
Chapter 8

Voronoi Diagrams

8.1 The Post Office Problem

Suppose there are n post offices in a city, and a citizen would like to know which one is
closest to him.1 Modeling the city in the plane, we think of the post offices as a point
set P = {p1, . . . pn} ⊂ R2, and the query location as a point q ∈ R2. The task is to find
pi ∈ P that minimizes ∥pi − q∥.

Figure 8.1: Closest post offices for various query points.

While the post offices P are considered stable, the query point q is not known in
advance and can be changing frequently. Therefore, our long term goal is to come up
with a (static) data structure on top of P that allows to answer any possible query
efficiently.

As there can be only n possible answers, the idea is to apply the so-called locus
approach : we subdivide the query space (in our case R2) into n regions according to
the answer; the i-th region contains all points for which pi is the closest. The resulting
structure is called a Voronoi diagram ; see Figure 8.2 for an example.

1Another—possibly historically more accurate—way to think of the problem: You want to send a letter
to a person living in the city. For this you should know his zip code, which is the code of the post office
closest to him.

119

Chapter 8. Voronoi Diagrams Geometry: C&A 2024

Figure 8.2: The Voronoi diagram of a point set.

Let us remark right away that such approach works for a variety of distance functions
and spaces [2, 7]. So the Voronoi diagram can be viewed as a broadly applicable paradigm.
Without further qualification, the underlying distance function is Euclidean.

What exactly does a Voronoi diagram look like? As a warmup, suppose there are only
two post offices: P = {p, p ′}. Then the plane subdivides into two regions delimited by
the bisector of p and p ′, i.e. the points that are equidistant to p and p ′. The following
proposition characterizes the shape of the bisector.

Proposition 8.1. The bisector of two distinct points p, p ′ ∈ Rd is a hyperplane (a line
when d = 2). It is orthogonal to the line pp ′ and goes through the midpoint of pp ′.

Proof. Let us understand points as column vectors, so for any points a = (a1, . . . , ad)

and b = (b1, . . . , bd) in Rd we have the identity ∥a−b∥2 =
∑d

i=1(ai−bi)
2 =

∑d
i=1 a

2
i −

2
∑d

i=1 aibi +
∑d

i=1 b
2
i = ∥a∥2 − 2a⊤b+ ∥b∥2.

The bisector of p, p ′, by definition, consists of all points x ∈ Rd such that

∥p− x∥ = ∥p ′ − x∥ ⇐⇒ ∥p− x∥2 = ∥p ′ − x∥2

⇐⇒ ∥p∥2 − 2p⊤x+ ∥x∥2 = ∥p ′∥2 − 2p ′⊤x+ ∥x∥2

⇐⇒ 2(p ′ − p)⊤x = ∥p ′∥2 − ∥p∥2.
As p ̸= p ′, this is the equation of a hyperplane orthogonal to the vector p ′−p (hence the
line pp ′). One can easily verify that the midpoint x = (p+p ′)/2 fits in the equation.

Let us then denote by H(p, p ′) the closed halfspace bounded by the bisector of p, p ′

that contains p. In this chapter we only study R2, so H(p, p ′) is a halfplane (Figure 8.3).
As we noted earlier, when there are only two post offices p and p ′, the plane is subdivided
by H(p, p ′) and H(p ′, p).

Exercise 8.2.

(a) What is the bisector of a line ℓ and a point p ∈ R2 \ ℓ, that is, the set of all
points x ∈ R2 with ||x− p|| = minr∈ℓ ||x− r||?

120

Geometry: C&A 2024 8.2. Voronoi Diagram

p

p ′

H(p, p ′)

Figure 8.3: The bisector of two points in R2.

(b) For two distinct points p, p ′ ∈ R2, what is the region that contains all points
whose distance to p is exactly twice their distance to p ′?

8.2 Voronoi Diagram

Understanding the situation for two points essentially teaches us the law for the general
case. In the following we formally define and study the Voronoi diagram for a given
point set P = {p1, . . . , pn} ⊂ R2.

Definition 8.3. For i ∈ {1, . . . , n}, the Voronoi cell of point pi is defined as

VP(i) :=
{
q ∈ R2 : ∥q− pi∥ ⩽ ∥q− pj∥, ∀j ∈ {1, . . . , n}

}
.

