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Preface

These lecture notes are designed to accompany a course on “Geometry: Combinatorics
& Algorithms” that we teach at the Department of Computer Science, ETH Zürich,
since 2005. The topics covered have changed over the years, as has the name of the course.
The current version is a synthesis of topics from computational geometry, combinatorial
geometry, and graph drawing that are loosely centered around triangulations, that is,
geometric representations of maximal plane graphs. The selection of topics is guided by
the following criteria.
Importance. What are the most essential concepts and techniques that we want our stu-

dents to know? (for instance, if they plan to write a thesis in the area)

Overlap. What is covered in other courses of our curriculum, and to which extent?

Coherence. How closely is something related to the focal topic of triangulations, and how
well does it fit with the other topics selected?

Our main focus is on low-dimensional Euclidean space (mostly 2D), although we
sometimes discuss possible extensions and/or remarkable differences when going to higher
dimensions. At the end of each chapter there is a list of questions that we expect our
students to be able to answer in the oral exam.

In the current setting, the course runs over 14 weeks, with three hours of lectures
and two hours of exercises each week. In addition, two sets of graded homework are
distributed over the course. The target audience are third-year Bachelor or Master
students of Mathematics or Computer Science.

This year’s course covers the material in Chapters 1–11. The appendices ??–?? contain
material that appeared in previous editions of the course.

Most parts of these notes have gone through several iterations of proofreading over
the years. But experience tells that there may always be some mistakes that escape
detection. So in case you notice some problem, please let us know, regardless of whether
it is a minor typo or punctuation error, a glitch in formulation, a hole in an argument,
or other material (for instance, related to recent developments or improvements) that
should be mentioned. This way the issue can be addressed for the next edition and
future readers profit from your findings.
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Chapter 1

Fundamentals

1.1 Models of Computation

When designing algorithms, one has to agree on a model of computation according to
which the algorithms are executed. There are various models to choose from, but when
it comes to geometry, a Turing machine type model, for instance, would be rather incon-
venient to represent and manipulate the frequent encounters of real numbers. Remember
that even elementary geometric operations—such as taking the center of a circle defined
by three points or computing the length of a circular arc—could quickly leave the realms
of rational and even algebraic numbers.

Therefore, other models of computation are more prominent in the area of geomet-
ric algorithms and data structures. In this course we will be mostly concerned with
two models: the Real RAM and the algebraic computation/decision tree model. The
former is rather convenient when designing algorithms, as it abstracts away the afore-
mentioned representation issues by simply assuming that it can be done. The latter
typically appears in the context of lower bounds, that is, in proofs that solving a given
problem requires at least certain amount of resource (as a function of the input size and
possibly other parameters).

Let us look into these models in more detail.

Real RAM Model. RAM stands for random access machine, that is a machine whose
memory cells are indexed by integers, and any specified cell can be accessed in constant
time. “Real” means that each cell can store a real number. Any single arithmetic opera-
tion (addition, subtraction, multiplication, division, and k-th root, for small constant k)
or comparison can be computed in constant time. 1

This is a quite powerful model of computation, as a single real number in principle can
encode an arbitrary amount of information. On the positive side, it allows to abstract

1In addition, sometimes also logarithms, other analytic functions, indirect addressing (integral), or floor
and ceiling are used. As adding some of these operations makes the model more powerful, it is usually
specified and emphasized explicitly when an algorithm uses them.
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from the lowlands of numeric and algebraic computation and to concentrate on the
algorithmic core from a combinatorial point of view.

But there are also downsides. First, the model is somewhat unrealistic, and it poses
a challenge to efficiently implement an algorithm designed for it on an actual computer.
With bounded memory there is no way to represent general real numbers explicitly,
and operations using a symbolic representation can hardly be considered constant time.
Therefore we have to ensure that we do not abuse the power of this model. For instance,
we may want to restrict the numbers that are manipulated by any single arithmetic
operation to be some fixed polynomial in the numbers that appear in the input.

Second, it is difficult if not impossible to derive reasonable lower bounds in the real
RAM model. So when interested in lower bounds, it is convenient to use a different, less
powerful model of computation. One such model is the computation tree model, which
encompasses and explicitly represents all possible execution paths of an algorithm.

Algebraic Computation Trees (Ben-Or [1]). A model is as a rooted binary tree, where each
node has at most two children. The computation starts at the root and proceeds down
to leaves.

≤ 0

a− b

b− ca− c

≤ 0 ≤ 0

a c b c

• Every node v with one child has an associated operation
in +,−, ∗, /,√, . . .. The operands of this operation are
constant input values, or among v’s ancestors in the tree.

• Every node v with two children is associated with a
branching of the form > 0, ⩾ 0, or = 0. The branch
is with respect to the result of v’s parent node. If the
expression yields true, the computation continues with
the left child of v; otherwise, it continues with the right
child of v.

• Every leaf contains the result of the computation.

The term decision tree is used if all of the final results (leaves) are either true or
false. If every branch is based on a linear function in the input values, we face a linear
decision tree. Analogously one can define, say, quadratic decision trees.

The complexity of a computation or decision tree is the maximum number of nodes
among all root-to-leaf paths. It is well known that Ω(n logn) comparisons are required
to sort n numbers. But also for some problems that appear easier than sorting at first
glance, the same lower bound holds. Consider, for instance, the following problem.

Element Uniqueness

Input: {x1, . . . , xn} ⊂ R, n ∈ N.

Output: Is xi = xj, for some i, j ∈ {1, . . . , n} with i ̸= j?

Ben-Or [1] has shown that any algebraic decision tree to solve Element Uniqueness
for n elements has complexity Ω(n logn).

8



Geometry: C&A 2024 1.2. Basic Geometric Objects

1.2 Basic Geometric Objects

We will mostly be concerned with the d-dimensional Euclidean space Rd for small d ∈ N;
typically d = 2 or d = 3. The basic objects of interest in Rd are the following.

Points. A point p ∈ Rd is typically described by its d

Cartesian coordinates p = (x1, . . . , xd).
p = (−4, 0)

q = (2,−2)

r = (7, 1)

Vectors. A vector v ∈ Rd is typically described by its
d Cartesian coordinates v = (x1, . . . , xd). Its length (in

Euclidean metric) is denoted as ∥v∥ :=
√∑d

i=1 xi
2. If v

has unit length, we also call it a direction.

v = (3, 1)

v = (1,−1)

v = (0,−2)

What is the difference between a point and a vector? Mathematically they are both
elements of Euclidean space Rd, hence they are the same. The different terms are used
to indicate how we think of such an element in a given context. We think of a point
as a location in space (a “dot”), while we think of a vector as a translation in space (an
“arrow” starting from the origin). The point view is dominant in geometry. But since
every point can be understood as a vector (the arrow from the origin to the dot), we can
seamlessly apply vector space operations (addition, scalar multiplication) to points; and
the resulting vector can be cast as a point again (the dot at the arrowhead). There are a
number of sources that insist differentiating points and vectors, and they are right when
it comes to how we interpret them. But when it comes to what they actually are, there
is no need to make a difference.

Lines. A line is a one-dimensional affine subspace in Rd.
It can be described by two distinct points p and q as the
point set {p+ λ(q− p) : λ ∈ R}.

p

q

While any pair of distinct points defines a unique line, a line in R2 contains infinitely
many points and so it may happen that a collection of three or more points lie on a line.
Such a collection of points is termed collinear 2.

Rays. If we split a line at a point and only look into one
direction from the point, then we obtain a ray. It can be
described by two distinct points p and q as the point set
{p + λ(q − p) : λ ⩾ 0}. The orientation of a ray is the
vector q− p. p

q

2Not colinear, which refers to a notion in the theory of coalgebras.

9



Chapter 1. Fundamentals Geometry: C&A 2024

Line segments. A line segment is, as its name suggests,
the segment between two points p, q on a line. It can be
described as the point set {p + λ(q − p) : 0 ⩽ λ ⩽ 1}.
We will also denote this line segment by pq. Depending
on the context we may allow or disallow degenerate line
segments consisting of a single point only (p = q in the
above equation).

p

q

Hyperplanes and halfspaces. A hyperplane h is a (d−1)-dimensional affine subspace in Rd.
It can be described algebraically by d + 1 coefficients h1, . . . , hd+1 ∈ R as the point set
{(x1, . . . , xd) ∈ Rd :

∑d
i=1 hixi = hd+1}. Usually, we require at least one of h1, . . . , hd

to be nonzero. Otherwise, the equation is satisfied by either all points (if hd+1 = 0) or
no point (if hd+1 ̸= 0), which we call a degenerate hyperplane. Degeneracy is useful in
some contexts, and we will explicitly say so where we allow them. If we change “=” in
the definition to “⩾”, the obtained object is called a halfspace (or halfplane in R2).

Spheres and balls. A sphere is the set of all points that are equidistant to a fixed point.
It can be described by its center c ∈ Rd and radius r ∈ R as the point set {x ∈ Rd :
∥x−c∥ = r}. Likewise, the ball of radius r around c is the point set {x ∈ Rd : ∥x−c∥ ⩽ r}.
In R2, spheres and balls are called circles and disks, respectively.

1.3 Topology

In this section we review some basic concepts and notation from set-theoretic topology,
on a level of what you also encounter in courses on real analysis typically. These concepts
arise here and there, for instance, when we formalize intuitive objects such as “curves”
and “polygons”. They are also indispensible when we study certain abstract objects such
as convex sets.

A set P ⊆ Rd is bounded, if it is contained in some ball Br := {x ∈ Rd : ∥x∥ ⩽ r} of
radius r > 0 around the origin.

A point p ∈ Rd is interior to P ⊆ Rd, if for some ε > 0, there exists a ball
Bε(p) = {x ∈ Rd : ∥x − p∥ ⩽ ε} around it that is completely contained in P. A set is
open if all of its points are interior; and it is closed if its complement is open. Beware
that a set can be both open and closed (e.g. Rd), or neither open nor closed (e.g. the
interval (0, 1] in one-dimension).

Finally, a set is compact if it is both bounded and closed. An important fact from
analysis states that every continuous function from a compact set P ⊆ Rd to R attains
its minimum/maximum at some point p ∈ P.

Exercise 1.1. Determine for each of the following sets whether they are open or closed
in R2. a) B1(0) b) {(1, 0)} c) R2 d) R2\Z2 e) R2\Q2 f) {(x, y) : x ∈ R, y ⩾ 0}

10



Geometry: C&A 2024 1.4. Graphs

Exercise 1.2. Show that the union of countably many open sets in Rd is open. Show
that the union of a finite number of closed sets in Rd is closed. (For the curious
reader: These are two of the axioms of an abstract topology. So here we show
that the Euclidean space is a topology.) What follows for intersections of open and
closed sets? Finally, show that the union of countably many closed sets in Rd is
not necessarily closed.

The boundary ∂P of P ⊆ Rd consists of all points in Rd (not necessarily in P) that are
neither interior to P nor to Rd \ P. In other words, p ∈ ∂P if every ball Bε(p) intersects
both P and Rd \ P.

Sometimes one wants to approximate a set P ⊆ Rd by an open/closed set. In the
former scenario we can resort to its interior P◦ formed by all points interior to P. It is
not hard to see that P◦ = P \ ∂P. Similarly, in the latter scenario one can use its closure
P = P ∪ ∂P.

Exercise 1.3. Show that for any P ⊆ Rd the interior P◦ is open, and the closure P is
closed. (Why is there something to show to begin with?)

What is the interior of a lower-dimensional object living in a higher dimensional space,
such as a line segment in R2 or a triangle in R3? The answer is ∅, because the balls
considered in the definition are higher-dimensional creatures which will always contain
points from the “outer space”. To overcome this undesirable artefact, we can use the
notion of a relative interior, denoted by relint(S). It refers to the interior of S where
all the “balls” in the definition are restricted to live in the smallest affine subspace that
contains S.

For instance, the smallest affine subspace that contains the line segment pq in R2

is the line through p, q. So all the “balls” considered by the relative interior will be
intervals of that line, thus relint(pq) = pq\ {p, q}. Similarly, the smallest affine subspace
that contains a triangle in R3 is a plane. Hence the relative interior is just the interior
of the triangle, considered as a two-dimensional object.

