
Chapter 6

Delaunay Triangulations

In Chapter 4 we have discussed triangulations of simple polygons. A triangulation parti-
tions a polygon into triangles, which allows to easily compute the total area, or to derive
a small guarding set, for instance. Another typical application is interpolation: Suppose
a function f is defined on the vertices of the polygon P, and we want to extend it “rea-
sonably” and continuously to the entire P. To this end we take a triangulation T. Given
any point p ∈ P we find a triangle v1v2v3 ∈ T that contains p, and so p =

∑3
i=1 λivi

can be written as a (unique) convex combination of the three vertices. We may use the
same coefficients to define an interpolated value f(p) :=

∑3
i=1 λif(vi).

If triangulations are a useful tool when working with polygons, they might also turn
out useful for other geometric objects, such as point sets. But what could be a trian-
gulation of a point set? Polygons have a clearly defined interior, which naturally lends
itself to be covered by triangles. A point set does not have an interior, unless... we make
one. Here the notion of convex hull comes handy. One way to think of a point set is as
a convex polygon (its convex hull) potentially with some little holes (those points in the
interior of the hull). A triangulation should then partition the convex hull while respect-
ing the points in the interior. Figure 6.1b shows an example. In contrast, Figure 6.1c
gives a counterexample: although the triangles do partition the convex hull, some points
in the interior are not respected as they are swallowed by large triangles.

(a) Simple polygon triangulation. (b) Point set triangulation. (c) Not a triangulation.

Figure 6.1: Examples of (non-)triangulations.

This interpretation directly leads to the following adaption of Definition 4.4.
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Chapter 6. Delaunay Triangulations Geometry: C&A 2024

Definition 6.1. A triangulation of a finite point set P ⊂ R2 is a collection T of triangles,
such that

(1) conv(P) =
⋃

T∈T T ;

(2) P =
⋃

T∈T V(T); and

(3) for every distinct pair T, T ′ ∈ T, the intersection T ∩ T ′ is either a common
vertex, or a common edge, or empty.

Just as for polygons, triangulations are universally available for point sets, meaning
that (almost) every point set admits at least one.

Proposition 6.2. Every set P ⊆ R2 of n ⩾ 3 points has a triangulation, unless all
points in P are collinear.

Proof. In order to construct a triangulation for P, consider the lexicographically sorted
sequence p1, . . . , pn of points in P. Let m be minimal such that p1, . . . , pm are not
collinear. We triangulate p1, . . . , pm by connecting pm to all of p1, . . . , pm−1 (which are
on a common line), see Figure 6.2a.

(a) Getting started. (b) Adding a point.

Figure 6.2: Constructing the scan triangulation of P.

Then we add pm+1, . . . , pn one by one. Let us inductively assume that we had built
a triangulation of Pi−1 := {p1, . . . , pi−1}, and we are about to add pi. Note that pi is not
contained in Ci−1 := conv(Pi−1) because of the lexicographic order. We connect it with
all “visible” vertices of Ci−1; that is, every vertex v of Ci−1 for which piv ∩ Ci−1 = {v}.
Among these vertices are two tangent points from pi to Ci−1, and the vertices in between
are exactly the visible ones. After adding these connections, we have covered Ci \ Ci−1

by several new disjoint triangles, so overall we obtain a triangulation of Pi.

The triangulation constructed in Proposition 6.2 is called a scan triangulation. Fig-
ure 6.3a shows a larger example. It is usually “ugly”, though, as the lexicographic order
tends to produce many long and skinny triangles. This is not only an aesthetic deficit,
but also a practical concern in the context of interpolation, for example, since long and
skinny triangles imply a less local interpolation. In contrast, the Delaunay triangula-
tion of the same point set (Figure 6.3b) looks much nicer, and we will discuss in the
next section how to get this triangulation.
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(a) Scan triangulation. (b) Delaunay triangulation.

Figure 6.3: Two triangulations of the same set of 50 points.

