
Chapter 7

Incremental Construction of Delaunay
Triangulation

We have learned about the Lawson flip algorithm which computes a Delaunay trian-
gulation of a given n-point set P ⊆ R2 by performing O(n2) flips. With some care,
the algorithm can be implemented to run in O(n2) time. On the other hand, we have
also seen in an exercise that certain point sets require Ω(n2) flips, meaning that the
worst-case running time is Θ(n2).

Here we will present a different, randomized algorithm which runs in O(n logn)
time in expectation. (The probability comes from the random choices made by the
algorithm, not from the input P.) Throughout we assume general position (no three
points collinear and no four points cocircular), so that the Delaunay triangulation is
unique by Corollary 6.18. There are techniques to deal with non-general position, but
we will leave that out.

7.1 Incremental construction

To avoid special cases, we augment the set P with three “far-out” points a, b and c. For
now suffice it to say that the huge triangle abc contains P with abundant space cushion.

The idea is to start from the triangle abc and insert other points one after another
according to a uniformly random order (p1, p2, . . . , pn) of P. For 1 ⩽ s ⩽ n, we denote
Ps = {p1, . . . , ps} and P+

s = {a, b, c} ∪ Ps. Suppose that in the first s − 1 rounds we had
built the Delaunay triangulation Ds−1 of P+

s−1. At round s we shall insert point ps and
repair the structure to get the Delaunay triangulation Ds of P+

s . In the end, we obtain
the Delaunay triangulation Dn of P+

n .
From Dn we want to “read off” the Delaunay triangulation of P by simply ignoring

the three artificial points. For this to work, the convex hull boundary ∂conv(P) should
be respected by Dn. It can be ensured by placing a, b, c far enough so that they are not
enclosed by the empty circumcircles going through adjacent convex hull vertices. But
practically speaking, a simpler approach is to choose a = (−∞,−∞), b = (∞,−∞) and
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Geometry: C&A 2024 7.2. Organizing the Lawson flips

c = (0,∞) and extend the algebra to handle symbols −∞,∞.
Below is the outline of round s, which will be fleshed out in subsequent sections. In

our figures, we suppress the artificial points since they are merely a technicality.

(a) Find the triangle ∆ ∈ Ds−1 that contains ps, and split it into three triangles by
connecting ps with the three vertices of ∆. We now have a triangulation T of P+

s .
(Figure 7.1a)

(b) Perform Lawson flips on T until we obtain the Delaunay triangulation Ds. (Figure
7.1b)

ps
∆

(a)

ps ps

ps ps

(b)

Figure 7.1: Insert ps to ∆ ∈ Ds−1 and perform Lawson flips.

7.2 Organizing the Lawson flips

First off, let us implement (b) in the outline. It turns out that the Lawson flips proceed
quite systematically.
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Lemma 7.1. The following invariants hold at any particular moment in round s:

(i) Every edge incident to ps must belong to Ds; in particular, it cannot be flipped
away in the rest of round s.

(ii) Every applicable Lawson flip at this moment involves some triangle psuv and
some triangle uvw ∈ Ds−1. It replaces them with triangles psuw and psvw,
both incident to ps, thus the degree of ps increases by one.

Proof. We argue by strong induction over time. As the base case, we consider the
moment before any flip is performed.

(i) Let us take any incident edge psw, where w must be a vertex of ∆. Since ∆ ∈ Ds−1,
its circumcircle C encloses nothing but the new point ps. We can thus shrink C

to an empty circle C ′ passing through ps and w only, see Figure 7.2a. So the edge
psw must be in Ds by Lemma 6.17.

(ii) Only the three edges of ∆ are potentially flippable, since they are the only edges
whose incident triangles have changed and form a convex quadrilateral. So any
next flip must adhere to the claimed format.

ps

w

∆

C ′
C

(a)

ps

C ′

w

C

(b)

Figure 7.2: Newly created edges incident to ps are in the Delaunay graph

Next we consider the moment after some flip(s) have been performed. Denote by
R ⊆ R2 the union of all triangles incident to ps right now. Note that R is a star-shaped
polygon. One can see by inductively applying (ii) that the affected region of the previous
flips is restricted in R. In other words, all triangles outside R are not yet touched, meaning
they must belong to Ds−1.