Observe that (1) each Voronoi cell is non-empty since pi ∈ VP(i); (2) the interiors
of the cells are disjoint; and (3) the cells cover the entire plane. So these cells form a
subdivision of the plane. It turns out that every cell looks quite regular:

Proposition 8.4. For every i ∈ {1, . . . , n},

VP(i) =
⋂
j̸=i

H(pi, pj) .

In particular, it is a convex set whose boundary is piecewise linear (i.e. consisting
of segments, rays or lines).

Proof. For every j ̸= i, we have ∥q − pi∥ ⩽ ∥q − pj∥ if and only if q ∈ H(pi, pj).
Hence VP(i) is exactly the intersection of these halfplanes (which are all convex); this is
a convex set with piecewise linear boundary.

Definition 8.5. The Voronoi Diagram VD(P) of a set P = {p1, . . . , pn} of points in R2 is
the subdivision of the plane induced by the Voronoi cells VP(i), for i = 1, . . . , n. We
denote by VV(P) the set of vertices, by VE(P) the set of edges, and by VR(P) the
set of regions/cells.

Lemma 8.6. Every vertex v ∈ VV(P) satisfies the following statements:

(a) v is incident to at least three cells from VR(P);

121

Chapter 8. Voronoi Diagrams Geometry: C&A 2024

(b) v is the common endpoint of at least three edges from VE(P);

(c) v is the center of an empty circle C(v) through at least three points from P;
“empty” means that no point from P is strictly enclosed by C(v).

Proof. Consider a vertex v ∈ VV(P). As all Voronoi cells are convex, k ⩾ 3 of them
must be incident to v. This proves a) and b).

Without loss of generality let these incident cells be VP(1), . . . ,VP(k) in circular order;
see Figure 8.4. Since v ∈ VP(i) for all i ⩽ k, the points p1, . . . , pk are simultaneously
closest to v. (Any pj where j > k is strictly farther away; for otherwise v should have
been incident to VP(j), too.) With r denoting this smallest distance, we have ∥v−pi∥ =
r < ∥v− pj∥ for 1 ⩽ i ⩽ k < j ⩽ n. In other words, p1, . . . , pk are on an empty circle of
radius r centered at v. This proves (c).

v

e2

ek−1

eke1

VP(k)

VP(1)

VP(2)

. . .

Figure 8.4: Voronoi cells around v.

Corollary 8.7. If P is in general position (no four points cocircular), then every vertex
v ∈ VV(P) satisfies the following statements:

(a) v is incident to exactly three cells from VR(P);

(b) v is the common endpoint of exactly three edges from VE(P);

(c) v is the center of an empty circle C(v) through exactly three points from P.

Lemma 8.8. There is an unbounded Voronoi edge shared by VP(i) and VP(j), if and
only if pipj ∩ P = {pi, pj} and pipj ⊆ ∂conv(P).

Proof. Denote by bi,j the bisector of pi and pj, and let D denote the family of circles
with center on bi,j and passing through pi, pj. It is not hard to see that the following
statements are equivalent:

• There is an unbounded Voronoi edge shared by VP(i) and VP(j).

• There is a ray ρ ⊂ bi,j such that for all r ∈ ρ and k ̸∈ {i, j}, we have ||r − pk|| >

||r− pi|| = ||r− pj||.

122

Geometry: C&A 2024 8.3. Duality With Delaunay Triangulations

pi pj

ρ

H

r0

r

bi,j

C

D

Figure 8.5: The correspondence between pipj appearing on ∂conv(P) and the existence
of a divergent family of empty disks.

• There is a ray ρ ⊂ bi,j such that every circle D ∈ D with center on ρ is empty.
(Figure 8.5)

Assuming the last statement, we have two observations. First, no point from P is on
the segment pipj except pi, pj. Second, the open halfplane H bounded by line pipj and
containing the infinite part of ρ contains no point from P. Therefore pipj appears on
∂conv(P).