1.4 Graphs

Next we review some basic definitions and properties of graphs. For more details and
proofs, refer to any standard textbook on graph theory [2, 3, 5].

A (simple undirected) graph G = (V, E) is defined on a set V of vertices whose
pairwise relations are captured by the set E ⊆

(
V
2

)
of edges. Unless stated otherwise, V

is always finite. Two vertices u, v are adjacent if {u, v} ∈ E, in which case both vertices
are incident to the edge {u, v}. To avoid clutter we often omit brackets and write uv for
edge {u, v}.

For a vertex v ∈ V, its neighborhood in G, denoted NG(v), consists of all vertices from
G that are adjacent to v. Similarly, for a set W ⊂ V of vertices its neighborhood NG(W)
is defined as

⋃
w∈W NG(w). The degree degG(v) of a vertex v ∈ V is the size of its

11
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neighborhood, that is, the number of edges from E incident to v. The subscript is often
omitted if the graph under consideration is clear from the context.

Lemma 1.4 (Handshaking Lemma). In any graph G = (V, E) we have∑
v∈V

deg(v) = 2|E|.

Two graphs G = (V, E) and H = (U, F) are isomorphic, denoted G ≃ H, if there is
a bijection ϕ : V → U such that {u, v} ∈ E ⇐⇒ {ϕ(u), ϕ(v)} ∈ F. Such a bijection
ϕ is called an isomorphism between G and H. The structure of isomorphic graphs is
identical and often we do not distinguish between them when looking at them as graphs.

For a graph G denote by V(G) the set of vertices and by E(G) the set of edges. A
graph H = (U, F) is a subgraph of G if U ⊆ V and F ⊆ E. In case that U = V the
graph H is a spanning subgraph of G. For a set U ⊆ V of vertices denote by G[U]
the induced subgraph of G on U, that is, the graph (U,E ∩

(
U
2

)
). For F ⊆ E denote

G \ F := (V, E \ F). Similarly, for U ⊆ V denote G \ U := G[V \ U]. In particular, for a
vertex or edge x ∈ V ∪ E we write G \ x for G \ {x}. The union of two graphs G = (V, E)
and H = (U, F) is the graph G ∪ H := (V ∪ U,E ∪ F).

For an edge e = uv ∈ E the graph G/e is obtained from G \ {u, v} by adding a new
vertex w with NG/e(w) := (NG(u) ∪NG(v)) \ {u, v}. This process is called contraction
of e in G. Similarly, for a set F ⊆ E of edges the graph G/F is obtained from G by
contracting all edges from F (the order in which the edges from F are contracted does
not matter).

Graph traversals. A walk in G is a sequence W = (v1, . . . , vk), k ∈ N, of vertices such
that vi and vi+1 are adjacent in G, for all 1 ⩽ i < k. The vertices v1 and vk are referred
to as the walk’s endpoints, and the other vertices its interior. A walk with endpoints v1
and vk is sometimes called a walk between v1 and vk. If the endpoints coincide (namely
v1 = vk), then the walk is closed ; otherwise it is open. For a walk W denote by V(W)
its set of vertices and by E(W) its set of edges (that is, pairs of consecutive vertices along
W). We say that W visits its vertices and edges.

A walk that uses each edge of G at most once is called a trail. A closed walk that
visits each edge (hence also each vertex) at least once is called a tour of G. An Euler
tour is both a trail and a tour of G, that is, it visits each edge of G exactly once. A
graph that contains an Euler tour is termed Eulerian.

If the vertices v1, . . . , vk of a closed walk W are pairwise distinct except for v1 = vk,
then W is a cycle of size k − 1. If the vertices v1, . . . , vk of a walk W are pairwise
distinct, then W is a path of size k. A Hamilton cycle (path) is a cycle (path) that
visits every vertex of G. A graph that contains a Hamilton cycle is Hamiltonian.

Two trails are edge-disjoint if they do not share any edge. Two paths are called
internally vertex-disjoint if they do not share any vertices (except for potential common
endpoints). For two vertices s, t ∈ V any path with endpoints s and t is called an (s, t)-
path or a path between s and t.

12
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Connectivity. Define an equivalence relation “∼” on V by setting a ∼ b if and only if
there is a path between a and b in G. The equivalence classes with respect to “∼” are
called components of G. A graph G is connected if it has only one component, and
disconnected otherwise.

A set C ⊂ V of vertices in a connected graph G = (V, E) is a cut-set of G if G \ C is
disconnected. A graph is k-connected, for a positive integer k, if |V | ⩾ k + 1 and every
cut-set has at least k vertices. Similarly a graph G = (V, E) is k-edge-connected, if G \ F

is connected, for any set F ⊆ E of at most k − 1 edges. Connectivity and cut-sets are
related via the following well-known theorem.

Theorem 1.5 (Menger [4]). For any two nonadjacent vertices u, v of a graph G = (V, E),
the minimum size of a cut-set that disconnects u and v is the same as the maximum
number of pairwise internally vertex-disjoint paths between u and v.

Specific families of graphs. A graph with all potential edges present, that is (V,
(
V
2

)
), is

called a clique. Up to isomorphism there is only one clique on n vertices; it is referred
to as the complete graph Kn, for n ∈ N. At the other extreme, the empty graph Kn

consists of n isolated vertices, so no edge is present. A set U of vertices in a graph G is
independent if G[U] is an empty graph. A graph whose vertex set can be partitioned
into two independent sets is bipartite. An equivalent characterization states that a graph
is bipartite if and only if it does not contain any odd cycle. The bipartite graphs with
a maximum number of edges (unique up to isomorphism) are the complete bipartite
graphs Km,n, for m,n ∈ N. They consist of two disjoint independent sets of size m and
n, respectively, and all mn edges in between.

A forest is a graph that is acyclic, that is, it does not contain any cycle. A connected
forest is called tree and its leaves are the vertices of degree one. Every connected graph
contains a spanning subgraph which is a tree—a so-called spanning tree. Beyond the
definition given above, there are several equivalent characterizations of trees.

Theorem 1.6. The following statements for a graph G are equivalent.

(1) G is a tree (that is, it is connected and acyclic).

(2) G is a connected graph with n vertices and n− 1 edges.

(3) G is an acyclic graph with n vertices and n− 1 edges.

(4) Any two vertices in G are connected by a unique path.

(5) G is minimally connected, that is, G is connected but removal of any single
edge yields a disconnected graph.

(6) G is maximally acyclic, that is, G is acyclic but adding any single edge creates
a cycle.

13
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Directed graphs. In a directed graph or, short, digraph D = (V, E) the set E consists of
ordered pairs of vertices, that is, E ⊆ V2. The elements of E are referred to as arcs. To
avoid clutter we often omit brackets and write uv for an arc (u, v). An arc uv ∈ E is said
to be directed from its source u to its target v. For uv ∈ E we also say “there is an arc
from u to v in D”. Usually, we consider loop-free graphs, that is, arcs of the type vv, for
some v ∈ V, are not allowed.

The in-degree deg−
D(v) := |{(u, v)|uv ∈ E}| of a vertex v ∈ V is the number of incoming

arcs at v. Similarly, the out-degree deg+
D(v) := |{(v, u) | vu ∈ E}| of a vertex v ∈ V is

the number of outgoing arcs at v. Again the subscript is often omitted when the graph
under consideration is clear from the context.

From any undirected graph G one can obtain a digraph on the same vertex set by
specifying a direction for each edge of G. Each of these 2|E(G)| different digraphs is called
an orientation of G. Similarly every digraph D = (V, E) has an underlying undirected
graph G = (V, { {u, v} | (u, v) ∈ E or (v, u) ∈ E}). Hence most of the terminology for
undirected graphs carries over to digraphs.

A directed walk in a digraph D is a sequence W = (v1, . . . , vk), for some k ∈ N, of
vertices such that there is an arc from vi to vi+1 in D, for all 1 ⩽ i < k. In the same
way we define directed trails, directed tours, directed paths, and directed cycles.

Multigraphs. Sometimes we also consider multigraphs, where each edge may have mul-
tiple copies. Unless forbidden explictly, a multigraph may contain loops. Just as simple
graphs/digraphs, multigraphs may be undirected or directed, and also most of the other
basic notions for graphs discussed above naturally generalize to multigraphs.
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Chapter 2

Plane Embeddings

Graphs can be represented in various ways, for instance, as an adjacency matrix or using
adjacency lists. In this chapter we explore another class of representations that are quite
different in nature, namely geometric representations. In a geometric representation,
vertices and edges are represented by geometric objects, for example points and curves.
This approach is appealing because it succinctly visualizes a graph along with its many
properties. We have many degrees of freedom in selecting the geometric objects and the
details of their geometry. This freedom allows us to tailor the representation to meet
specific goals, such as emphasizing certain structural aspects of the graph at hand or
reducing the complexity of the obtained representation.

The most common geometric graph representation is a drawing, where vertices are
mapped to points and edges to curves in R2. It is desirable to make such a map injective
by avoiding edge crossings, both from a mathematically aesthetic viewpoint and for the
sake of the practical readability. Those graphs that allow such an embedding into the
Euclidean plane are known as planar. Our goal is to study the interplay between abstract
planar graphs and their plane embeddings. Specifically, we want to answer the following
questions:

• What is the combinatorial complexity (that is, the number of edges and faces) of
planar graphs?

• Under which conditions are plane embeddings unique (up to a certain sense of
equivalence)?

• How can we represent plane embeddings in a data structure?

• What is the geometric complexity (that is, the encoding size of the geometric
objects used to represent vertices and edges) of plane embeddings?

Most definitions we use directly extend to multigraphs. But for simplicity, we use the
term “graph” throughout.

15
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2.1 Drawings, Embeddings and Planarity

A curve is a set C ⊂ R2 of the form {γ(t) : 0 ⩽ t ⩽ 1}, where γ : [0, 1]→ R2 is a continuous
function. The function γ is called a parameterization of C. The points γ(0) and γ(1)
are the endpoints of the curve. A curve is closed if γ(0) = γ(1). A curve is simple if it
admits a parameterization γ that is injective on [0, 1]; for a closed simple curve we allow
as an exception that γ(0) = γ(1). The following famous theorem describes an important
property of the plane. A proof can, for instance, be found in the book of Mohar and
Thomassen [24].

Theorem 2.1 (Jordan). Any simple closed curve C partitions the plane into exactly
two regions (connected open sets), each bounded by C.

Figure 2.1: Left: a simple closed curve in the plane and two points in one of its faces.
Right: a simple closed curve that does not disconnect the torus.

Observe that, for instance, on the torus there are simple closed curves that do not
disconnect the surface, and thus the theorem does not hold there.

Drawings. As a first criterion for a reasonable geometric representation of a graph, we
would like to have a clear separation between different vertices and also between a vertex
and nonincident edges. Formally, a drawing of a graph G = (V, E) in the plane is a
function f that assigns

• a point f(v) ∈ R2 to every vertex v ∈ V and

• a simple curve f(uv) with endpoints f(u) and f(v) to every edge uv ∈ E,

such that

(1) f is injective on V and

(2) f(uv) ∩ f(V) = {f(u), f(v)}, for every edge uv ∈ E.

A common point f(e) ∩ f(e ′) between two curves that represent distinct edges e, e ′ ∈ E

is called a crossing if it is not a common endpoint of e and e ′.
Commonly, when discussing a drawing of a graph G = (V, E), we do not differentiate

a vertex/an edge from its geometric realization. That is, a vertex v ∈ V is identified with
the point f(v), and an edge e ∈ E is identified with the curve f(e). For instance, the last
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sentence in the previous paragraph may be phrased as “A common point of two edges is
called a crossing if it is not their common endpoint.”

Often it is convenient to make additional assumptions about edge intersections in a
drawing. For example, we may demand nondegeneracy in the sense that no three edges
can meet at a single crossing, or that any two edges can intersect at only finitely many
points.