(i) Let us take the incident edge psw generated by the last flip. By induction hy-
pothesis (ii), this flip destroys exactly one triangle in Ds−1. Its circumcircle C

contains ps only, and shrinking it yields an empty circle C ′ through ps and w, see
Figure 7.2b. Thus psw must be in Ds by Lemma 6.17.
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(ii) As established in (i), all edges incident to ps are not flippable. So any flippable
edges has to be a boundary edge of polygon R, say uv. On one side it is incident to
some triangle psuv (by definition of R); on the other side it is incident to a triangle
uvw ∈ Ds−1 (as we argued above).

This completes the induction.

The lemma suggests that we can maintain a queue of potentially flippable edges that
we process in turn. Initially the queue contains only the three edges of ∆. In each
step, we remove an edge uv from the queue. If its two incident triangles psuv and
uvw are not locally Delaunay, then we perform the flip and push uw and vw to the
queue. Otherwise we simply discard it because it cannot become flippable in the future.
(Suppose to contradiction that it becomes flippable, then by Lemma 7.1 the flip must
involve psuv and some uvw ∈ Ds−1. But the two triangles are in place right now, so we
should have performed the flip right away.)

Corollary 7.2. Let ds := degDs
(ps) be the degree of vertex ps in the (graph of) triangu-

lation Ds. Then in round s we perform exactly ds−3 Lawson flips. Moreover, these
flips can be implemented to consume time only linear in ds. The total number of
triangles created in round s is 2ds − 3 (although some of them can be flipped away
within the same round).

Proof. By Lemma 7.1, every Lawson flip increases the number of edges incident to ps

by exactly one. So the number of flips is equal to the final degree ds minus the initial
degree 3. Each flip creates two new triangles, along with the initial three triangles we
get 2ds − 3 in total. Using the queue implementation discussed above, every flip needs
only a constant number of operations, so the total running time is linear in ds.

7.3 The History Graph

Let us get back to part (a) in the outline and specify how we find the triangle ∆ ∈ Ds−1

that contains the point ps. Doing this in the naïve way (checking all triangles) is not
a good idea, as it would then amount to Θ(n2) work throughout the whole algorithm.
Here is a smarter method, based on a data structure called history graph.

Definition 7.3. For 1 ⩽ s ⩽ n, the history graph Hs is a directed acyclic graph whose
nodes are all triangles ever been created in the first s rounds. Whenever the algo-
rithm splits a triangle ∆, we add a directed edge from ∆ to the three new triangles
(Figure 7.3a). Whenever the algorithm flips triangles ∆1, ∆2 to ∆ ′

1, ∆
′
2, we add

directed edges ∆i → ∆ ′
j for i, j ∈ {1, 2}. (Figure 7.3b)

The history graph Hs contains triangles of outdegrees 3, 2 and 0, where the ones with
zero outdegree are exactly the triangles of Ds. It can be built during the incremental
construction at asymptotically no extra cost; but it may need extra space to keeps all
triangles ever created.
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Figure 7.3: The history graph

Given Hs−1, we can search for the triangle ∆ ∈ Ds−1 that contains ps by starting
from the big triangle abc—it certainly contains ps—and tracking down a directed path
in Hs−1. If the current triangle still has outneighbors, we move on to the unique out-
neighbor containing ps (recall that we assume general position) and search iteratively.
If the current triangle has no outneighbors, it must be in Ds−1 and contains ps, so we
are done.

7.4 Analysis of the algorithm

The runtime analysis heavily exploits conditional expectations. Here is a quick refresher.
Let X, Y be two random variables in a finite probability space. When we “condition on”
variable X, what we mean is to “freeze” or “reveal” the outcome of X as a concrete value.
Consequently some randomness dissipates, and the distribution of Y is thus biased. In
general this distribution shall depend on the concrete X-value. For example, suppose we
sample a uniform permutation π of {1, 2, 3}, and define X = π(1) and Y = π(2). So Y by
itself is uniformly distributed over {1, 2, 3}. Conditioning on X shall make Y uniformly
distributed on {1, 2, 3} \ X instead.

The conditional expectation E(Y | X) is defined as the expectation of Y taken with
respect to this now-biased distribution. Hence E(Y | X) is a function of X in general. In
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our illustrative example,

E(Y | X) =


2.5, X = 1

2, X = 2

1.5, X = 3

 = 3−
X

2
.

It is easy to prove the so-called total expectation formula E(Y) = E[E(Y | X)], but
it might be more important to remember its interpretation. To compute E(Y), we first
partition the universe depending on the outcome of X. Then for each part, we compute
the expectation E(Y | X) individually, which are our “partial results”. Finally, we put
these pieces together by a weighted average. One can view this as a natural generalization
of elementary counting principle: To count the number of certain objects, we could
partition them into several types, count each type individually, and then sum them up.