Conversely, assume pipj ∩ P = {pi, pj} and pipj ⊆ ∂conv(P). Then one of the open
halfplanes H bounded by line pipj contains no point from P. Since all points from
P \ {pi, pj} are strictly away from the segment pipj, there exists an empty circle C ∈ D

provided its center r0 is sufficiently far away from the line. Let ρ ⊆ bi,j ∩ H be a ray
emanating from r0. Any circle D ∈ D centered on ρ encloses only a subset of H∪C. As
neither H nor C contains any point from P, the circle D is empty. This establishes the
last statement, and the proof is complete.

8.3 Duality With Delaunay Triangulations

A straight-line dual of a plane graph G is a geometric graph G ′ defined as follows: For
each face of G, designate a point in R2 as its representative. Connect two representatives
if their corresponding faces are adjacent in G.

Note that the notion depends heavily on the plane embedding G (the word “face”
does not make sense for an abstract G), as well as the choice for representatives. In
general, G ′ may have crossings.

Every Voronoi diagram can be treated as a plane graph. It is particularly natural to
pick pi as the representative for face VP(i). With this choice, the dual has no crossing
and satisfies interesting properties. We thus call it the straight-line dual of a Voronoi
diagram.

123

Chapter 8. Voronoi Diagrams Geometry: C&A 2024

Theorem 8.9 (Delaunay [3]). Let P ⊂ R2 be a set of n ⩾ 3 points in general position
(no three points collinear and no four points cocircular). The straight-line dual of
VD(P) is exactly the (unique) Delaunay triangulation of P.

Proof. We write G := VD(P) (understood as a plane graph). Denote by G ′ its straight-
line dual, and by D the Delaunay triangulation of P. Note that V(G ′) = P = V(D). We
aim to show E(G ′) = E(D).

First we argue E(G ′) ⊆ E(D). By construction of the dual, every edge pipj ∈ E(G ′)
originates from adjacent cells VP(i), VP(j) in G.

• If the cells share an unbounded Voronoi edge, then by Lemma 8.8, pipj is on
∂conv(P) which is also contained in E(D).

• Otherwise, the cells share a bounded Voronoi edge uv. By Corollary 8.7(b)(c), the
Voronoi vertex v is incident to exactly three Voronoi cells VP(i), VP(j) and some
VP(k), and the circle through pi, pj, pk is empty. In particular pipj is in E(D) by
Lemma 6.17.

Conversely we argue E(G ′) ⊇ E(D). Any edge in E(D) appears in some Delaunay
triangle pipjpk with empty circumcircle. The center v of the circle thus has pi, pj, pk as
its closest points. So v must be incident to the cells VP(i), VP(j), VP(k). Therefore, by
construction of the dual we know that pipj, pjpk, pkpi are edges in E(G ′).

Figure 8.6: The Voronoi diagram of a point set and its dual Delaunay triangulation.

As a remark, the proof in fact establishes a correspondence between Voronoi vertices
and Delaunay triangles: Given a Voronoi vertex, the three points from its incident
cells form a Delaunay triangle; vice versa, given a Delaunay triangle, the center of its
circumcircle is a Voronoi vertex.

It is not hard to remove the general position assumption in Theorem 8.9. In this
case, a Voronoi vertex of degree k > 3 corresponds in the dual to a convex k-gon with

124

Geometry: C&A 2024 8.4. A Lifting Map View

cocircular vertices. If we triangulate all these polygons in the dual arbitrarily, then we
obtain a Delaunay triangulation of P. In fact, the dual of the Voronoi diagram for points
in non-general position turns out to be equal to the Delaunay graph.

Corollary 8.10. |VE(P)| ⩽ 3n− 3−h and |VV(P)| ⩽ 2n− 2−h, where h := |P∩∂conv(P)|
is the number of points on the convex hull boundary.

Proof. We assume general position (otherwise the proof can be adapted easily). Every
Voronoi edge corresponds to an edge in the Delaunay triangulation. Every Voronoi
vertex corresponds to a triangle in the Delaunay triangulation. So the counts follow
from Lemma 6.4.

Corollary 8.11. For a set P ⊂ R2 of n points in general position, the Voronoi diagram
of P can be constructed in expected O(n logn) time and O(n) space.

Proof. We have seen that a Delaunay triangulation for P can be obtained using ran-
domized incremental construction within the asserted time and space bounds. Using the
correspondence between Voronoi vertices/edges and Delaunay triangles/edges, we may
generate the Voronoi diagram in O(n) additional time and space.