Planar vs. plane. A graph is planar if it admits a drawing in the plane without crossings.
Such a drawing is also called a crossing-free drawing or a (plane) embedding of the
graph. A planar graph together with a particular plane embedding is called a plane
graph. Note the distinction between “planar” and “plane”: the former refers to an ab-
stract graph and indicates the possibility of an embedding, whereas the latter refers to
a concrete embedding (Figure 2.2).

Figure 2.2: A planar graph (left) and a plane embedding of it (right).

A geometric graph is a graph together with a drawing in which all edges are straight-
line segments. Note that such a drawing is fully determined by the vertex positions. A
plane graph which is also geometric is called a plane straight-line graph (PSLG). On
the other hand, a plane graph whose edges are arbitrary simple curves is emphasized as
topological plane graph.

The faces of a plane graph G are the maximally connected regions of R2 \ G, that
is, the plane without the points occupied by the embedding (as the image of a vertex or
an edge). Each embedding of a finite graph has exactly one unbounded face, also called
outer or infinite face. Using stereographic projection, we could show that any face can
be swapped out to serve as the unbounded face:

Theorem 2.2. If a graph G has a plane embedding in which some face is bounded by a
cycle (v1, . . . , vk), then G also has a plane embedding in which the unbounded face
is bounded by the cycle (v1, . . . , vk).

Proof Sketch. Take a plane embedding Γ of G and map it to the sphere using stereo-
graphic projection : Imagine R2 being the x/y-plane in R3 and place a unit sphere S

whose south pole touches the origin. We establish a bijection between R2 and S \ {n},
where n := (0, 0, 2) is the north pole position: A point p ∈ R2 is mapped to the intersec-
tion p ′ of the segment pn and S, see Figure 2.3. The map is continuous, so it preserves
incidence between vertices, edges and faces.
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n

p

p ′

(a) Three-dimensional view.

n

p

p ′

q

q ′

0
(b) Cross-section view.

Figure 2.3: Stereographic projection.

Consider the resulting embedding Γ ′ of G on S: The infinite face of Γ corresponds to
the face of Γ ′ that contains the north pole n of S. Now rotate the embedding Γ ′ on S

such that the desired face contains n. Mapping back to the plane using stereographic
projection results in an embedding in which the desired face is the outer face.

Exercise 2.3. Consider the plane graphs depicted in Figure 2.4. For both graphs give
a plane embedding in which the cycle (1, 2, 3) bounds the outer face.

2

3

5
4

1

(a)

2
3

5

4

1

6 7

8

(b)

Figure 2.4: Make (1, 2, 3) bound the outer face.

Duality. Every plane graph G has a dual G∗ whose vertices are the faces of G. For every
edge in G, we connect its two incident faces by an edge in the dual G∗. Note that in
general, G∗ is a multigraph (with loops and multiple edges) and may depend on the
embedding. So an abstract planar graph G may have several nonisomorphic duals; see
Figure 2.5 for an example. If G is a connected plane graph, then (G∗)∗ = G. We will
see later in Section 2.3 that the dual of a 3-connected planar graph is unique (up to
isomorphism).

The Euler Formula and its ramifications. One of the most important tools for planar graphs
(and more generally, graphs embedded on a surface) is the Euler–Poincaré Formula.
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G1

G1
∗

G2

G2
∗

Figure 2.5: Two plane drawings G1 and G2 of the same abstract planar graph and
their duals G1

∗ and G2
∗ with G1

∗ ̸≃ G2
∗. (To see this, for instance, count

the number of vertices of degree greater than three.)

Theorem 2.4 (Euler’s Formula). For every connected plane graph with n vertices, e

edges, and f faces, we have n− e+ f = 2.

Proof. Let G be a connected plane graph with n vertices, e edges, and f faces. Note
that e ⩾ n− 1 as G is connected.

We prove the statement by induction on e−n. In the base case e−n = −1, the graph
G is a (plane) tree and contains exactly one (unbounded) face, and so n−e+f = 1+1 = 2

as claimed.
In the general case, fix a spanning tree T of G, pick an arbitrary edge e of G \ T , and

consider the graph G− = G \ e. By construction it has n vertices and e − 1 edges. We
claim that it has f−1 faces. To see this observe that G− ⊃ T is connected. In particular,
the endpoints of e are connected by a path in G−, which together with e forms a cycle
in G. So in G, any two points sufficiently close to but on opposite sides of e are in
different faces, whereas they are in the same face of G−. In other words, the two incident
faces of e are distinct in G but merged into one in G−. All other faces remain untouched.
It follows that G− has f− 1 faces, as claimed. Then by the inductive assumption on G−,
we have n− e+ f = n− (e− 1) + (f− 1) = 2, which concludes the induction.

In particular, this shows that every plane embedding of a planar graph has the same
number of faces. In other words, the number of faces is an invariant of an abstract planar
graph. It also follows (as the corollary below) that planar graphs are sparse, that is,
they have a linear number of edges and faces only. So the asymptotic complexity of a
planar graph is already determined by its number of vertices.

Corollary 2.5. A simple planar graph on n ⩾ 3 vertices has at most 3n− 6 edges and
at most 2n− 4 faces.

Proof. Without loss of generality we may assume that G is connected. (If not, add edges
between components of G until the graph is connected. The number of edges increases
and the number of faces remains unchanged.) The statement is easily checked for n = 3,
where G is either a triangle or a path and therefore has no more than 3 ⩽ 3 · 3− 6 edges
and no more than 2 ⩽ 2 · 3− 4 faces. Next consider a simple connected planar graph G
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on n ⩾ 4 vertices, and fix any plane embedding of it. Denote by E its set of edges and
by F its set of faces. Let

X = {(e, f) ∈ E× F : e bounds f}

denote the set of incident edge-face pairs. We count X in two different ways.
First note that each edge bounds at most two faces and so |X| ⩽ 2 · |E|.
Second note that every face is bounded by at least three edges: If G contains a cycle,

then the boundary of every face shall contain a cycle and hence at least three edges. If
G is acyclic, then it must be a tree since we assumed it to be connected. Its only face
(the outer face) is bounded by all edges; and there are at least three since G contains at
least four vertices. In both cases we have |X| ⩾ 3 · |F|.

Therefore 3|F| ⩽ 2|E|. Using Euler’s Formula we conclude that

4 = 2(n− |E|+ |F|) ⩽ 2n− 3|F|+ 2|F| = 2n− |F| and
6 = 3(n− |E|+ |F|) ⩽ 3n− 3|E|+ 2|E| = 3n− |E| ,

which yield the claimed bounds.

Corollary 2.5 implies that the degree of a “typical” vertex in a planar graph is a small
constant.

Corollary 2.6. The average vertex degree in a simple planar graph is less than six.

Exercise 2.7. Prove Corollary 2.6.

There exist several variations of this statement, a few more of which we will encounter
during this course.

Exercise 2.8. Show that neither K5 (the complete graph on five vertices) nor K3,3 (the
complete bipartite graph where both classes have three vertices) is planar.

Exercise 2.9. Let P be a set of n ⩾ 3 points in the plane such that the distance between
every pair of points is at least one. Show that there are at most 3n − 6 pairs of
points in P at distance exactly one.

Characterizing planarity. The classical theorems of Kuratowski and Wagner provide a char-
acterization of planar graphs in terms of forbidden substructures. A subdivision of a
graph G = (V, E) is obtained from G by replacing each edge with a path.

Theorem 2.10 (Kuratowski [22, 31]). A graph is planar if and only if it does not contain
a subdivision of K3,3 or K5.

A minor of a graph G = (V, E) is obtained from G using zero or more edge contrac-
tions, edge deletions, and/or vertex deletions.

Theorem 2.11 (Wagner [34]). A graph is planar if and only if it does not contain K3,3

or K5 as a minor.
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In some sense, Wagner’s Theorem is a special instance1 of a much more general
theorem.

Theorem 2.12 (Graph Minor Theorem, Robertson/Seymour [28]). Every minor-closed
family of graphs can be described in terms of a finite set of forbidden minors.

Being minor-closed means that any minor of any graph from the family also belongs
to the family. For instance, the family of planar graphs is minor-closed because planarity
is preserved under removal of edges and vertices and under edge contractions.

Exercise 2.13. A graph is 1-planar if it admits a drawing in the plane in which every
edge has at most one crossing. Prove or disprove: The family of 1-planar graphs
is minor-closed.

The Graph Minor Theorem is a celebrated result established by Robertson and Sey-
mour in a series of twenty papers, see also the survey by Lovász [23]. They also describe
an O(n3) algorithm (with horrendous constants, though) to decide whether a graph on
n vertices contains a fixed (constant-size) minor. As a consequence, every minor-closed
property can be tested in polynomial time. Later, Kawarabayashi et al. [20] showed that
this problem can be solved in O(n2) time.

Unfortunately, the Graph Minor Theorem is nonconstructive in the sense that in
general we do not know how to obtain the set of forbidden minors for a given family.
For instance, for the family of toroidal graphs (graphs that can be embedded without
crossings on the torus) more than 16 ′000 forbidden minors are known, and the theorem
tells us that the number is finite, but we still do not know the concrete number. So while
we know that there exists a quadratic time algorithm to test membership for minor-closed
families, we have no idea what such an algorithm looks like in general.

Graph families other than planar graphs for which the forbidden minors are known
include forests (free of K3 minors) and outerplanar graphs (free of K2,3 and K4 minors).
A graph is outerplanar if it admits a plane embedding in which all vertices appear on
the outer face (Figure 2.6).

Figure 2.6: An outerplanar graph (left) and a plane embedding of it in which all
vertices are incident to the outer face (right).

Exercise 2.14. (a) Give an example of a 6-connected planar graph or argue that no
such graph exists.

1It is more than just a special instance because it also specifies the forbidden minors explicitly.
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(b) Give an example of a 5-connected planar graph or argue that no such graph
exists.

(c) Give an example of a 3-connected outerplanar graph or argue that no such
graph exists.

Planarity testing. To test a given graph for planarity we do not have to contend ourselves
with a quadratic-time algorithm. In fact, there exist a number of different linear time
algorithms that decide if a given abstract graph is planar; all of them—from a very
high-level point of view—can be regarded as an annotated depth-first-search. The first
such algorithm was described by Hopcroft and Tarjan [19], while the current state-of-
the-art is probably among the “path searching” method by Boyer and Myrwold [6] and
the “LR-partition” method by de Fraysseix et al. [14]. Although the overall idea in all
these approaches is easy to convey, many technical details make an in-depth discussion
rather painful to go through.

2.2 Graph Representations

There are two standard representations for an abstract graph G = (V, E) on n = |V |

vertices. For the adjacency matrix representation we consider the vertices to be ordered
as V = {v1, . . . , vn}. The adjacency matrix of an undirected graph is a symmetric n×n-
matrix A = (aij)1⩽i,j⩽n where aij = aji = 1, if {vi, vj} ∈ E, and aij = aji = 0 otherwise.
Storing such a matrix explicitly requires Ω(n2) space, but it allows testing in constant
time whether or not two given vertices are adjacent.

In an adjacency list representation, we store for each vertex a list of its neighbors
in G. This requires only O(n+ |E|) storage, which is better than for the adjacency matrix
in case that |E| = o(n2). On the other hand, the adjacency test for two given vertices is
not a constant-time operation, because it requires a search in one of the lists. Depending
on the implementation of the lists, the search time ranges from O(d) (for an unsorted
list) to O(logd) (for a sorted dynamic data structure such as a balanced search tree),
where d is the minimum degree of the two vertices.

Both representations have their merits. The choice typically depends on what one
wants to do with the graph. When dealing with embedded graphs, however, additional
information about the embedding is needed beyond the pure incidence structure of the
graph. The next section discusses a standard data structure to represent embedded
graphs.

2.2.1 The Doubly-Connected Edge List

The doubly-connected edge list (DCEL) is a data structure to represent a plane graph
in such a way that it is easy to traverse and to manipulate. To avoid complications,
let us discuss only connected graphs that contain at least two vertices. It is not hard
to extend the data structure to be able to represent all plane graphs. We also assume

22



Geometry: C&A 2024 2.2. Graph Representations

that we deal with a straight-line embedding and thus the geometry of edges is defined
by the positions of their endpoints already. For more general embeddings, the geometric
description of edges has to be stored in addition.