Exercise 6.3. Describe how to implement the scan triangulation in O(n logn) time for
a set of n points in R2.

On another note, if you look closely into the Graham Scan algorithm for planar
convex hulls in Chapter 5, then you will realize that we also could have used it to prove
Proposition 6.2. Whenever a point q is discarded during Graham Scan due to a right
turn p → q → r, we add the triangle pqr to fill the space. Eventually this leads to a
triangulation of the point set.

Every triangulation of P induces a plane straight-line graph G = (P, E), where the
edges are the sides of the triangles. As shown by the lemma below (cf. Corollary 2.5),
the counts of edges and triangles are determined by P.

Lemma 6.4. Any triangulation of a set P ⊂ R2 of n points has exactly 3n−h−3 edges
and 2n − h − 1 faces in its induced graph, where h := |P ∩ ∂conv(P)| is the number
of points on the outer cycle.

Proof. Consider the graph induced by an arbitrary triangulation of P. Denote by E the
set of edges and by F the set of faces. We count the number of edge-face incidences in
two ways. Denote X = {(e, f) ∈ E× F : e bounds f}.

On the one hand, every edge is incident to exactly two faces and therefore |X| = 2|E|.
On the other hand, every inner face is a triangle and the outer face is bounded by h edges,
therefore |X| = 3(|F| − 1) + h. Together we obtain 3|F| = 2|E| − h + 3. Combining with
Euler’s formula n− |E|+ |F| = 2 we can solve for |E| = 3n−h−3 and |F| = 2n−h−1.

In graph theory, the term “triangulation” is sometimes used as a synonym for “max-
imal planar graph”. But geometric triangulations are somewhat weaker: They are not
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maximal in the sense that no abstract edge can be added; rather, only in the sense that
no straight-line edge can be added without sacrificing planarity.

Corollary 6.5. A triangulation of a set P ⊂ R2 of n points is maximal planar, if and
only if conv(P) is a triangle.

Proof. Combine Corollary 2.5 and Lemma 6.4.

Exercise 6.6. Find for every n ⩾ 3 a simple polygon P with n vertices such that P has
exactly one triangulation. P should be in general position, meaning that no three
vertices are collinear.

Exercise 6.7. Show that every set of n ⩾ 5 points in general position (no three points
are collinear) has at least two different triangulations.
Hint: Show first that every set of five points in general position contains a convex
4-hole, that is, a subset of four points that span a convex quadrilateral that does
not contain the fifth point.

6.1 The Empty Circle Property

We will now move on to study the ominous and supposedly nice Delaunay triangulations
mentioned above. They are defined in terms of an “empty circumcircle” property. The
circumcircle of a triangle is the unique circle passing through the three vertices of the
triangle, see Figure 6.4. Observe that long and skinny triangles usually have unpro-
portionally large circumcircles, which tend to (though not always) enclose other points
inside. A Delaunay triangulation forbids such enclosure, in hope of avoiding skinny
triangles as much as possible.

Figure 6.4: Circumcircle of a triangle.

Definition 6.8. A triangulation T of a finite point set P ⊂ R2 is a Delaunay triangulation,
if the circumcircle of every triangle T ∈ T is empty, that is, the circle does not
enclose any point from P strictly inside.

Consider the example depicted in Figure 6.5. It shows a Delaunay triangulation of a
set of six points: The circumcircles of all five triangles are empty (we also say that the
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Figure 6.5: All triangles satisfy the empty circle property.

triangles satisfy the empty circle property). The dashed circle is not empty, but that is
fine since it is not a circumcircle of any triangle.

It is instructive to look at the toy example where four points are arranged in convex
position. Obviously, there are two possible triangulations. If the four points happen
to lie on the same cycle C, the circumcircle of any three points is exactly C, which
is empty, so both triangulations shall be Delaunay (see Figure 6.6a). But in general
position, i.e. when the four points are not cocircular, only one triangulation is Delaunay
(see Figures 6.6b and 6.6c). This case is formalized in the proposition below, whose
proof technique will show up frequently in this chapter.