Exercise 8.12. Consider the Delaunay triangulation T for a set P ⊂ R2 of n ⩾ 3 points
in general position. Prove or disprove:

(a) Every edge of T intersects its dual Voronoi edge.

(b) Every vertex of VD(P) is contained in its dual Delaunay triangle.

Exercise 8.13. Given a Voronoi diagram of some unknown point set P, can you com-
pute P along with a Delaunay triangulation in linear time?

8.4 A Lifting Map View

Recall that the lifting map ℓ : (x, y) 7→ (x, y, x2+y2) raises a point in the plane vertically
to the unit paraboloid U in R2. We used it in Section 6.3 to prove that the Lawson Flip
Algorithm terminates. Interestingly, it also plays a role here with Voronoi diagrams.

For p ∈ R2 let Hp ⊆ R3 be the plane tangent to U at ℓ(p). We denote by hp(q) the
vertical projection of a point q ∈ R2 onto the plane Hp (see Figure 8.7).

Lemma 8.14. ∥ℓ(q) − hp(q)∥ = ∥p− q∥2, for any points p, q ∈ R2.

Exercise 8.15. Prove Lemma 8.14. Hint: First determine the equation of the plane
Hp tangent to U at ℓ(p).

Theorem 8.16. Let H+
p be the closed halfspace above plane Hp. Define H :=

⋂
p∈P H+

p .
Then the vertical projection of ∂H onto the xy-plane forms the Voronoi diagram of
P. That is, the faces/edges/vertices of ∂H project to Voronoi cells/edges/vertices.

Proof. Consider a point q ′ on the face defined by the plane Hp. Let q ∈ R2 be its
vertical projection onto the xy-plane, so q ′ = hp(q). Note that ℓ(q) is above q ′, while
all planes other than Hp are below q ′, thus ∥ℓ(q)−hp(q)∥ ⩽ ∥ℓ(q)−hr(q)∥ for all r ∈ P.
By Lemma 8.14, p is the closest point from P to q.

125

Chapter 8. Voronoi Diagrams Geometry: C&A 2024

p

U

`(p)

q

`(q)

hp(q)

Hp

Figure 8.7: A cross section of the lifting map interpretation for Voronoi diagram.

8.5 Planar Point Location

One last bit is still missing in order to solve the post office problem optimally.

Theorem 8.17. Given a triangulation T for a set P ⊂ R2 of n points, one can build
in O(n) time and space a data structure which allows for finding in O(logn) time
a triangle ∆ ∈ T that contains any given query point q ∈ conv(P).

The data structure is known as Kirkpatrick’s hierarchy. Before discussing it in
detail, let us put things together to solve the post office problem.

Corollary 8.18 (Nearest Neighbor Search). Given a set P ⊂ R2 of n points, one can build
in expected O(n logn) time an O(n) size data structure which allows for reporting
in O(logn) time a nearest point p ∈ P to any given query point q ∈ conv(P).

Proof. First we construct the Voronoi diagram VD(P) in expected O(n logn) time; see
Corollary 8.11. It has exactly n convex cells. Truncate every unbounded cell by ∂conv(P)
into a bounded one, since we are concerned with query points within conv(P) only.2 Now
that all the cells are convex polygons, we may triangulate all of them in overall O(n)
time (the procedure only traverses each edge twice, and the number of edges is O(n)
by Corollary 8.10). We put a label “pi” on all triangles in cell Vp(i). Now we have a
triangulation of the point set P. Apply Theorem 8.17 to build Kirkpatrick’s hierarchy,
which takes O(n) time and space.

When we receive a query point q ∈ conv(P), we use the data structure to find in
O(logn) time a triangle containing q. Output the label of the triangle, which is exactly
the nearest point from P to q.

2We even know how to decide in O(logn) time whether or not a given point lies within conv(P), see
Exercise 5.29.

126

Geometry: C&A 2024 8.6. Kirkpatrick’s Hierarchy

8.6 Kirkpatrick’s Hierarchy

We will now develop a data structure for point location in a triangulation, as described
in Theorem 8.17. For simplicity we assume that the triangulation T we work with is
maximal planar, that is, the outer face is a triangle as well. This can easily be achieved
by wrapping a huge triangle ∆ around T and triangulating the vacuum in between ∆ and
T in linear time (how?).