The main building block of a DCEL is a list of halfedges. Every actual edge is split
into two halfedges going in opposite direction, and these are called twins, see Figure 2.7.
Along the boundary of each face, halfedges are oriented counterclockwise, that is, the
face always stays to the left.

h

next(h)

prev(h)

twin(h)

target(h)

face(h)

Figure 2.7: A halfedge in a DCEL.

A DCEL also stores a list of vertices and a list of faces. These three lists are unordered
but interconnected by various pointers. A vertex v stores a pointer halfedge(v) to an
arbitrary halfedge originating from v. Every vertex also records its coordinates point(v),
that is, the point it is mapped to in the embedding. A face f stores a pointer halfedge(f)
to an arbitrary halfedge within the face. A halfedge h stores five pointers:

• a pointer target(h) to its target vertex,

• a pointer face(h) to its incident face,

• a pointer twin(h) to its twin halfedge,

• a pointer next(h) to the halfedge following h along the boundary of face(h), and

• a pointer prev(h) to the halfedge preceding h along the boundary of face(h).

A constant amount of information is stored for every vertex, (half-)edge, and face of the
graph. Therefore the whole DCEL needs storage proportional to |V |+ |E|+ |F|, which is
O(n) for a plane graph with n vertices by Corollary 2.5.

This information is sufficient for most tasks. For example, traversing all edges around
a face f can be done as follows:

s← halfedge(f)
h← s

do
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something with h

h← next(h)
while h ̸= s

Exercise 2.15. Give pseudocode to traverse all edges incident to a given vertex v of a
DCEL.

Exercise 2.16. Why is the previous halfedge prev(·) stored explicitly whereas the source
vertex of a halfedge is not?

2.2.2 Manipulating a DCEL

In many applications, plane graphs do not just appear as static objects but rather evolve
over the course of an algorithm. Therefore the data structure must allow for efficient
updates. These include, but are not limited to, appending new vertices, edges and faces
to the corresponding list within the DCEL and—symmetrically—the ability to delete an
existing entity.

First, it should be easy to add a new vertex v to the graph within a given face f

and (as we maintain a connected graph) connect v to an existing vertex u. For such a
connection to be valid, we require that the open line segment uv lies completely in f.
Given that we need access to both f and u, it would be convenient to pass the already
existing halfedge h that satisfies face(h) = f and target(h) = u as an argument. Assuming
that point(v) has already been set to the desired location of the new vertex, our operation
then becomes

add-vertex-at(v, h)
Precondition: the open line segment point(v)point(u), where u := target(h),

lies completely in f := face(h).
Postcondition: the new vertex v has been inserted into f, connected by an

edge to u.

u

v

h f

. . .

. . .

(a) before

u

v

h

f

h1

h2

. . .

. . .

(b) after

Figure 2.8: Add a new vertex connected to an existing vertex u.

See also Figure 2.8. It can be realized by manipulating a constant number of pointers as
follows.
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add-vertex-at(v, h) {
h1 ← a new halfedge
h2 ← a new halfedge
halfedge(v)← h2

twin(h1)← h2

twin(h2)← h1

target(h1)← v

target(h2)← u

face(h1)← f

face(h2)← f

next(h1)← h2

next(h2)← next(h)
prev(h1)← h

prev(h2)← h1

next(h)← h1

prev(next(h2))← h2

}

Similarly, it should be possible to add an edge between two existing vertices u and v,
provided the open line segment uv lies completely within a face f of the graph, see
Figure 2.9. Since such an edge insertion splits f into two faces, the operation is called
split-face. Again we pass as an argument the halfedge h satisfying face(h) = f and
target(h) = u.

split-face(h, v)
Precondition: v is incident to f := face(h) but not adjacent to u := target(h).

The open line segment point(v)point(u) lies completely in f.
Postcondition: f has been split by a new edge uv.

u

v

fh

(a) before

u

v

f1

h
f2

h1

h2

(b) after

Figure 2.9: Split a face by an edge uv.

The implementation is slightly more complicated compared to add-vertex-at above, be-
cause the face f is destroyed and so we have to update the face information of all incident
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halfedges. In particular, this is not a constant time operation and has complexity pro-
portional to the size of f.

split-face(h, v) {
f1 ← a new face
f2 ← a new face
h1 ← a new halfedge
h2 ← a new halfedge
halfedge(f1)← h1

halfedge(f2)← h2

twin(h1)← h2

twin(h2)← h1

target(h1)← v

target(h2)← u

next(h2)← next(h)
prev(next(h2))← h2

prev(h1)← h

next(h)← h1

i← h2

loop
face(i)← f2
if target(i) = v break the loop
i← next(i)

endloop
next(h1)← next(i)
prev(next(h1))← h1

next(i)← h2

prev(h2)← i

i← h1

do
face(i)← f1
i← next(i)

until target(i) = u

delete the face f

}

In a similar fashion one can realize the inverse operation join-face(h) that removes the
edge represented by h, thereby joining the faces face(h) and face(twin(h)).

It is easy to see that every connected plane graph on at least two vertices can be
constructed using the operations add-vertex-at and split-face, starting from an embedding
of K2 (two vertices connected by an edge).

Exercise 2.17. Give pseudocode for the operation join-face(h). Specify preconditions if
needed.
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Exercise 2.18. Give pseudocode for the operation split-edge(h), that splits the edge
represented by h into two by a new vertex w, see Figure 2.10.

u

v

h

f2

f1

(a) before

u

v

w

h2

h1

k1

k2
f2

f1

(b) after

Figure 2.10: Split an edge by a new vertex.

2.2.3 Graphs with Unbounded Edges

In some cases it is convenient to consider plane graphs in which some edges are not
mapped to a line segment but to an unbounded curve, such as a ray. This setting is not
really much different from the one we studied before, except that one special vertex is
placed “at infinity”. One way to think of it is in terms of stereographic projection (see
the proof of Theorem 2.2). The further away a point in R2 is from the origin, the closer
its image on the sphere S gets to the north pole n of S. But there is no way to reach n

except in the limit. Therefore, we can imagine drawing the graph on S instead of in R2

and putting the “infinite vertex” at n.
All this is just for the sake of a proper geometric interpretation. As far as a DCEL

of such a graph is concerned, there is no need to consider spheres or anything beyond
what we have discussed. The only difference to the case with all finite edges is that there
is this special infinite vertex, which does not have any point/coordinates associated to
it. Other than that, the infinite vertex is treated in exactly the same way as the finite
vertices: it has in- and out-going halfedges along which the unbounded faces can be
traversed (Figure 2.11).

Remarks. It is actually not so easy to point exactly to where the DCEL data struc-
ture originates from. Often Muller and Preparata [25] are credited, but while they use
the term DCEL, the data structure they describe is different from what we discussed
above and from what people usually consider a DCEL nowadays. Overall, there are a
large number of variants of this data structure, which appear under the names winged
edge data structure [3], halfedge data structure [35], or quad-edge data structure [16].
Kettner [21] provides a comparison of all these with some additional references.
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∞

Figure 2.11: A DCEL with unbounded edges. Usually, we will not show the infinite
vertex and draw all edges as straight-line segments. This yields a geo-
metric drawing, like the one within the gray box.

2.2.4 Combinatorial Embeddings

The basic DCEL omits geometric aspects (that is, positions and shapes of a vertex/edge/face)
and only stores incidences and adjacencies between vertices, edges, and faces of an em-
bedding. We call such information the combinatorial embedding of the actual plane
graph. Conventionally, we write it as a set of face boundaries, where each boundary is
encoded as a circular sequence of vertices in counterclockwise order. For instance, the
combinatorial embeddings of the plane graphs in Figure 2.12a are

(a) : {(1, 2, 3), (1, 3, 6, 4, 5, 4), (1, 4, 6, 3, 2)} ,

(b) : {(1, 2, 3, 6, 4, 5, 4), (1, 3, 2), (1, 4, 6, 3)} , and
(c) : {(1, 4, 5, 4, 6, 3), (1, 3, 2), (1, 2, 3, 6, 4)} .

Note that a vertex can appear several times along the boundary of a face (if it is a
cut-vertex).

This view allows us to compare embeddings easily. Two embeddings (plane graphs)
are combinatorially equivalent if their combinatorial embeddings are equal up to a
global change of orientation (reversing the order of all sequences simultaneously). For
example, (b) is not equivalent to (a) nor (c), because it is the only one with a face
bounded by seven vertices. However, (a) and (c) turn out to be equivalent: after reverting
orientations f1 takes the role of h2, f2 takes the role of h1, and f3 takes the role of h3.

Exercise 2.19. Let G be a planar graph with vertex set {1, . . . , 9}. Try to find an
embedding corresponding to the following list of circular sequences of faces:

28



Geometry: C&A 2024 2.3. Unique Embeddings
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h2

h1
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Figure 2.12: Equivalent embeddings?

(a) {(1, 4, 5, 6, 3), (1, 3, 6, 2), (1, 2, 6, 7, 8, 9, 7, 6, 5), (7, 9, 8), (1, 5, 4)}

(b) {(1, 4, 5, 6, 3), (1, 3, 6, 2), (1, 2, 6, 7, 8, 9, 7, 6, 5), (7, 9, 8), (1, 4, 5)}

Combinatorial embeddings are not only used to categorize plane graphs. They also
play a role in algorithm design. Quite often, algorithms dealing with planar graphs do not
need a full-fledged embedding to proceed. It is sufficient to operate on a combinatorial
embedding, which is more efficient to handle.

Many people prefer a dual representation which, instead of listing face boundaries,
enumerates the neighbors of v in cyclic order for each vertex v. It can avoid the issue of
a vertex appearing multiple times in the sequence. However, the following lemma shows
that such an issue does not arise when dealing with biconnected graphs.

Lemma 2.20. In a biconnected plane graph every face is bounded by a cycle.

We leave the proof as an exercise. Intuitively the statement is clear, but we believe
it is instructive to think about a formal argument. An easy consequence is stated below,
whose proof is also an exercise.

Corollary 2.21. For any vertex v in a 3-connected plane graph, there is a cycle that
contains all neighbours of v.

Exercise 2.22. Prove Lemma 2.20 and Corollary 2.21.

Given Lemma 2.20, one might wonder the converse question: Which cycles in a planar
graph G bound a face (in some plane embedding of G)? Such cycles are said to be facial ;
see Figure 2.13.

Exercise 2.23. Describe a linear time algorithm that, given an abstract planar graph
G and a cycle C in G, tests whether C is a facial cycle. (You may assume that
planarity can be tested in linear time.)

2.3 Unique Embeddings

As we have seen, an abstract planar graph may admit many different embeddings, even
in the combinatorial sense. Under what condition does it admit a unique combinatorial
embedding?
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1

2

3

4 5

Figure 2.13: The cycles (2, 3, 5) and (1, 2, 5, 3), for example, are both facial. One can
show that (2, 4, 3, 5) is not.

To answer the question, we start by studying cycles that bound a face in every
plane embedding of G. (Note that this is stronger than being facial.) The lemma below
provides a complete characterization of these cycles. Let us agree on some terminology
about a cycle C in a graph G. A chord of C is an edge in E(G) \E(C) that connects two
vertices of C. The cycle C is induced if it does not have any chord. It is separating if
G \ C is not connected.

Lemma 2.24. Let G be a planar graph which is neither a cycle, nor a cycle plus a
single chord. Then a cycle C in G bounds a face in every plane embedding of G if
and only if C is induced and not separating.

Proof. “⇐”: Consider any plane embedding Γ of G. By the Jordan Curve Theorem, the
cycle C splits the plane into an interior and an exterior region. As G \ C is connected,
it lies either entirely in the interior or entirely in the exterior. In either case, the other
region is bounded by C because C does not have any chord.

“⇒": Using contraposition, suppose that (1) C is not induced or (2) C is separating.
We aim to find a plane embedding of G in which C does not bound a face. To this end,
let us start from an arbitrary plane embedding Γ of G. If C does not bound a face in Γ

then we are done. So next we assume that C bounds a face in Γ .