(a) Two Delaunay triangulations. (b) Delaunay triangulation. (c) Non-Delaunay triangulation.

Figure 6.6: Triangulations of four points in convex position.

Proposition 6.9. Given a set P ⊂ R2 of four points that are in convex position but not
cocircular. Then P has exactly one Delaunay triangulation.

Proof. Consider a set of four points P = {p, q, r, s} arranged counterclockwise in con-
vex position. There are only two possible triangulations: T1 := {prq, prs} and T2 :=
{qsp, qsr}.

Let C1 be the circumcircle of triangle prq ∈ T1, and C ′
1 be the circumcircle of the

other triangle prs ∈ T1. Since the four points are not cocircular, we have only two cases:
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s is strictly outside C1. First we argue that q must be strictly outside C ′
1. Imagine the

process of continuously moving from C1 to C ′
1 while keeping p, r on the cycle

(Figure 6.7a). More precisely, we move the center towards s along the perpendicular
bisector of pr. At some point the cycle hits s and becomes C ′

1 and the point q

must be “left behind”. Thus q is strictly outside C ′
1, indeed.

As both C1 and C ′
1 are empty, T1 is a Delaunay triangulation. Next we argue

that T2 is not Delaunay. Consider the continuous motion from C1 to C2, the
circumcircle of qsp ∈ T2, while keeping p, q intact (Figure 6.7b). The point r is
on C1 and remains within the circle all the way up to C2. This means C2 is not
empty, thus T2 is not Delaunay.

p

q
r

s

C1

C ′
1

(a) Going from C1 to C ′
1 in C1.

p

q r

s

C1

C2

(b) Going from C1 to C2 in C2.

Figure 6.7: Circumcircles and containment for triangulations of four points.

s is strictly inside C1. The case is symmetric: just shift the roles of pqrs to qrsp.

Exercise 6.10. Prove or disprove that every minimum weight triangulation (that is,
a triangulation for which the sum of edge lengths is minimum) is a Delaunay
triangulation.

6.2 The Lawson Flip algorithm

It is not clear yet that every point set P of n points actually has a Delaunay triangulation
(given that not all points are collinear). In this and the next two sections, we will prove
that this is the case, via the Lawson flip algorithm :

1. Compute some triangulation of P (for example, the scan triangulation).

2. While there exist two adjacent triangles ∆,∆ ′ such that the circumcircle of ∆

encloses a vertex of ∆ ′ (see Figure 6.6c; observe that the four vertices must be in
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convex position), replace them by the other pair of adjacent triangles (Figure 6.6b).
In other words, we flip the diagonal of the convex quadrilateral.

We call the replacement operation in the second step a (Lawson) flip.

Theorem 6.11. Let P ⊆ R2 be a set of n points, equipped with some triangulation
T. The Lawson flip algorithm terminates after at most

(
n
2

)
= O(n2) flips, and the

resulting triangulation D is a Delaunay triangulation of P.

We will prove Theorem 6.11 in two steps: In Section 6.3 we show that the program
described above always terminates and, therefore, is an algorithm indeed. (If you think
about it a little, it is not obvious whether the algorithm would loop indefinitely.) Then
in Section 6.4 we show that the algorithm does produce a Delaunay triangulation upon
termination.

6.3 Termination of the Lawson Flip Algorithm

For the termination proof, we make use of the (parabolic) lifting map ℓ:

p = (x, y) ∈ R2 7→ ℓ(p) = (x, y, x2 + y2) ∈ R3.

Geometrically, ℓ “lifts” the point vertically up until hitting the unit paraboloid {(x, y, z) |
z = x2 + y2} ⊆ R3, see Figure 6.8a.

(a) The lifting map. (b) Points on/inside/outside a circle are lifted to
points on/below/above a plane.

Figure 6.8: The lifting map: circles map to planes.

Recall the following important property of the lifting map that we proved in Exercise 5.32.
It is illustrated in Figure 6.8b.