The main idea for the data structure is to construct a sequence

T = T0, T1, . . . , Th−1, Th = {∆}

of triangulations such that the vertices of Ti are a proper subset of the vertices of Ti−1,
for i = 1, . . . , h. Hence the triangulations get coarser as we move forward.

Given a query point q, we hunt for a triangle in T0 that contains q by tracing the
sequence backwards:

• Start from the big triangle ∆ ∈ Th which certainly contains q;

• Then find a triangle in the finer triangulation Th−1 that contains q;

• ...

• Finally, find a triangle in the target triangulation T0 that contains q.

Locating the query point.

1. Let Th := ∆.

2. For each i = h, . . . , 1, examine all triangles in Ti−1 that intersects Ti, until we find
a triangle Ti−1 that contains q.

3. Output T0.

Proposition 8.19. The search procedure can be implemented to use at most 3ch orien-
tation tests, provided every triangle in Ti intersects at most c triangles in Ti−1.

Proof. In the data structure we link each triangle in Ti to at most c intersecting triangles
in Ti−1. With this implementation, step 2 examines at most ch triangles in total. For
each triangle, three orientation tests suffice to determine if it contains q.

We will show next how to construct the sequence so that both c and h are small.
Concretely, we will make c a constant and h = O(logn).

Thinning. Suppose we have Ti−1 at hand and want to construct Ti by removing several
vertices and re-triangulating. Note that removing a vertex p (and its incident edges)
from Ti−1 creates a hole, which is a star-shaped polygon with p being its star-point.

Lemma 8.20. A star-shaped polygon, given as a sequence of n ⩾ 3 vertices and a
star-point, can be triangulated in O(n) time.

127

Chapter 8. Voronoi Diagrams Geometry: C&A 2024

Exercise 8.21. Prove Lemma 8.20.

As a side remark, the kernel of a simple polygon, that is, the (possibly empty) set
of all star-points, can be constructed in linear time as well [8].

Since we want h to be small, we had better remove a decent number of vertices.
These vertices should have low degrees, since the degree is a natural upper bound for
the number of triangles in Ti−1 intersecting the triangles after re-triangulation.

Our working plan is thus to remove a constant proportion of independent (i.e. pair-
wise non-adjacent) low-degree vertices. The following lemma asserts the existence of
such a set of vertices in every triangulation.

Lemma 8.22. In every triangulation of n ⩾ 3 points, there is a set of at least ⌈n/18⌉
independent vertices whose degrees are at most 8. Moreover, such a set can be
found in O(n) time.

Proof. Let G = (V, E) denote the graph of the triangulation, which we treat as an
abstract planar graph. We may assume without loss of generality that G is maximal
planar. (Otherwise use Theorem 2.33 to combinatorially triangulate G arbitrarily in
linear time. Any independent set in the resulting graph is independent in the old graph,
and the degree of a vertex can only increase.)

For n = 3 the statement is trivially true. Next assume n ⩾ 4. The total degree of
G is

∑
v∈V degG(v) = 2|E| < 6n by Corollary 2.5. On the other hand, G is 3-connected

by Theorem 2.30, so every vertex has degree at least 3. Let W ⊆ V denote the set of
vertices of degree at most 8. Then we have

6n >
∑
v∈V

degG(v) =
∑
v∈W

degG(v) +
∑

v∈V\W

degG(v)

⩾ 3|W|+ 9(n− |W|) = 9n− 6|W|,

hence |W| > n/2.
Let us pick an independent set greedily: In each iteration, pick a remaining vertex

in W, then eliminate itself and its neighbors. Repeat until all vertices in W have been
eliminated.

By construction, the picked vertices are independent and have degrees at most 8.
Each iteration eliminates at most nine vertices (the picked vertex and its at most eight
neighbors) from W, so upon termination we have picked at least |W|/9 ⩾ ⌈n/18⌉ vertices.

Regarding the running time, if G is represented by adjacency lists, for example, we
can obtain the neighborhood of any vertex v ∈W in degG(v) = O(1) time. As there are
at most |W| iterations, the greedy procedure runs in overall O(n) time.