(1) If C is not induced, then it has a chord c. As G ̸= C ∪ c, the graph G either has
some vertex v ̸∈ C or another chord d ̸= c of C. We modify Γ by rerouting the
chord c inside the face C and obtain an embedding in which C does not bound a
face: one of the two regions split by the Jordan curve C contains the chord c, and
the other contains either the vertex v or another chord d.

(2) If C is separating, then G \ C is not connected. If G \ C = ∅ then G is either C

(which is excluded by assumption) or C plus some chords (which is handled by
Case (1)). So from now on we assume G \ C ̸= ∅ has two components A and B;
see Figure 2.14a. Γ induces plane embeddings ΓA of A ∪ C and ΓB of B ∪ C; the
cycle C bounds a face in both of them. By the transformation in Theorem 2.2 we
can make C bounding the outer face in ΓA yet an inner face in ΓB. Then we can glue
the two embeddings at C, that is, extend ΓB by adding ΓA within the (inner) face
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bounded by C (Figure 2.14b). The result is a plane embedding of G in which C

does not bound a face.

C

A

B

(a)

C

B

A

(b)

Figure 2.14: A plane embedding in which C does not bound a face, in Case (2).

For those special graphs G excluded in Lemma 2.24, it is easy to see that all cycles
in G bound a face in every plane embedding. This completes the characterization. Since
these special graphs are not 3-connected, we have

Corollary 2.25. A cycle C of a 3-connected planar graph G bounds a face in every
plane embedding of G if and only if C is induced and not separating.

The following theorem tells us that a wide range of graphs have little choice when
embedded into the plane, from a combinatorial point of view. Geometrically, though,
there is still much freedom.

Theorem 2.26 (Whitney [36]). A 3-connected planar graph has a unique combinatorial
plane embedding (up to equivalence).

Proof. Let G be a 3-connected planar graph and suppose there exist two embeddings
Φ1 and Φ2 of G that are not equivalent. So there is a cycle C = (v1, . . . , vk) in G that,
say, bounds a face f in Φ1 but does not bound any face in Φ2. By Corollary 2.25 there
are only two options:

Case 1: C has a chord {vi, vj}. Denote A = {vx : i < x < j} and B = {vx : x < i ∨ j < x}

and observe that both A and B are nonempty because {vi, vj} is a chord and so vi
and vj are not adjacent in C. Given that G is 3-connected, there is at least one
path P from A to B that avoids both vi and vj. Let a denote the last vertex of P
that is in A, and let b denote the first vertex of P that is in B. As C bounds f in
Φ1, we can add a new vertex v inside f and connect it to each of vi, vj, a and b

by four pairwise internally disjoint curves. The result would be a plane graph that
contains a K5 subdivision with branch vertices v, vi, vj, a, and b. This contradicts
Kuratowski’s Theorem (Theorem 2.10).
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Figure 2.15: Illustration of the two cases in Theorem 2.26.

Case 2: C is induced and separating. Since C is induced and G is 3-connected, we must have
G \ C ̸= ∅. So G \ C contains two distinct components A and B. Choose vertices
a ∈ A and b ∈ B arbitrarily. Applying Menger’s Theorem (Theorem 1.5) on the
3-connected graph G, there exist three paths α1, α2, α3, pairwise internally vertex-
disjoint, from a to b. Let ci be some vertex where αi intersects C, for 1 ⩽ i ⩽ 3.
Note that c1, c2, c3 exist because C separates A and B, and they are pairwise distinct
because α1, α2, α3 are pairwise internally (vertex-)disjoint. Therefore, {a, b} and
{c1, c2, c3} form branch vertices of a K2,3 subdivision in G. We can add a new
vertex v inside f and connect it to each of c1, c2 and c3 by three pairwise internally
disjoint curves. The result would be a plane graph that contains a K3,3 subdivision.
This contradicts Kuratowski’s Theorem (Theorem 2.10).

In both cases we arrived at a contradiction and so there does not exist such a cycle C.
Thus Φ1 and Φ2 are equivalent.

Whitney’s Theorem does not provide a characterization of unique embeddability in
general, as there are biconnected graphs with unique combinatorial plane embedding
(such as cycles) as well as those with several, non-equivalent combinatorial plane embed-
dings (such as a triangulated pentagon).

Exercise 2.27. Describe a family of biconnected planar graphs with exponentially many
combinatorial plane embeddings. That is, show that there exists a constant c ∈ R
such that for every n ∈ N there exists a biconnected planar graph on n vertices that
has at least cn different combinatorial plane embeddings.

2.4 Triangulating a Planar Graph

We like to study worst case scenarios not so much to dwell on “how bad things could get”
but rather—phrased positively—because worst case examples provide universal bounds
of the form “things are always at least this good”. Most questions related to embeddings
get harder when the graph contains more edges because every additional edge poses an
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increasing danger of crossing. So let us study the worst case: planar graphs such that
adding any edge shall break its planarity. These graphs are called maximal planar.
Corollary 2.5 tells us that every (hence also maximal) planar graph on n vertices has at
most 3n − 6 edges. Yet we would like to learn a bit more about how these graphs look
like.

Lemma 2.28. A maximal planar graph on n ⩾ 3 vertices is biconnected.

Proof. Consider a maximal planar graph G = (V, E). Note that G is connected because
adding an edge between two distinct components of a planar graph maintains planarity.
Now if G is not biconnected, then it has a cut-vertex v. Take a plane drawing Γ of G.
As G \ v is disconnected, removal of v also splits NG(v) into at least two components.
Hence there are two vertices a, b ∈ NG(v), consecutive in the circular order around v in
Γ , that are in different components of G \ v. In particular, ab /∈ E and we can add this
edge to G (routing it very close to the path (a, v, b) in Γ) without violating planarity.
This is in contradiction to G being maximal planar, so G must be biconnected.

Lemma 2.29. In any embedding of a maximal planar graph on n ⩾ 3 vertices, all
faces are topological triangles, that is, every face is bounded by exactly three edges.

Proof. Consider a maximal planar graph G = (V, E) and a plane drawing Γ of G.
By Lemma 2.28 we know that G is biconnected and so by Lemma 2.20 every face
of Γ is bounded by a cycle. Suppose that there is a face f in Γ bounded by a cycle
(v0, . . . , vk−1, vk = v0) of k ⩾ 4 vertices. We claim that at least one of the edges v0v2 or
v1v3 is not in E.

Suppose to the contrary that {v0v2, v1v3} ⊆ E. Then we can add a new vertex v ′ in the
interior of f and connect it to each of v0, v1, v2, v3 by a curve inside f without introducing
a crossing. In other words, given G is planar, the graph G ′ = (V ∪ {v ′}, E ∪ {v ′vi : i ∈
{0, 1, 2, 3}}) is also planar. However, v0, v1, v2, v3, v ′ are branch vertices of a K5 subdivision
in G ′: v ′ is connected to all other vertices within f, each vertex vi is connected to both
v(i−1)mod4 and v(i+1)mod4 along the boundary of f, and the two missing connections
are provided by the edges v0v2 and v1v3 (Figure 2.16a). This contradicts Kuratowski’s
Theorem. Therefore, one of the edges v0v2 or v1v3 must be absent from E, as claimed.

So assume without loss of generality that v1v3 /∈ E. But then we can route a curve
from v1 to v3 inside f in Γ without introducing a crossing (Figure 2.16b). It follows that
the edge v1v3 can be added to G without sacrificing planarity, which is in contradiction
to G being maximal planar. Therefore, there is no such face f bounded by four or more
vertices.

Theorem 2.30. A maximal planar graph on n ⩾ 4 vertices is 3-connected.

Exercise 2.31. Prove Theorem 2.30.

Exercise 2.32. (a) A minimal nonplanar graph is a non-planar graph G which con-
tains an edge e such that G \ e is planar. Prove or disprove: Every minimal
nonplanar graph contain an edge e such that G \ e is maximal planar.
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Figure 2.16: Every face of a maximal planar graph is a topological triangle.

(b) A maximal-plus-one planar graph is a graph G that contains an edge e such that
G \ e is maximal planar. Prove or disprove: Every maximal-plus-one planar
graph can be drawn with at most one crossing.

Many questions about graphs are formulated only for connected graphs because it is
easy to add edges to disconnected graphs and make them connected. For similar reason,
many questions about planar embeddings are formulated only for maximal planar graphs
because it is easy to augment planar graphs and make them maximal planar. Well, this
last statement is not entirely obvious. Let us look at it in more detail.

An augmentation of a given planar graph G = (V, E) to a maximal planar graph
G ′ = (V, E ′) where E ′ ⊇ E is also called a topological triangulation. The proof of
Lemma 2.29 already contains the basic algorithmic idea to topologically triangulate a
plane graph.

Theorem 2.33. For a given connected plane graph G = (V, E) on n vertices one can
compute in O(n) time and space a maximal plane graph G ′ = (V, E ′) with E ⊆ E ′.

Proof. Suppose, for instance, that G is represented as a DCEL2, from which one can
easily extract the face boundaries. As a clean-up, we walk along the boundary of each
face. Whenever we see a vertex twice (or more), it must be a cut vertex. We fix this by
adding an edge between its current predecessor and successor along the walk, and then
continue the walk. Since the total number of traversed edges and vertices of all faces is
proportional to |E|, which by Corollary 2.5 is linear, the clean-up finishes in O(n) time.
Henceforth we may suppose that all faces of G are bounded by cycles.

Every face that is bounded by more than three vertices selects an arbitrary vertex
on its boundary. Conversely, every vertex keeps a list of all faces that have selected it.
Then we process every vertex v ∈ V as follows:

1. Mark all neighbors of v.

2If you wonder how the possibly complicated curves are represented: they do not need to be, since here
we need a representation of the combinatorial embedding only.
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2. For each face f that selected v, scan its boundary ∂f = (v, v1, . . . , vk) counterclock-
wise, where k ⩾ 3, and find the first marked vertex vx ̸∈ {v1, vk}.

• If there is no such vertex, we can safely triangulate f using a star from v, that
is, by adding the edges vvi, for i ∈ {2, . . . , k−1} (Figure 2.17a). We then mark
the new neighbors of v accordingly.

• Otherwise, the edge vvx as a curve embedded outside f prevents any vertex
in {v1, . . . , vx−1} from connecting to any vertex in {vx+1, . . . , vk} by an edge in
G. (The reasoning copies the one we made for the edges v0v2 and v1v3 in the
proof of Lemma 2.29 above; see Figure 2.16a.) So we can safely triangulate
f using a bi-star from v1 and vx+1, that is, by adding the edges v1vi, for
i ∈ {x+ 1, . . . , k}, and vjvx+1, for j ∈ {2, . . . , x− 1} (Figure 2.17b).

3. After finishing all faces that seleted v, we conclude the processing of v by clearing
all marks on its neighbors.

v1

v3

vk

v

∂f

v2

vk−1

(a) Case 1: v does not have any neighbor
on ∂f other than v1 and vk.

v1

vx

vk

v

f

v2
vk−1

vx+1

(b) Case 2: v has a neighbor vx on ∂f other
than v1 and vk.

Figure 2.17: Topologically triangulating a plane graph.

Regarding the runtime bound, note that every face is visited only twice: one time
when selecting its representative vertex, the other time when scanning its boundary.
In this way, each edge is touched a constant number of times in step 2 overall. The
marking/unmarking (steps 1 and 3) cost

∑
v∈V deg(v) = 2|E| time by the Handshaking

Lemma. Therefore, the total time can be bounded by O(n + |F| + |E|) = O(n) by
Corollary 2.5.

Using any of the standard planarity testing algorithms we can obtain a combinatorial
embedding of a planar graph in linear time. Together with Theorem 2.33 this yields:

Corollary 2.34. For a given planar graph G = (V, E) on n vertices one can compute in
O(n) time and space a maximal planar graph G ′ = (V, E ′) with E ⊆ E ′.