Lemma 6.12. Let C ⊆ R2 be a circle of positive radius. The “lifted circle” ℓ(C) :=
{ℓ(p) | p ∈ C} is contained in a unique plane hC ⊆ R3. Moreover, a point p ∈ R2 is
strictly inside (respectively outside) C if and only if the lifted point ℓ(p) is strictly
below (respectively above) hC.
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Using the lifting map, we can interpret triangulations in the 3D space. For each
triangle ∆ = pqr, we define its “lifted version” as ℓ(∆) := conv{ℓ(p), ℓ(q), ℓ(r)}, which is
a triangle hanging in the space with ∆ being its “shadow”. This way, the triangulation
is lifted to a piecewise linear surface in the space consisting of patches of triangles.

Consider a Lawson flip on adjacent triangles ∆ = pqr and ∆ ′ = pqs, where p, q, r, s

are in convex position. Let C and C ′ be their respective circumcircles. By the condition
of a flip, C encloses s, and similarly C ′ encloses r. In the lifted picture, Lemma 6.12
states that ℓ(s) is strictly below the plane that contains ℓ(∆), and similarly ℓ(r) is strictly
below the plane that contains ℓ(∆ ′). In other words, the triangles ℓ(∆) and ℓ(∆) form a
mountain that protrudes upward; see Figure 6.9a.

After the flip, the two triangles are replaced by prs and qrs. In the lifted picture,
triangles form a valley that protrudes downward by a similar reasoning; see Figure 6.9b.

More pictorially, imagine an opaque tetrahedron conv{ℓ(p), ℓ(q), ℓ(r), ℓ(s)} in the
space. When you look at it from the top, you see two faces corresponding to the two
triangles before the flip; and when you look from the bottom, you see the other two faces
corresponding to the two triangles after the flip. (You cannot see three faces from either
direction, since p, q, r, s are in convex position.) Hence a Lawson flip can be interpreted
as replacing the two top faces by the two bottom faces of the tetrahedron.

(a) Before the flip: the top two triangles of
the tetrahedron and the corresponding non-
Delaunay triangulation in the plane.

(b) After the flip: the bottom two triangles of the
tetrahedron and the corresponding Delaunay
triangulation in the plane.

Figure 6.9: Lawson flip: the height of the surface of lifted triangles decreases.

It follows that the 3D surface can only grow strictly downward pointwise. In partic-
ular, once an edge pq has been flipped, it becomes strictly above the surface thereafter
and thus can never show up again. Since n points can span at most

(
n
2

)
edges, the bound

on the number of flips follows.

6.4 Correctness of the Lawson Flip Algorithm

The triangulation of P that we get upon termination of the Lawson flip algorithm is
“locally Delaunay”: it checks the empty circle property for adjacent triangles only. But
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in fact it is “globally Delaunay”, too.

Proposition 6.13. The triangulation D that results from the Lawson flip algorithm is
a Delaunay triangulation.

Proof. Suppose for contradiction that there is some triangle ∆ ∈ D and some point p ∈ P

strictly inside the circumcircle C of ∆. Among all such pairs (∆, p), we choose one that
minimizes the distance from p to ∆. Note that this distance is positive by definition of
a triangulation. We assume for now that the point on ∆ closest to p lies on the relative
interior of some edge e of ∆; we will deal with the other case later. The situation is as
depicted in Figure 6.10a.

q

∆

p

(a) A point p inside the cir-
cumcircle C of a triangle ∆.

q

∆

p

q

∆ ′

e

(b) The edge e of ∆ closest to p
and the second triangle ∆ ′

incident to e.

∆

p

q

∆ ′

e

C ′
C

(c) The circumcircle C ′ of ∆ ′ also
contains p, and p is closer to
∆ ′ than to ∆.

Figure 6.10: Correctness of the Lawson flip algorithm.