Cost of Lawson flips. Recall from Corollary 7.2 that ds := degDs
(ps) captures the running

time of Lawson flips as well as the growth of history graph in round s. This leads us to
study the expected value of ds.

Lemma 7.4. E[ds] ⩽ 6 for all s.

Proof. Let us condition on the set Ps, i.e. we freeze the set of the first s points. Note that
the exact ordering of these points is not revealed, and remains uniformly random. In par-
ticular, ps is uniformly distributed in Ps. On the other hand, the Delaunay triangulation
Ds is no longer random because it is uniquely determined by Ps.

Hence E[ds | Ps] means “the expected degree of ps in the fixed graph Ds = Ds(Ps),
where the point ps is sampled from the fixed set Ps uniformly at random”.

Since Ds is a triangulation on s+3 points with triangular convex hull, it follows from
Lemma 6.4 that it has 3(s+ 3) − 6 edges. Excluding the three edges of the convex hull,
the total degree of all points in Ps is at most 2(3(s + 3) − 9) = 6s. This implies that
E[ds | Ps] ⩽ 6. The lemma follows by removing the condition via total expectation.

By combining the above lemmas, we can also prove the following bound on the
expected number of triangles created by the algorithm. Note that this is at the same
time a bound on the expected size of the history graph.

Corollary 7.5. The expected number of triangles ever created in n rounds is at most
9n + 1 = O(n). All the same, the expected running time of all Lawson flips in n

rounds is O(n).

Proof. Before inserting any points from the set P, we only have the artificial triangle
abc. During round s of the algorithm, we know from Corollary 7.2 that the number of
new triangles created is 2ds − 3. Combined with Lemma 7.4, the expected number of
created triangles in all n iterations is

1+ E

[
n∑

s=1

2ds − 3

]
= 1+

n∑
s=1

(2E[ds] − 3) ⩽ 1+ (2 · 6− 3)n = 9n+ 1.
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Note that we cannot say that every round creates at most 9 triangles; as there could
be very costly insertions with some probability. But the claim holds in expectation which
is enough to provide a linear expected runtime.

Cost of locating points. We proceed now to the most difficult part of the analysis: to
bound the time for finding the triangle in Hs−1 that contains ps. This is proportional
to the number of triangles in Hs−1 that contains ps. Hence let us take a closer look at
all the triangles in the history graph Hs−1.

Suppose a triangle ∆ was added to the graph in round r. If ∆ ∈ Dr then we call it
valid, as it survived the round that it was born. Otherwise we call it ephemeral, as it
got flipped away in the very same round it was born. To make the analysis possible, we
want to express the running time in terms of valid triangles only.

Observation 7.6. The number of triangles in Hs−1 that contains ps is proportional to
the number of valid triangles in Hs−1 whose circumcircle contains ps.

Indeed, recall from Lemma 7.1 that at every Lawson flip in some round r, one of the
replaced triangles is in Dr−1 (hence valid) and the other one was created in the current
round r (hence ephemeral). That is, a flip always destroys valid and ephemeral triangles
in pair. Therefore, for any ephemeral triangle ∆ ∈ Hs−1 that contains ps, we may charge
it to its partner ∆ ′, the valid triangle that was destroyed together with ∆. It is clear that
the triangle ∆ ′ is charged at most once. We also know from the condition of Lawson
flip that ∆, hence also ps, is contained in the circumcircle of ∆ ′. So the observation is
established.

Back to time analysis, let us introduce some handy random variables. For every
1 ⩽ r < s ⩽ n,

• τr = Dr \ Dr−1 consists of all triangles in Dr newly created in round r;

• φr,s is the number of triangles in τr whose circumcircle contains the point ps.

Then the observation implies that the searching time in round s is proportional to∑s−1
r=1 φr,s. This works since any valid triangle in Hs−1 that contains ps must be in

τr for some r < s.
Instead of bounding this cost for a particular round s, we try to bound the combined

cost over all rounds, i.e.

T :=

n∑
s=1

s−1∑
r=1

φr,s =

n∑
r=1

n∑
s=r+1

φr,s

where we exchanged the summations in the second equality.

Lemma 7.7. It holds that E[T ] = O(n logn).
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Proof. Using linearity of expectation, we have

E[T ] =

n∑
r=1

n∑
s=r+1

E[φr,s].