The results discussed in this section can serve as a tool to fix the combinatorial
embedding for a given graph G: augment G using Theorem 2.33 to a maximal planar
graph G ′, whose combinatorial embedding is unique by Theorem 2.26.
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Being maximal planar is a property of an abstract graph. In contrast, a
geometric graph to which no straight-line edge can be added without crossing
is called a triangulation. Not every triangulation is maximal planar, as the
example depicted to the right shows.

It is also possible to triangulate a geometric graph in linear time. But this problem
is much more involved. Triangulating a single face of a geometric graph amounts to
what is called “triangulating a simple polygon”. This can be done in near-linear3 time
using standard techniques, and in linear time using Chazelle’s famous algorithm, whose
description spans a fourty pages paper [9].

Exercise 2.35. We discussed the DCEL structure to represent plane graphs in Sec-
tion 2.2.1. An alternative way to represent an embedding of a maximal planar
graph is the following: For each triangle, store pointers to its three vertices and
to its three neighboring triangles. Compare both approaches. Discuss different sce-
narios where you would prefer one over the other. In particular, analyze the space
requirements of both.

Connectivity serves as an important indicator for properties of planar graphs. Al-
ready Wagner showed that a 4-connected graph is planar if and only if it does not contain
K5 as a minor. That is, assuming 4-connectivity the second forbidden minor K3,3 be-
comes “irrelevant”. For subdivisions this is a different story. Independently Kelmans
and Semour conjectured in the 1970s that 5-connectivity allows to consider K5 subdi-
visions only. This conjecture was proven only recently4 by Dawei He, Yan Wang, and
Xingxing Yu.

Theorem 2.36 (He, Wang, and Yu [18]). Every 5-connected nonplanar graph contains
a subdivision of K5.

Exercise 2.37. Give a 4-connected nonplanar graph that does not contain a subdivision
of K5.

Another example that illustrates the importance of connectivity is the following fa-
mous theorem of Tutte that provides a sufficient condition for Hamiltonicity.

Theorem 2.38 (Tutte [32]). Every 4-connected planar graph is Hamiltonian.

Moreover, for a given 4-connected planar graph a Hamiltonian cycle can also be
computed in linear time [10].

2.5 Compact Straight-Line Drawings

As a next step we consider geometric plane embeddings, where every edge is drawn as a
straight-line segment. A classical theorem of Wagner and Fáry states that this is not a
restriction to plane embeddability.

3O(n logn) or—using more elaborate tools—O(n log∗ n) time.
4The result was announced in 2015 and published in 2020.
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Theorem 2.39 (Fáry [13], Wagner [33]). Every planar graph has a plane straight-line
embedding.

This is quite surprising, considering how much more freedom a simple curve allows,
compared to a line segment which is completely determined by its endpoints. To further
increase the level of appreciation, let us remark that a similar “straightening” is generally
not possible if we fix the point set on which the vertices are to be embedded: On the one
hand, Pach and Wenger [27] showed that a given planar graph G on n vertices v1, . . . , vn
and a given point set {p1, . . . , pn} ⊂ R2, one can always find a plane embedding of G
such that vi 7→ pi, for all i ∈ {1, . . . , n}. On the other hand, this is not possible in
general with a plane straight-line embedding. For instance, K4 does not admit a plane
straight-line embedding on a set of points that form a convex quadrilateral, such as a
rectangle. In fact, it is NP-hard to decide whether a given planar graph admits a plane
straight-line embedding on a given point set [7].

Exercise 2.40. Show the following:

(a) For every natural number n ⩾ 4, there exist a planar graph G on n vertices
and a set P ⊂ R2 of n points in general position (no three points are collinear)
so that G does not admit a plane straight-line embedding on P.

(b) For every natural number n ⩾ 6, there exist a planar graph G on n vertices
and a set P ⊂ R2 of n points in general position (no three points are collinear)
so that (1) G does not admit a plane straight-line embedding on P; and (2)
there are three points in P forming a triangle that contains all other points
from P.

Exercise 2.41. Show that for every set P ⊂ R2 of n ⩾ 3 in general position (no three
points are collinear) the cycle on n vertices admits a plane straight-line embedding
on P.

Although Fáry-Wagner’s theorem has a nice inductive proof, we do not discuss it
here. Instead we will soon prove a stronger statement that implies the theorem.

A very desirable property of straight-line embeddings is that they are easy to repre-
sent: only the points/coordinates for the vertices are needed. But from an algorithmic
and complexity point of view it is also important to learn the space requirement for
the coordinates, since it affects the input and output size of algorithms that work on
embedded graphs. While the Fáry-Wagner Theorem guarantees the existence of a plane
straight-line embedding for every planar graph, it does not bound the size of the coordi-
nates. The following strengthening provides such bounds, via an explicit algorithm that
embeds (without crossing) a given planar graph on a linear size integer grid.

Theorem 2.42 (de Fraysseix, Pach, Pollack [15]). Every planar graph on n ⩾ 3 vertices
has a plane straight-line drawing on a (2n− 3)× (n− 1) integer grid. In fact, it can
be computed in O(n) time.
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2.5.1 Canonical Orderings

The key concept behind the algorithm is the notion of a canonical ordering, which
is a vertex order that allows building the plane drawing inside out (hence canonical).
Reading it backwards one may imagine a shelling or peeling order that destructs the
graph from the outside. A canonical ordering also provides a succinct representation for
the combinatorial embedding.

Definition 2.43. A plane graph G is internally triangulated if it is biconnected and every
bounded face is a (topological) triangle. We denote by C◦(G) its outer cycle, that
is, the cycle bounding its outer face.

Definition 2.44. Let G be an internally triangulated plane graph. A permutation π =
(v1, v2, . . . , vn) of V(G) is a canonical ordering for G if for all k ∈ {3, . . . , n} we have

(CO1) Gk is internally triangulated;

(CO2) v1v2 ∈ C◦(Gk); and

(CO3) vk is located in the outer face of Gk−1,

where Gk := G[{v1, . . . , vk}] is the induced drawing on the first k vertices.

Figure 2.18 shows an example with canonical ordering (1, 2, . . . , 8). Note that not
every permutation is a valid canonical ordering. For instance, if π chooses its first
seven vertices from {1, 2, 3, 5, 6, 7, 8}, then the induced subgraph G[{1, 2, 3, 5, 6, 7, 8}] is
not biconnected since 1 is a cut vertex, thus π is not a canonical ordering. (Alternatively
we may think about it backwards: Suppose we choose the initial three removals from
{9, 10, 11} as shown in Figure 2.18b, then the next removal cannot be 4 because it will
leave a cut vertex in the graph.)

1

2

3
4

5

6

7

8

9

10

11

(a) G

1

2

3
4

5

6

7

8

9

10

11

(b) G8

Figure 2.18: An internally triangulated plane graph with one of its canonical ordering
(1, 2, . . . , 8).
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Theorem 2.45. For every internally triangulated plane graph G and every edge v1v2
on its outer cycle, there exists a canonical ordering for G that starts with v1, v2.
Moreover, such an ordering can be computed in linear time.

Proof. Induction on n, the number of vertices. For a triangle, any ordering is valid and
so the statement holds. Now consider an internally triangulated plane graph G = (V, E)
on n ⩾ 4 vertices. Assume we have found a vertex vn ∈ C◦(G) \ {v1, v2} such that
the plane graph Gn−1 := G \ {vn} is internally triangulated. (We will show later that it
always exists.) Then we may apply induction on Gn−1 and obtain a canonical ordering
(v1, v2, . . . , vn−1) for Gn−1. The extended ordering (v1, v2, . . . , vn) would satisfy (CO1)–
(CO3) for k ∈ {3, . . . , n− 1} by induction hypothesis, but also for k = n by definition of
vn. Hence the induction would be complete, assuming the existence of vn.

It remains to argue that vn exists. We will show this in two steps:

(1) we can find a vn ∈ C◦(G) \ {v1, v2} that is not incident to a chord of C◦(G); and

(2) such vn automatically guarantees that Gn−1 := G \ {vn} is internally triangulated.

First we show (1). If C◦(G) does not have any chord, this is obvious because every
cycle has at least three vertices, one of which is neither v1 nor v2. So suppose that C◦(G)
has a chord c. The endpoints of c split C◦(G) into two paths, one of which does not
have v1 nor v2 as an internal vertex. We call this path the path associated to c. (Such a
path has at least two edges because there is always at least one vertex “behind” a chord.)
Among all chords of C◦(G) we select c such that its associated path has minimal length.
Then by this choice of c its associated path together with c forms an induced cycle in G.
In particular, none of the (at least one) interior vertices of the path associated to c is
incident to a chord of C◦(G) because such a chord would either cross c or it would have
an associated path that is strictly shorter than the one associated to c. So we can select
vn from these vertices. By definition the path associated to c does not contain v1 nor
v2, hence this procedure does not select either of these vertices.

Then we look at (2). The way Gn−1 is obtained from G, every bounded face f of
Gn−1 also appears as a bounded face of G. As G is internally triangulated, f is a triangle.
It remains to show that Gn−1 is biconnected.

Consider the circular sequence of neighbors around vn in G and break it into a linear
sequence u1, . . . , um, for some m ⩾ 2, that starts and ends with the neighbors of vn in
C◦(G). As G is internally triangulated, each of the bounded faces spanned by vn, ui, ui+1,
for i ∈ {1, . . . ,m − 1}, is a triangle and hence uiui+1 ∈ E. The boundary of the outer
face of Gn−1 is obtained from C◦(G) by replacing vn with the (possibly empty) sequence
u2, . . . , um−1. As vn is not incident to a chord of C◦(G) (and so none of u2, . . . , um−1

appeared along C◦(G) already), the resulting sequence forms a cycle, indeed. Add a new
vertex v in the outer face of Gn−1 and connect v to every vertex of C◦(Gn−1) to obtain
a maximal planar graph H ⊃ Gn−1. By Theorem 2.30 the graph H is 3-connected and
so Gn−1 is biconnected, as desired. This also completes the proof of the claim.

Regarding the runtime bound, we maintain for each vertex v whether it is on the
current outer cycle and what is the number of incident chords with respect to the current
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outer cycle. Given a combinatorial embedding of G, it is straighforward to initialize
this information in linear time. (Every edge is considered at most twice, once for each
endpoint on the outer cycle.) We also maintain an unordered list of the eligible vertices,
that is, those vertices that are on the outer cycle and not incident to any chord. This list
is straightforward to maintain: Whenever a vertex information is updated, check before
and after the update whether it is eligible and correspondingly add it to or remove it
from the list of eligible vertices. We store with each vertex a pointer to its position in the
list (nil if it is not eligible currently) so that we can remove it from the list in constant
time if needed.

When removing a vertex vn from G, there are two cases: Either vn has two neighbors
u1 and u2 only (Figure 2.19a), in which case the edge u1u2 ceases to be a chord. Thus,
the chord count for u1 and u2 has to be decremented by one. Otherwise, there are
m ⩾ 3 neighbors u1, . . . , nm (Figure 2.19b) and (1) all vertices u2, . . . , um−1 are new
on the outer cycle, and (2) every edge incident to ui, for i ∈ {2, . . . ,m − 1}, and some
other vertex on the outer cycle other than ui−1 or ui+1 is a new chord. These latter
changes have to be reflected in the chord counters at the vertices. So to update these
counters, we inspect all edges incident to one of u2, . . . , um−1. For each such edge, we
check whether the other endpoint is on the outer cycle and, if so, increment the counter.

vn

u1
u2

C◦(G)

(a)

vn

u1
u6

C◦(G)

(b)

Figure 2.19: Processing a vertex when computing a canonical ordering.

During the course of the algorithm every vertex appears once as a new vertex on the
outer cycle. At this point all incident edges (in the current graph Gi) are examined.
Similarly, when a vertex vk is removed from GK, all edges incident to vk in Gk are
inspected; and each vertex is removed at most once. Therefore, every edge is inspected
at most three times: when one of its two endpoints appears first on the outer cycle, and
when the first endpoint (and therefore the edge) is removed. Altogether this takes linear
time because the number of edges in G is linear by Corollary 2.5.