There must be another triangle ∆ ′ in D that is incident to the edge e. By the local
Delaunay property of D, the third vertex q of ∆ ′ is on or outside of C, see Figure 6.10b.
But then the circumcircle C ′ of ∆ ′ contains the whole portion of C on p’s side of e, hence
it also contains p; moreover, p is closer to ∆ ′ than to ∆ (Figure 6.10c). But this is a
contradiction to our choice of ∆ and p. Hence there was no (∆, p), and D is a Delaunay
triangulation.

Consider now the special case where the point on ∆ closest to p happens to be a
vertex v of the triangle ∆. In this case, we need some additional care when choosing
∆. Among all triangles that use v as a vertex and that have p in their circumcircle, we
choose our actual ∆ as the one for which the edge e (as before, this is the edge that faces
p in the circumcircle) and the segment pv form an angle closest 90 degrees.

From here, the proof proceeds as in the first case. We construct a new triangle ∆ ′

that also uses the edge e and that also contains the point p in its circumcircle. The
difference is that we do not necessarily get the same type of contradiction because the
point on ∆ ′ closest to p might still be v. If that is the case, however, the angle between
the edge e ′ (this is the edge that faces p in the circumcircle of ∆ ′) and the segment pv
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has will be closer to 90◦ compared to e. This now stands in contradiction to our more
careful choice of the triangle ∆, which finishes the proof.

Exercise 6.14. The Euclidean minimum spanning tree (EMST) of a finite point set
P ⊂ R2 is a spanning tree for which the sum of the edge lengths is minimum (among
all spanning trees of P). Show:

(a) Every EMST of P is a plane graph.

(b) Every EMST of P contains a closest pair, that is, an edge between two points
p, q ∈ P that have minimum distance to each other among all point pairs in(
P
2

)
.

(c) Every Delaunay Triangulation of P contains an EMST of P.

Exercise 6.15. (a) Show that for any two triangulations T1 and T2 on a point set P,
it is possible to transform T1 into T2 using O(n2) edge flips.

(b) Let D = P ∪Q where P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qn} each forms a
slightly bent arc, facing against each other. For any line qiqj the set P is on
its left; and symmetrically, for any line pipj the set Q is on its right. Show
that there are two triangulations T1 and T2 on D such that at least Ω(n2) edge
flips are needed to transform T1 into T2.

(c) Show that D can be constructed in such a way that one of the triangulations
from (b), say, T1 is a Delaunay triangulation.

6.5 The Delaunay Graph

Despite the fact that a point set may have more than one Delaunay triangulation, there
are certain edges that are present in every Delaunay triangulation, for instance, the edges
of the convex hull.

Definition 6.16. The Delaunay graph of P ⊆ R2 consists of all line segments pq, for
p, q ∈ P, that are contained in every Delaunay triangulation of P.

The following characterizes the edges of the Delaunay graph.

Lemma 6.17. The segment pq, for p, q ∈ P, is in the Delaunay graph of P if and only
if there exists a circle through p and q for which all other points of P are strictly
outside.

Proof. “⇒”: Let pq be an edge in the Delaunay graph of P, and let D be a Delaunay
triangulation of P. Then there exists a triangle ∆ = pqr in D, whose circumcircle C does
not enclose any point from P strictly inside.

If there is a point s on C such that rs intersects pq, then let ∆ ′ = pqt ̸= ∆ denote the
other triangle in D that is incident to pq (Figure 6.11a). Note that t must be on C, for
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p

q

r

s
C

∆

t

∆ ′

(a) Another point s ∈ ∂C.

p

q

r

C

∆

C ′

(b) Moving C away from s.

Figure 6.11: Characterization of edges in the Delaunay graph (I).

otherwise the circumcircle of ∆ ′ would enclose s. Now flipping the edge pq to rt yields
another Delaunay triangulation that does not contain the edge pq, in contradiction to
pq being an edge in the Delaunay graph. Therefore, there is no such point s.

Otherwise we can slightly change the circle C by moving away from r while keeping
p and q on the circle. As P is a finite point set, we can do such a modification without
catching another point from P with the circle. In this way we obtain a circle C ′ through
p and q such that all other points from P are strictly outside C ′ (Figure 6.11b).