Observe that the variables φr,r+1, φr,r+2, . . . , φr,n are identically distributed due to
symmetry. To see this more clearly, recall that φr,s is defined in terms of τr and ps. Let
us condition on (i.e. freeze) the ordering (p1, . . . , pr). Then τr is fixed, whereas each of
pr+1, pr+2, . . . , pn is uniformly distributed over the fixed set P \ {p1, . . . , pr}. It follows
that the variables of interest are identically distributed under the condition; but we may
remove the condition nonetheless via total probability.

Hence we may simplify the expectation as

E[T ] =

n∑
r=1

(n− r) · E[φr,r+1] (7.8)

It remains to analyze the expected value E[φr,r+1] for every particular 1 ⩽ r ⩽ n.
Let Γ consist of all triangles in Dr whose circumcircle contains pr+1. This is nothing but
“all triangles in Dr that are destroyed in round r+ 1”. From Lemma 7.1 we immediately
have |Γ | = dr+1 − 2 (we also count the triangle that is split into three).

On the other hand, by definition we may rewrite φr,r+1 =
∑

∆∈Γ X∆. Here X∆ is the
indicator variable for the event ∆ /∈ Dr−1, which takes value 1 if the event happens and
value 0 otherwise. In order to apply linearity of expectation, the summation must be
“derandomized”; that is, it should not run over a random set Γ . Hence we condition on
(i.e. freeze) the set Pr as well as the point pr+1. We stress that the concrete ordering of
Pr is not revealed. Nevertheless, the Delaunay triangulation Dr is uniquely determined,
so is Γ . Therefore,

E[φr,r+1 | Pr, pr+1] =
∑
∆∈Γ

E[X∆ | Pr, pr+1]

=
∑
∆∈Γ

Pr[∆ ̸∈ Dr−1 | Pr, pr+1]

⩽
∑
∆∈Γ

3

r

=
3

r
· |Γ | = 3

r
· (dr+1 − 2)

To see the inequality, observe that if a triangle ∆ ∈ Γ is not contained in Dr−1, then it
must be created in round r. In particular, pr needs to be its vertex by Lemma 7.1. As pr

is uniformly distributed over the set Pr (under conditions Pr, pr+1), the event happens
with probability at most 3/r. (“At most” because some vertex of ∆ might be the artificial
points a, b or c; in that case pr cannot hit it).
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Now we remove the condition via total expectation and obtain

E[φr,r+1] ⩽
3

r
· (E[dr+1] − 2) ⩽

12

r
, (7.9)

where we used Lemma 7.4 in the last step. We are finally able to plug (7.9) back into (7.8)
to conclude the proof:

E[T ] ⩽
n∑

r=1

12(n− r)

r
⩽ 12n

n∑
r=1

1

r
= O(n logn).

The main theorem. Having the previous lemmas at hand, assembling our main result is
now straightforward.

Theorem 7.10. The Delaunay triangulation of a set P of n points in the plane can be
computed in O(n logn) expected time, using O(n) expected space.

Proof. The correctness of the algorithm follows from the correctness of the Lawson flip
algorithm, and from the fact that we perform all possible Lawson flips in each round.
For the space consumption, only the history graph might use more than linear space,
but Lemma 7.5 bounds its expected size by O(n), so the claim follows.

For the running time, Lemma 7.7 bounds the expected time spent on point location
(over all n rounds) by O(n logn), and Lemma 7.5 bounds the expected time spent on
Lawson flips (over all n rounds) by O(n). So the algorithm runs in O(n logn) time in
expectation.

Exercise 7.11. For a sequence of n pairwise distinct numbers y1, . . . , yn consider the
sequence of pairs (min{y1, . . . , yi},max{y1, . . . , yi})i=0,1,...,n (min ∅ := +∞,max ∅ :=
−∞). How often do these pairs change in expectation if the sequence is permuted
randomly, each permutation appearing with the same probability? Determine the
expected value.

Exercise 7.12. Given a set P of n points in convex position represented by the clockwise
sequence of the vertices of its convex hull, provide an algorithm to compute its
Delaunay triangulation in O(n) time.

Questions

31. What conditions should the three “far-out” points a, b, c satisfy? Explain the
reason.

32. Describe the algorithm for the incremental construction of DT(P): how do we
find the triangle containing the point ps to be inserted into Ds−1? How do we
transform Ds−1 into Ds? How many steps does the latter transformation take?

33. What are the two types of triangles that the history graph contains?
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