x <

y) ∧ (x ∗ y < 1 + 1) is such a formula. A problem is in the complexity class ∃R if it
allows for a polynomial-time reduction to the problem of deciding such formulas, and it
is complete if in addition every problem in ∃R can be reduced to it in polynomial time.

Exercise 4.20. Show that NP ⊆ ∃R.

For the art gallery problem, the result by Abrahamsen et al. [2] implies that the
coordinates of an optimal guard set may be doubly-exponential in the input size. This
statement does not exclude the possibility of a more concise, implicit way to express the
existence of an optimal solution. However, if we found such a way, then this would imply
that the art gallery problem is in NP, which, in turn, would imply NP = ∃R.

Questions

11. What is a simple polygon/a simple polygon with holes? Explain the definitions
and provide some examples of members and non-members of the respective classes.
For a given polygon you should be able to tell which of these classes it belongs to
or does not belong to and provide justifications.

12. What is a closed/open/bounded set in Rd? What is the interior/closure of
a point set? Explain the definitions and provide some illustrative examples. For
a given set you should be able to argue which of the aforementioned properties it
possesses.

13. What is a triangulation of a simple polygon? Does it always exist? Explain the
definition and provide some illustrative examples. Present the proof of Theorem 4.6
in detail.

5If we also allowed negation (and hence also the relations ⩽ and =), then it would be possible to express
statements like ∃x : x ∗ x = 1 + 1 that have only irrational solutions, which is impossible to achieve by
using only strict inequalities <. Interestingly, however, the complexity class ∃R, when defined in terms of
these more expressive formulas, would remain the same, see [17].
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14. How many points are needed to guard a simple polygon? Present the proofs of
Theorem 4.9, Lemma 4.16, and Theorem 4.17 in detail.

15. How about higher dimensional generalizations? Can every polyhedron in R3

be nicely subdivided into tetrahedra? Explain Schönhardt’s construction.

16. Is there a succinct representation for optimal guard placements? State Theo-
rem 4.19 and sketch the construction.
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