Proof of Theorem 8.17. We construct the hierarchy T0, . . .Th iteratively. Let T0 = T,
and derive Ti from Ti−1 as follows. We remove an independent set of Ti−1 provided
by Lemma 8.22. This creates several holes, each being a star-shaped polygon. We re-
triangulate the holes by Lemma 8.20, and the result is Ti. Each new triangle in Ti keeps

128

Geometry: C&A 2024 8.6. Kirkpatrick’s Hierarchy

pointers to the intersecting triangles in Ti−1; the number of needed pointers is at most
c = 8.

The above steps cost time linear ni, the number of vertices in Ti. Since at least
⌈ni−1/18⌉ vertices are removed, we have

ni ⩽
17

18
ni−1 ⩽ · · · ⩽

(
17

18

)i

n

Therefore, the total cost for building the hierarchy is proportional to

h∑
i=0

ni ⩽ n ·
h∑

i=0

(
17

18

)i

< n ·
∞∑
i=0

(
17

18

)i

= 18n ∈ O(n).

Similarly the space consumption is linear.
The number of levels amounts to h = log18/17 n. Thus by Proposition 8.19 each

query needs at most 3ch = 3 · 8 · log18/17 n < 292 logn orientation tests.

Improvements. As the name suggests, the hierarchical approach discussed above is due
to David Kirkpatrick [6]. The constant 292 that appears in the query time is somewhat
formidable. There has been a whole line of research trying to improve it using different
techniques.

• Sarnak and Tarjan [9]: 4 logn.

• Edelsbrunner, Guibas, and Stolfi [4]: 3 logn.

• Goodrich, Orletsky, and Ramaiyer [5]: 2 logn.

• Adamy and Seidel [1]: 1 logn+ 2
√

logn+O(4
√

logn).

Comparison with history graph. Similar to Kirkpatrick’s hierarchy, the history graph for
the incremental construction (Chapter 7) is also used to locate query points in a trian-
gulation. But the two data structures have fundamental differences. First, the history
graph is built during the construction of a Delaunay triangulation, whereas Kirkpatrick’s
hierarchy is built on top of any given triangulation (in our case a triangulation of the
Voronoi diagram). Second, the history graph does not guarantee a logarithmic time for
an arbitrary query point—not even in the probabilistic sense. In fact, the analysis there
only bounds the expected total running time over all rounds, and the random choice of
insertion (=query) points turns out crucial.

Exercise 8.23. Let {p1, p2, . . . , pn} be a set of points in the plane, which we call obsta-
cles. Imagine there is a disk of radius r centered at the origin which can be moved
around the obstacles but is not allowed to intersect them (touching the boundary is
okay). Is it possible to move the disk out of these obstacles? See Figure 8.8.

More formally, the question is whether there is a continuous curve γ : [0, 1]→ R2

with γ(0) = (0, 0) and ∥γ(1)∥ ⩾ max{∥p1∥, . . . , ∥pn∥}, such that at any time t ∈ [0, 1]

129

Chapter 8. Voronoi Diagrams Geometry: C&A 2024

and ∥γ(t)−pi∥ ⩾ r, for any 1 ⩽ i ⩽ n. Describe an algorithm to decide this question
and to construct such a path—if one exists—given arbitrary points {p1, p2, . . . , pn}

and a radius r > 0. Argue why your algorithm is correct and analyze its running
time.

r

(0, 0)

pi

Figure 8.8: Motion planning: Illustration for Exercise 8.23.

Exercise 8.24. This exercise is about an application from Computational Biology:
You are given a set of disks P = {a1, .., an} in R2, all with the same radius ra > 0.
Each of these disks represents an atom of a protein. A water molecule is represented
by a disc with radius rw > ra. A water molecule cannot intersect the interior of
any protein atom, but it can be tangent to one. We say that an atom ai ∈ P is
accessible if there exists a placement of a water molecule such that it is tangent to
ai and does not intersect the interior of any other atom in P. Given P, find an
O(n logn) time algorithm which determines all atoms of P that are inaccessible.

Exercise 8.25. Let P ⊂ R2 be a set of n points. Describe a data structure to find in
O(logn) time a point in P that is furthest from a given query point q among all
points in P.