“⇐”: Let D be a Delaunay triangulation of P. If pq is not an edge of D, there must
be another edge of D that crosses pq (otherwise, we could add pq to D and still have
a plane graph, a contradiction to D being a triangulation of P). Let rs denote the first
edge of D that the directed line segment −→pq intersects.

Consider the triangle ∆ of D that is incident to rs on the side that faces p (given
that rs intersects pq this is a well defined direction). By the choice of rs neither of the
other two edges of ∆ intersects pq, and p /∈ ∆◦ because ∆ is part of a triangulation of P.
The only remaining option is that p is a vertex of ∆ = prs. As ∆ is part of a Delaunay
triangulation, its circumcircle C∆ needs to be empty.

Consider now a circle C through p and q for which all other points are strictly outside.
Fixing p and q, we expand C towards r to eventually obtain the circle C ′ through p, q, r

(Figure 6.12a). Recall that r and s are on different sides of the line through p and
q. Therefore, s lies strictly outside C ′. Next fix p and r and expand C ′ towards s to
eventually obtain the circle C∆ through p, r, s (Figure 6.12b). Recall that s and q are on
the same side of the line through p and r. Therefore, q ∈ C∆, which is in contradiction
to C∆ being empty. It follows that there is no Delaunay triangulation of P that does not
contain the edge pq.

The Delaunay graph is useful to prove uniqueness of the Delaunay triangulation in
case of general position.

Corollary 6.18. Let P ⊂ R2 be a finite set of points in general position (no four points
of P are cocircular). Then P has a unique Delaunay triangulation.
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s

C ′
C

∆

(a) Expanding C towards r.

p

q

r

s
C ′

C∆

∆

(b) Expanding C ′ towards s.

Figure 6.12: Characterization of edges in the Delaunay graph (II).

Exercise 6.19. Prove Corollary 6.18.

6.6 Every Delaunay Triangulation Maximizes the Smallest Angle

Why are we interested in Delaunay triangulations? It turns out that Delaunay triangu-
lations satisfy a number of interesting properties. Here we give a scientific explanation
for their nice looks.

Recall that when we compared a scan triangulation with a Delaunay triangulation of
the same point set in Figure 6.3, we claimed that the scan triangulation is “ugly” because
it contains many long and skinny triangles. The triangles of the Delaunay triangulation,
at least in this example, look much nicer, that is, much closer to an equilateral triangle.
One way to quantify this “niceness” is to look at the angles that appear in a triangulation:
If all angles are large, then all triangles are reasonably close to an equilateral triangle.
Indeed, we will show that Delaunay triangulations maximize the smallest angle among
all triangulations of a given point set. This is not saying that there are no long and
skinny triangles in a Delaunay triangulation. But if there is one, then the small angle
is inherent: there would exist at least as skinny triangle in every triangulation of the
point set.

Every triangulation T of P induces an angle sequence A(T) = (θ1, θ2, . . . , θ3m) which
lists the measures of interior angles of all T ∈ T, sorted increasingly so that 0 < θ1 ⩽
θ2 ⩽ · · · ⩽ θ3m < π. Here m is the number of triangles, which is a constant determined
by P; see Lemma 6.4. Let T,T ′ be two triangulations of P. We say that A(T) < A(T ′)
if there is some i for which θi < θ ′

i and θj = θ ′
j, for all j < i. (This is nothing but the

lexicographic order on angle sequences.) We write A(T) ⩽ A(T ′) if A(T) < A(T ′) or
A(T) = A(T ′).

Theorem 6.20. Let P ⊆ R2 be a finite set of points in general position (not all collinear
and no four cocircular). Let D∗ be the unique Delaunay triangulation of P, and let
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T be any triangulation of P. Then A(T) ⩽ A(D∗).

In particular, D∗ maximizes the smallest angle among all triangulations of P.