Using one of the linear time planarity testing algorithms, we can obtain a combinato-
rial embedding for a given maximal planar graph G. As every maximal planar graph is
3-connected (Theorem 2.30), this embedding is unique (Theorem 2.26). Then, as every
maximal plane graph is also internally triangulated, we can use Theorem 2.45 to provide
us with a canonical ordering for (the unique embedding of) G, in overall linear time.
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Corollary 2.46. Every maximal planar graph admits a canonical ordering. Moreover,
such an ordering can be computed in linear time.

Exercise 2.47. (a) Compute a canonical ordering for the following internally trian-
gulated plane graphs:

(b) Design an infinite family of internally triangulated plane graphs on 2k vertices
with at least k! canonical orderings.

(c) Design an infinite family of internally triangulated plane graphs, along with
specific choices for v1, v2, so that each graph in the family has a unique canon-
ical ordering starting from v1, v2.

Exercise 2.48. (a) Describe a plane graph G with n vertices that can be embedded
(while preserving the outer face) in straight-line on a grid of size (2n/3) ×
(2n/3), but not on a smaller grid.

(b) Can you draw G on a smaller grid if you are allowed to change the outer face?

As simple as they may appear, canonical orderings are a powerful and versatile tool
to work with plane graphs. As an example, consider the following partitioning theorem.

Theorem 2.49 (Schnyder [30]). For every maximal planar graph G on at least three
vertices and every fixed face f of G, the multigraph obtained from G by doubling
the (three) edges of f can be partitioned into three spanning trees.

Exercise 2.50. Prove Theorem 2.49. Hint: Fix a canonical ordering; for every vertex
vk take the edge to its first neighbor on C◦(Gk−1); argue that the edges form a
spanning tree.

Of a similar flavor is the following question.

Problem 2.51 (In memoriam Ferran Hurtado (1951–2014)).
Can every complete geometric graph on n = 2k vertices (in general position) be parti-
tioned into k plane spanning trees?
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There are several positive results for special point sets [1, 5], and it is also known
that there are always ⌊n/3⌋ edge disjoint plane spanning trees [4]. The general statement
above has been refuted very recently [26]. However, it remains open if there always exists
a partition into k + 1 plane trees—or more generally, what is the minimum number of
plane trees that always suffices.

2.5.2 The Shift-Algorithm

Let (v1, . . . , vn) be a canonical ordering of maximal planar graph G. The plan is to insert
vertices in this order and extend the embedding incrementally, starting from the triangle
P(v1) = (0, 0), P(v3) = (1, 1), P(v2) = (2, 0); see Figure 2.20.

P(v3) = (1, 1)

P(v2) = (2, 0)P(v1) = (0, 0)

Figure 2.20: Initialization of the shift algorithm.

At each step, some vertices are shifted to the right, making room for the insertion of
a fresh vertex. When vertex vk is being inserted, we define a list L(vk) to memorize all
vertices that need to move rigidly with vk in the future. For the first three vertices we
define L(vi) = {vi}, 1 ⩽ i ⩽ 3. Once defined, a list will not change any more.

We ensure the following invariants after Step k (that is, after we have inserted vk):

(i) We obtain a straight-line embedding of Gk := G[{v1, . . . , vk}] on the integer grid,
combinatorially equivalent to the one considered in the canonical ordering. More-
over, P(v1) = (0, 0) and P(v2) = (2k− 4, 0).

(ii) Denote the outer cycle by C◦(Gk) =: (w1, . . . , wt) where w1 = v1 and wt = v2.
The x-coordinates of w1, . . . , wt are strictly increasing.5

(iii) Each edge of C◦(Gk) is drawn as a line segment with slope ±1. In particular, the
Manhattan distance6 between any two points on C◦(Gk) is even.

(iv) The lists L(w1), . . . , L(wt) partitions {v1, . . . , vk}.

Clearly these invariants hold for G3, embedded as described above.

Idea for Step k + 1. We are about to place vertex vk+1. Its neighbors wp, . . . , wq lie
consecutively on C◦(Gk) by the property of canonical ordering. Put vk+1 at position

5The notation is a bit sloppy because both t and the wi depend on k. So in principle we should write
wk

i instead of wi. But as the k would just make a constant appearance throughout, we omit it to avoid
clutter.

6The Manhattan distance of two points (x1, y1) and (x2, y2) is |x2 − x1|+ |y2 − y1|.

42



Geometry: C&A 2024 2.5. Compact Straight-Line Drawings

µ(P(wp), P(wq)), where

µ((xp, yp), (xq, yq)) :=

(
xp − yp + xq + yq

2
,
xp + yp + xq + yq

2

)
is the intersection between the line y = x− xp + yp of slope 1 through (xp, yp) and the
line y = xq − x+ yq of slope −1 through (xq, yq).

Proposition 2.52. If the Manhattan distance between P(wp) and P(wq) is even, then
µ(P(wp), P(wq)) is on the integer grid.

Proof. By (ii) we know that xp < xq. Suppose without loss of generality that yp ⩽ yq.
The Manhattan distance of the two points is d := xq − xp +yq −yp, an even number by
assumption. Adding an even number 2xp to d yields the even number xq+xp+yq−yp,
half of which is the x-coordinate of µ((xp, yp), (xq, yq)). Adding an even number 2yp

to d yields the even number xq − xp + yq + yp, half of which is the y-coordinate of
µ((xp, yp), (xq, yq)).

However, µ(P(wp), P(wq)) may be unable to “see” all of wp, . . . , wq, in case that the
slope of wpwp+1 is 1 and/or the slope of wq−1wq is −1 (Figure 2.21).

wp

wq

vk+1

(a)

wp

wq

vk+1

(b)

Figure 2.21: (a) The new vertex vk+1 is adjacent to all of wp, . . . , wq. If we place vk+1

at µ(P(wp), P(wq)), then some edges may overlap, in case that wp+1 lies
on the line of slope 1 through wp or wq−1 lies on the line of slope −1

through wq; (b) shifting wp+1, . . . , wq−1 by one and wq, . . . , wt by two
units to the right solves the problem.

In order to resolve these problems, we shift some points to the right so that wp+1 no
longer lies on the line of slope 1 through wp, and that wq−1 no longer lies on the line of
slope −1 through wq. The actual Step k+ 1 then reads:

1. Shift
⋃q−1

i=p+1 L(wi) to the right by one unit.

2. Shift
⋃t

i=q L(wi) to the right by two units.

3. P(vk+1) := µ(P(wp), P(wq)).

4. L(vk+1) := {vk+1} ∪
⋃q−1

i=p+1 L(wi).
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Next we argue that the invariants (i)–(iv) are maintained after Step k+ 1.
For (i), note that the shifting always starts from wp+1 onward. So w1 = v1 is never

moved and stays at P(v1) = (0, 0). On the other hand, we shift every vertex by two
starting from (and including) wq, hence v2 moves two units to P(v2) = (2(k+ 1) − 4, 0).

Also, observe that the Manhattan distance between wp and wq remains even be-
cause the shift increases their horizontal distance by two and leaves the y-coordinates
unchanged. Therefore by Proposition 2.52 the vertex vk+1 is embedded on the integer
grid indeed.

After shifting, the absolute slopes of the edges wpwp+1 and wq−1wq (possibly the
same edge) become < 1, and the absolute slopes of all other edges on C◦(Gk) remain
1. In contrast, the edges vk+1wp and vk+1wq both have absolute slope 1, and all edges
from vk+1 to wp+1, . . . , wq−1 have absolute slopes > 1. Hence, for all i ∈ {p, . . . , q}, the
edge vk+1wi intersects C◦(Gk) in exactly one point, which is wi. In other words, these
new edges will not cross anything in Gk.

Of course, to conclude that the drawing is plane, we also need to argue that the edges
originally in Gk do not clash with each other after shifting. But as this is intuitively
clear, we postpone the formal argument for later. Now (i) is complete.

For (ii), clearly both the shifts and the insertion of vk+1 maintain the strict order
along the outer cycle. For (iii), note that the edges wpwp+1 and wq−1wq (possibly
equal) are the only edges on the outer cycle C◦(Gk) whose slope is changed. But neither
edge appears on C◦(Gk+1) any more, as they are covered by the two new edges vk+1wp

and vk+1wq; the new edges have slope 1 and −1, respectively. Regarding (iv), the list
L(vk+1) by definition includes the new vertex vk+1 and inherits the list items from all
outer cycle vertices that it shadows. So the lists on C◦(Gk+1) partitions {v1, . . . , vk+1}.

So (i)–(iv) are invariants of the algorithm, indeed. Let us look at the consequences.
During the entire procedure, invariants (i)(ii) and the definition of µ ensures that each
point is placed on a (2n− 3)× (n− 2) integer grid. In fact, the final vertex vn is always
placed at µ(P(v1), P(v2)) = µ((0, 0), (2n− 4, 0)) = (n− 2, n− 2) since both v1 and v2 are
its neighbors.

Finally, we return to provide a formal argument that the “interior part” of the drawing
remains plane under shifts.

Lemma 2.53. Let Gk, k ⩾ 3, be straight-line embedded on grid as described by the
algorithm. Assume C◦(Gk) = (w1, . . . , wt), and let δ1 ⩽ . . . ⩽ δt be nonnegative
integers. If for each i we shift L(wi) by δi to the right, then the resulting straight-
line drawing is plane.

Proof. Induction on k. For the base case G3 this is obvious. Now for Gk, assume
vk = wℓ, where 2 ⩽ ℓ < t. Denote its m ⩾ 2 neighbors as u1, . . . , um where u1 = wℓ−1

and um = wℓ+1. Then we have

C◦(Gk−1) = (w1, . . . , wℓ−1, u2, . . . , um−1︸ ︷︷ ︸
could be empty

, wℓ+1, . . . , wt).
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Recall that the algorithm defines L(vk) = {vk} ∪
⋃m

i=1 L(ui). Hence, to shift each L(wi)
by δi is equivalent to applying the sequence

∆ := (δ1, . . . , δℓ−1, δℓ, . . . , δℓ︸ ︷︷ ︸
m−2 times

, δℓ+1, . . . , δt)

to Gk−1 and then shifting vk by δℓ.
Clearly ∆ is monotonically increasing, so by the inductive assumption the shifted

drawing of Gk−1 is plane. After shifting vk by δℓ, the drawing of Gk is plane: Vertex vk
moves rigidly (by exactly the same amount) with its neighbours u2, . . . , um−1, and the
two extreme neighbours u1 and um move relatively to the left and right, respectively.
The corresponding edges cannot cross anything during this movement.

Linear time. The challenge in implementing the shift algorithm efficiently lies in the
eponymous shift operations, which modify the x-coordinates of potentially many ver-
tices. In fact, it is not hard to see that a naive implementation—which keeps track
of all coordinates explicitly—may use quadratic time. De Fraysseix et al. described an
implementation of the shift algorithm that uses O(n logn) time. Then Chrobak and
Payne [11] observed how to improve the runtime to linear, using the following ideas.

Recall that vk+1 is placed at the coordinates

x =
xp − yp + xq + yq

2
,

y =
(xq − xp) + yp + yq

2
, (2.54)

and thus

x− xp =
(xq − xp) + yq − yp

2
. (2.55)

In other words, to determine the y-coordinate and the x-offset relative to the leftmost
neighbour wp, we only need the y-coordinates of wp and wq together with x-offset of
wq relative to wp.

To exploit these relations, we organize the vertices in an abstract binary tree rooted
at v1, with the following structure. If we start from the root and always branch to the
right, then we traverse the current outer cycle from left to right. If we branch to the
left at some vertex v, then we leave the outer cycle and reach an inner vertex that was
“covered” by v, that is, enclosed and thus removed from the outer face by the insertion
of v. The subtree rooted at v follows the same structure recursively, so that we can
walk through the historical outer cycle by branching to the right, and tap into one layer
deeper by branching to the left.