Exercise 8.26. Show that the bounds given in Theorem 8.17 are optimal in the alge-
braic computation tree model.

Questions

34. What is the Voronoi diagram of a set of points in R2? Give a precise definition
and explain/prove the basic properties: convexity of cells, why is it a subdivision
of the plane?, Lemma 8.6, Lemma 8.8.

130

Geometry: C&A 2024 8.6. Kirkpatrick’s Hierarchy

35. What is the correspondence between the Voronoi diagram and the Delaunay
triangulation for a set of points in R2? Prove duality (Theorem 8.9) and explain
where general position is needed.

36. How to construct the Voronoi diagram of a set of points in R2? Describe an
O(n logn) time algorithm, for instance, via Delaunay triangulation.

37. What is the Post-Office Problem and how can it be solved optimally? De-
scribe the problem and a solution using linear space, O(n logn) preprocessing, and
O(logn) query time.

38. How does Kirkpatrick’s hierarchical data structure for planar point location
work exactly? Describe how to build it and how the search works, and prove the
runtime bounds. In particular, you should be able to state and prove Lemma 8.22
and Theorem 8.17.

39. (This topic was not covered in HS24 and therefore the question will not be asked in the
exam.) How can the Voronoi diagram be interpreted in context of the lifting
map? Describe the transformation and prove its properties to obtain a formulation
of the Voronoi diagram as an intersection of halfspaces one dimension higher.

References

[1] Udo Adamy and Raimund Seidel, On the exaxt worst case query complexity of planar
point location. J. Algorithms, 37, (2000), 189–217.

[2] Franz Aurenhammer, Voronoi diagrams: A survey of a fundamental geometric data
structure. ACM Comput. Surv., 23/3, (1991), 345–405.

[3] Boris Delaunay, Sur la sphère vide. A la memoire de Georges Voronoi. Izv. Akad.
Nauk SSSR, Otdelenie Matematicheskih i Estestvennyh Nauk, 6, (1934), 793–800.

[4] Herbert Edelsbrunner, Leonidas J. Guibas, and Jorge Stolfi, Optimal point location
in a monotone subdivision. SIAM J. Comput., 15/2, (1986), 317–340.

[5] Michael T. Goodrich, Mark W. Orletsky, and Kumar Ramaiyer, Methods for achiev-
ing fast query times in point location data structures. In Proc. 8th ACM-SIAM
Sympos. Discrete Algorithms, pp. 757–766, 1997.

[6] David G. Kirkpatrick, Optimal search in planar subdivisions. SIAM J. Comput.,
12/1, (1983), 28–35.

[7] Rolf Klein, Concrete and abstract Voronoi diagrams , vol. 400 of Lecture Notes
Comput. Sci., Springer, 1989.

[8] Der-Tsai Lee and Franco P. Preparata, An optimal algorithm for finding the kernel
of a polygon. J. ACM, 26/3, (1979), 415–421.

131

https://doi.org/10.1006/jagm.2000.1101
https://doi.org/10.1006/jagm.2000.1101
https://doi.org/10.1145/116873.116880
https://doi.org/10.1145/116873.116880
http://mi.mathnet.ru/eng/izv4937
https://doi.org/10.1137/0215023
https://doi.org/10.1137/0215023
http://doi.acm.org/10.1145/314161.314438
http://doi.acm.org/10.1145/314161.314438
https://doi.org/10.1137/0212002
https://doi.org/10.1007/3-540-52055-4
https://doi.org/10.1145/322139.322142
https://doi.org/10.1145/322139.322142

Chapter 8. Voronoi Diagrams Geometry: C&A 2024

[9] Neil Sarnak and Robert E. Tarjan, Planar point location using persistent search trees.
Commun. ACM, 29/7, (1986), 669–679.