α1

α4

α2α1

α3

α2

α4 α3

p

q

r

s

(a) Four cocircular points and the
induced eight angles.

α1

α4

α2α1
α3

α2

α4 α3

(b) The situation before a flip.

Figure 6.13: Angle-optimality of Delaunay triangulations.

Proof. We know that T can be transformed into D∗ through the Lawson flip algorithm,
and we are done if we can show that each flip lexicographically increases the angle
sequence. Recall that a flip involves two triangles and thus effectively expels six angles
from the sequence and injects another six. We claim that the minimum of the six new
angles is strictly larger than the minimum of the six old angles. This claim, once proven,
would imply that the sequence increases lexicographically: Before flipping, let 0 < θ < π

be the minimum of the six old angles and i ∈ {1, . . . , 3m} be the last position that the
value occurs in the sequence; after flipping, all values at positions j < i shall persist
whereas the value at position i shall strictly increase.

Next we proceed to show the claim. Let us first look at the situation of four cocircular
points; see Figure 6.13a. The inscribed angle theorem (a generalization of Thales’
Theorem, stated below as Theorem 6.21) tells us that the eight depicted angles come in
four equal pairs. For instance, the angles labeled α1 at s and r are angles on the same
side of the chord pq of the circle.

In our situation, however, no four points are cocircular. When we perform a Lawson
flip, the picture is as in Figure 6.13b where we are about to replace the solid with the
dashed diagonal. Here we use under- and over-lines to suggest the relation between
angles; angle α (repectively α) is strictly smaller (respectively larger) than α. At the
flip, the six old angles are

α1 + α2, α3, α4, α1, α2, α3 + α4,

and the six new angles are

α1, α2, α3, α4, α1 + α4, α2 + α3.
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Now, every new angle is larger than some old angle:

α1 > α1,

α2 > α2,

α3 > α3,

α4 > α4,

α1 + α4 > α4,

α2 + α3 > α3.

So the minimum of the new angles is strictly larger than the minimum of the old angles,
as claimed.

Theorem 6.21 (Inscribed Angle Theorem). Let pq be a chord on a circle C. Then \prq
stays constant when the point r moves along any of the two arcs between p and q.

p

q

r

s

t

C

2θ

θ

θ

π− θ

c

π+ θ

Figure 6.14: The Inscribed Angle Theorem with θ := \prq.

Proof. Without loss of generality we may assume that c is located to the left of or on
the oriented line pq.

Consider first the case that the triangle ∆ = pqr

contains c. Then ∆ can be partitioned into three trian-
gles: pcr, qcr, and cpq. All three triangles are isosce-
les, because two sides of each form the radius of C. De-
note α = \prc, β = \crq, γ = \cpq, and δ = \pcq

(see the figure shown to the right). The angles we are
interested in are θ = \prq = α+ β and δ, and we will
show that δ = 2θ.

Indeed, the angle sum in ∆ is π = 2(α + β + γ)
and the angle sum in the triangle cpq is π = δ + 2γ.
Combining both yields δ = 2(α+ β) = 2θ.

p

q

r

C

δ

α

c

β

β

α γ
γ
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Next suppose that pqcr are in convex position and
r is to the left of or on the oriented line pq. Without
loss of generality let r be to the left of or on the oriented
line qc. (The case that r lies to the right of or on the
oriented line pc is symmetric.) Define α, β, γ, δ as
above and observe that θ = α−β. Again we show that
δ = 2θ.

The angle sum in the triangle cpq is π = δ + 2γ

and the angle sum in the triangle rpq is π = (α−β) +
α+γ+(γ−β) = 2(α+γ−β). Combining both yields
δ = π− 2γ = 2(α− β) = 2θ. p

q

r

C

δ

c

α

α
β

γ

γ

β

It remains to consider the case that r is to the right of the
oriented line pq. Consider the point r ′ that is antipodal to r

on C, and the quadrilateral Q = prqr ′. We are interested in
the angle ϕ of Q at r. By Thales’ Theorem the inner angles
of Q at p and q are both π/2. Hence the angle sum of Q is
2π = θ + ϕ + 2π/2 and so ϕ = π − θ. As shown in the first
two cases, θ is a constant and thus ϕ is also a constant.

p q

r

C

c

θ

φ

π
2
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π
2

What happens in the case where the Delaunay triangulation is not unique? The
following still holds.