132

https://doi.org/10.1145/6138.6151

	Fundamentals
	Models of Computation
	Basic Geometric Objects
	Topology
	Graphs

	Plane Embeddings
	Drawings, Embeddings and Planarity
	Graph Representations
	The Doubly-Connected Edge List
	Manipulating a DCEL
	Graphs with Unbounded Edges
	Combinatorial Embeddings

	Unique Embeddings
	Triangulating a Planar Graph
	Compact Straight-Line Drawings
	Canonical Orderings
	The Shift-Algorithm
	Remarks and Open Problems

	Crossings
	Crossing Numbers
	The Crossing Lemma
	Applications of the Crossing Lemma

	Polygons
	Classes of Polygons
	Polygon Triangulation
	The Art Gallery Problem
	Optimal Guarding

	Convexity and Convex Hulls
	Algebraic Characterizations
	Classic Theorems for Convex Sets
	Planar Convex Hull
	Trivial algorithms
	Jarvis' Wrap
	Graham Scan (Successive Local Repair)
	Lower Bound
	Chan's Algorithm

	Delaunay Triangulations
	The Empty Circle Property
	The Lawson Flip algorithm
	Termination of the Lawson Flip Algorithm
	Correctness of the Lawson Flip Algorithm
	The Delaunay Graph
	Every Delaunay Triangulation Maximizes the Smallest Angle
	Constrained Triangulations

	Incremental Construction of Delaunay Triangulation
	Incremental construction
	Organizing the Lawson flips
	The History Graph
	Analysis of the algorithm

	Voronoi Diagrams
	The Post Office Problem
	Voronoi Diagram
	Duality With Delaunay Triangulations
	A Lifting Map View
	Planar Point Location
	Kirkpatrick's Hierarchy

	Convex Polytopes
	Faces of a Polytope
	The Main Theorem
	Two Examples
	Polytope Structure
	The Graph of a Polytope
	The Face Lattice
	Polarity

	Simplicial and Simple Polytopes
	High-Dimensional Delaunay Triangulations
	Complexity of 4-Dimensional Polytopes
	High Dimensional Voronoi Diagrams

	Arrangements
	Line Arrangements
	Constructing Line Arrangements
	Zone Theorem
	General Position and Minimum Triangle
	Constructing Rotation Systems
	Segment Endpoint Visibility Graphs
	3-Sum
	Ham Sandwich Theorem
	Constructing Ham Sandwich Cuts in the Plane
	Davenport-Schinzel Sequences
	Constructing Lower Envelopes
	Complexity of a Single Cell

	Counting
	Introduction
	Embracing Sets in the Plane
	Adding a Dimension
	The Upper Bound

	Embracing Sets in Higher Dimension
	Embracing Sets vs. Faces of Polytopes
	Warm-up
	Gale Duality

	Faster Counting in the Plane
	Characterizing -Vectors
	More Vector Identities

	Line Sweep
	Interval Intersections
	Segment Intersections
	Improvements
	Algebraic degree of geometric primitives
	Red-Blue Intersections

	The Configuration Space Framework
	The Delaunay triangulation — an abstract view
	Configuration Spaces
	Expected structural change
	Bounding location costs by conflict counting
	Expected number of conflicts

	Trapezoidal Maps
	The Trapezoidal Map
	Applications of trapezoidal maps
	Incremental Construction of the Trapezoidal Map
	Using trapezoidal maps for point location
	Analysis of the incremental construction
	Defining The Right Configurations
	Update Cost
	The History Graph
	Cost of the Find step
	Applying the General Bounds

	Analysis of the point location
	The trapezoidal map of a simple polygon

	Translational Motion Planning
	Complexity of Minkowski sums
	Minkowski sum of two convex polygons
	Constructing a single face

	Linear Programming
	Linear Separability of Point Sets
	Linear Programming
	Minimum-area Enclosing Annulus
	Solving a Linear Program

	A randomized Algorithm for Linear Programming
	Helly's Theorem
	Convexity, once more
	The Algorithm
	Runtime Analysis
	Violation Tests
	Basis Computations
	The Overall Bound

	Smallest Enclosing Balls
	The trivial algorithm
	Welzl's Algorithm
	The Swiss Algorithm
	The Forever Swiss Algorithm
	Smallest Enclosing Balls in the Manhattan Distance

	Epsilon Nets
	Motivation
	Range spaces and -nets.
	Either almost all is needed or a constant suffices.
	What makes the difference: VC-dimension
	VC-dimension of Geometric Range Spaces
	Small -Nets, an Easy Warm-up Version
	Even Smaller -Nets