Theorem 6.22. Let P ⊆ R2 be a finite set of points, not all on a line. Every Delaunay
triangulation D of P maximizes the smallest angle among all triangulations T of P.

Proof. Let D be some Delaunay triangulation of P. We infinitesimally perturb the points
in P such that no four are on a common circle anymore. Then the Delaunay triangulation
becomes unique (Corollary 6.18). Starting from D, we keep applying Lawson flips until
we reach the unique Delaunay triangulation D∗ of the perturbed point set. Now we
examine this sequence of flips on the original unperturbed point set. All these flips must
involve four cocircular points (only in the cocircular case, an infinitesimal perturbation
can change “good” edges into “bad” edges that still need to be flipped). But as Figure 6.13
(a) easily implies, such a “degenerate” flip does not change the smallest of the six involved
angles. It follows that D and D∗ have the same smallest angle, and since D∗ maximizes
the smallest angle among all triangulations T (Theorem 6.20), so does D.

6.7 Constrained Triangulations

Sometimes one would like to have a Delaunay triangulation, but certain edges are al-
ready prescribed. Of course, one cannot expect to be able to get a proper Delaunay
triangulation where all triangles satisfy the empty circle property. But it is possible to
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obtain some triangulation that comes as close as possible to a proper Delaunay triangu-
lation, given that we are forced to include the edges in E. Such a triangulation is called
a constrained Delaunay triangulation, a formal definition of which follows.

Let P ⊆ R2 be a finite point set and G = (P, E) a geometric graph with vertex set P

and straight-line edges E. A triangulation T of P is said to be a constrained Delaunay
triangulation with respect to G if it contains all edges in E and, for every triangle ∆ ∈ T,

The circumcircle of ∆ does not enclose any point q ∈ P visible from ∆◦. A
point q ∈ P is visible from ∆◦ if there exists a point p ∈ ∆◦ such that the line
segment pq does not cross any e ∈ E. We can thus imagine the line segments
of E as “blocking the view”.

For illustration, consider the simple polygon and its constrained Delaunay triangula-
tion shown in Figure 6.15, where the thick edges are prescribed. The circumcircle of the
shaded triangle ∆ contains a lot of points in its interior, but that does not matter since
the points are blocked by the edge e and are thus invisible from ∆◦.

∆
e

Figure 6.15: Constrained Delaunay triangulation of a simple polygon.

Theorem 6.23. For every finite point set P and every plane graph G = (P, E), there
exists a constrained Delaunay triangulation of P with respect to G.

Exercise 6.24. Prove Theorem 6.23. Also describe a polynomial algorithm to construct
such a triangulation.

Questions

23. What is a triangulation? Provide the definition and prove a basic property: every
triangulation with the same set of vertices and the same outer face has the same
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number of triangles.

24. What is a triangulation of a point set? Give a precise definition.

25. Does every point set (not all points on a common line) have a triangulation?
You may, for example, argue with the scan triangulation.

26. What is a Delaunay triangulation of a set of points? Give a precise definition.

27. What is the Delaunay graph of a point set? Give a precise definition and a
characterization.

28. How can you prove that every set of points (not all on a common line) has a
Delaunay triangulation? You can for example sketch the Lawson flip algorithm
and the Lifting Map, and use these to show the existence.

29. When is the Delaunay triangulation of a point set unique? Show that general
position is a sufficient condition. Is it also necessary?

30. What can you say about the “quality” of a Delaunay triangulation? Prove
that every Delaunay triangulation maximizes the smallest interior angle in the
triangulation, among the set of all triangulations of the same point set.
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