More formally, for each vertex v in the tree, its left child is the leftmost vertex covered
by the insertion of v (in the terminology from above, the vertex wp+1). If no vertex is
covered by v, then it left child is set to nil. If v is on the current outer cycle, then its
right child is the successor of v along the current outer cycle. Otherwise, the right child
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of v is the successor of v along the outer cycle at the point when both were covered
together by the insertion of another vertex. If no such successor exists (for instance,
for v2 or if v is the rightmost vertex covered by some other vertex), then the right child
of v is set to nil. See Figure 2.22 for an example.

(a)

vk+1

(b)

Figure 2.22: Maintaining a binary tree representation when inserting a new vertex
vk+1. Red dashed arrows point to left children, blue solid arrows point
to right children.

Each tree node v also stores its x-offset dx(v) relative to its parent node. In this way,
a whole subtree (and thus a whole set L(·)) can be shifted virtually by changing a single
offset entry at its root.

Initially, dx(v1) = 0, dx(v2) = dx(v3) = 1, y(v1) = y(v2) = 0, y(v3) = 1, left(v1) =
left(v2) = left(v3) = nil, right(v1) = v3, right(v2) = nil, and right(v3) = v2.

Inserting a vertex vk+1 works as follows. As before, let w1, . . . , wt denote the vertices
on the outer cycle C◦(Gk) and wp, . . . , wq be the neighbors of vk+1.

1. Increment dx(wp+1) and dx(wq) by one. (Implement the shift.)

2. Compute ∆pq =
∑q

i=p+1 dx(wi). (This is the total offset between wp and wq.)

3. Set dx(vk+1)← 1
2
(∆pq+y(wq)−y(wp)) and y(vk+1)← 1

2
(∆pq+y(wq)+y(wp)).

(This is exactly (2.54) and (2.55).)

4. Set right(wp)← vk+1 and right(vk+1)← wq. (Update the outer cycle.)

5. If p+ 1 = q, then set left(vk+1)← nil;
else set left(vk+1)← wp+1 and right(wq−1)← nil.
(Update L(vk+1), the part that is covered by insertion of vk+1.)

6. Set dx(wq)← ∆pq − dx(vk+1);
if p+ 1 ̸= q, then set dx(wp+1)← dx(wp+1) − dx(vk+1).
(Update the offsets according to the changes in the previous two steps.)
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Observe that the only step that possibly takes more than constant time is Step 2. To
analyze it, note that all vertices but the last vertex wq for which we sum the offsets
are covered by the insertion of vk+1. As every vertex can be covered at most once, the
overall complexity of this step during the algorithm is linear. Therefore, this first phase
of the algorithm can be completed in linear time.

In a second phase, we recover the final x-coordinates from the offsets by a recursive
pre-order traversal of the tree. The pseudo-code given below is to be called with the root
vertex v1 and an offset of zero. Clearly this yields a linear time algorithm overall.

compute_coordinate(Vertex v, Offset d) {
if (v == nil) return;
x(v) = dx(v) + d;
compute_coordinate(left(v), x(v));
compute_coordinate(right(v), x(v));

}

2.5.3 Remarks and Open Problems

From a geometric complexity point of view, Theorem 2.42 provides very good news
for planar graphs in a similar way that the Euler Formula does from a combinatorial
complexity point of view. Euler’s Formula tells us that we can obtain a combinatorial
representation (for instance, as a DCEL) of any plane graph using O(n) space, where
n is the number of vertices. Now the shift algorithm tells us that for any planar graph
we can even find a geometric plane (straight-line) representation using O(n) space. In
addition to the combinatorial information, we only have to store 2n numbers from the
range {0, 1, . . . , 2n− 4}.

When we make such claims regarding space complexity we implicitly assume the so-
called word RAM model. In this model each memory cell stores a word of b bits, which
may represent any integer in {0, . . . , 2b−1}. One also assumes that b is sufficiently large,
in our case b ⩾ logn.

There are also different models such as the bit complexity model, where one is charged
for every bit used to store information. In our case that would already incur an additional
factor of logn for the combinatorial representation: for instance, for each halfedge we
store its endpoint, which is an index from {1, . . . , n}.

Edge lengths. Theorem 2.42 shows that planar graphs admit a plane straight-line drawing
where all vertices have integer coordinates. It is an open problem whether a similar
statement can be made for edge lengths.

Problem 2.56 (Harborth’s Conjecture [17]). Every planar graph admits a plane straight-
line drawing where all Euclidean edge lengths are integral.

Without the planarity restriction such a drawing is possible because for every n ∈ N
one can find a set of n points in the plane, not all collinear, such that their distances are
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all integral. In fact, such a set of points can be constructed to lie on a circle of integral
radius [2]. When mapping the vertices of Kn onto such a point set, all edge lengths are
integral. In the same paper it is also shown that there exists no infinite set of points
in the plane so that all distances are integral, unless all of these points are collinear.
Unfortunately, collinear point sets are not very useful for drawing graphs. The existence
of a dense subset of the plane where all distances are rational would resolve Harborth’s
Conjecture. However, it is not known whether such a set exists, and in fact the suspected
answer is “no”.

Problem 2.57 (Erdős–Ulam Conjecture [12]). There is no dense set of points in the plane
whose Euclidean distances are all rational.

Generalizing the Fáry-Wagner Theorem. As discussed earlier, not every planar graph on
n vertices admits a plane straight-line embedding on every set of n points. But The-
orem 2.39 states that for every planar graph G on n vertices there exists a set P of n
points in the plane so that G admits a plane straight-line embedding on P. It is an open
problem whether this statement can be generalized to hold for several graphs, in the
following sense.

Problem 2.58. What is the largest number k ∈ N for which the following statement
holds? For every collection of k planar graphs G1, . . . , Gk on n vertices each, there exists
a set P of n points so that Gi admits a plane straight-line embedding on P, for every
i ∈ {1, . . . , k}.

By Theorem 2.39 we know that the statement holds for k = 1. Already for k = 2

it is not known whether the statement holds. However, it is known that k is finite [8].
Specifically, there exists a collection of 49 planar graphs on 11 vertices each so that for
every set P of 11 points in the plane at least one of these graphs does not admit a plane
straight-line embedding on P [29]. Therefore we have k ⩽ 49.

Questions

1. What is an embedding? What is a planar/plane graph? Give the definitions
and explain the difference between planar and plane.

2. How many edges can a planar graph have? What is the average vertex degree
in a planar graph? Explain Euler’s formula and derive your answers from it.

3. How can plane graphs be represented on a computer? Explain the DCEL data
structure and how to work with it.

4. How can a given plane graph be (topologically) triangulated efficiently? Ex-
plain what it is, including the difference between topological and geometric trian-
gulation. Give a linear time algorithm, for instance, as in Theorem 2.33.
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5. What is a combinatorial embedding? When are two combinatorial embeddings
equivalent? Which graphs have a unique combinatorial plane embedding? Give
the definitions, explain and prove Whitney’s Theorem.

6. What is a canonical ordering and which graphs admit such an ordering? For
a given graph, how can one find a canonical ordering efficiently? Give the
definition. State and prove Theorem 2.45.

7. Which graphs admit a plane embedding using straight line edges? Can one
bound the size of the coordinates in such a representation? State and prove
Theorem 2.42.
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Chapter 3

Crossings

So far we have mostly studied planar graphs which allow us to avoid crossings altogether.
However, there are many interesting graphs that are not planar, and still we would like
to draw them in a reasonable fashion. An obvious quantitative approach is to minimize
the number of crossings, even if they are inevitable.

3.1 Crossing Numbers

For an abstract graph G = (V, E), the crossing number cr(G) is defined as the minimum
number of edge crossings over all drawings of G. Analogously, the rectilinear crossing
number cr(G) is defined as the minimum number of edge crossings over all straight-
line drawings of G. A drawing of G that achieves cr(G) or cr(G) crossings is called a
minimum-crossing drawing or minimum-crossing straight-line drawing, respectively.

These notions are well-defined since cr(G) ⩽ cr(G) ⩽
(
|E|
2

)
are finite. To see the upper

bound, we construct a straight-line drawing of G as follows. Bijectively map the vertices
of V onto a set of n = |V | points in general position (that is, such that no three points
are collinear), then draw every edge as a straight-line segment. This is a valid drawing
in which every pair of distinct edges share at most one point.

Actually, this last property also holds for all minimum-crossing drawings, as the
following lemma demonstrates.

Lemma 3.1. In any minimum-crossing drawing of G, every pair of distinct edges
share at most one point.

Proof. Consider any minimum-crossing drawing Γ of G, and suppose for contradiction
that two edges e ̸= f share distinct points p ̸= q in Γ . Let eqp be the part of curve e

from p to q; similarly define fqp. Without loss of generality, suppose that eqp has no more
crossings than fqp does. Then we redraw fqp to closely follow eqp by its side; see Figure 3.1
for illustration.

• If p (or q) is a common vertex of the edges e and f, then we can choose the side
so that the crossing at q (or p) is eliminated.
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• Otherwise, both p and q are crossing points. Depending on how f approaches p

and q, we are able to eliminate either one (if approached from the same side of e)
or two (if approached from opposite sides of e) of these crossings.

Note that the number of crossings other than p and q shall not increase, due to our
assumption that eqp has no more crossings than fqp does. Hence the total number of
crossings strictly decreases.

Finally, if f unluckily crosses itself due to this modification, we can eliminate them by
omitting the curve between the two occurrences of a self-crossing. The result is a proper
drawing with strictly fewer crossings than Γ , a contradiction to Γ being a minimum-
crossing drawing.

efp

q

(a) before

e

f

p

q

(b) after

e

f

p

q

(c) before

e

f

p

q

(d) after

Figure 3.1: Redraw fqp by the side of eqp to reduce the overall number of crossings.
(a) and (b) depict the situation where both edges e and f are incident to
vertex p, in which case the crossing at q can be eliminated. (c) and (d)
depict the situation where both p and q are crossings; in the particular
example we may remove a crossing at p or q.

A drawing in which every pair of edges has at most one point in common is called
simple, and a graph drawn as such is called a simple topological graph. Using this
terminology we can rephrase Lemma 3.1 as follows: “Every minimum-crossing drawing
is simple.”

A simple drawing implies that no two adjacent edges cross. Drawings that satisfy
this latter (and weaker) property are called star-simple because the incident edges to
any vertex form a plane star.1

It is quite easy to certify an upper bound on the crossing number of a graph—just
present a drawing that has a small number of crossings. But it is conceptually harder to
certify a lower bound because it needs to account for all possible drawings of this graph.
The following lower bound, though, can be obtained by simple counting.

Lemma 3.2. For a graph G with n ⩾ 3 vertices and e edges, we have cr(G) ⩾ e−(3n−6).

Proof. Consider a drawing of G = (V, E) with cr(G) crossings. For each crossing, we pick
one of the two involved edges arbitrarily. Obtain a new graph G ′ = (V, E ′) from G by
removing all picked edges. By construction G ′ is plane and, therefore, |E ′| ⩽ 3n − 6 by

1In the literature also the terms semi-simple or semisimple are used.
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Corollary 2.5. As at most cr(G) edges were picked (“at most” because some edge might
be picked by several crossings), we have |E ′| ⩾ |E| − cr(G). Combining both bounds
completes the proof.

Exercise 3.3. Consider two edges e and f in a topological plane drawing so that e and
f cross at least twice. Prove or disprove: There always exist two distinct crossings
p and q of e and f so that the portion of e between p and q is not crossed by f, and
the portion of f between p and q is not crossed by e.

Exercise 3.4. Let G be a graph with n ⩾ 3 vertices, e edges, and cr(G) = e− (3n− 6).
Show that in every drawing of G with cr(G) crossings, every edge is crossed at most
once.

Exercise 3.5. Consider the abstract graph G that is obtained as follows: Start from
a plane embedding of the 3-dimensional cube, and add in every face a pair of
(crossing) diagonals. Show that cr(G) = 6 < cr(G).

Exercise 3.6. A graph is 1-planar if it can be drawn in the plane so that every edge is
crossed at most once. Show that a 1-planar graph G on n ⩾ 3 vertices has at most
4n− 8 edges and cr(G) ⩽ n− 2.

3.2 The Crossing Lemma

The bound in Lemma 3.2 is quite good if the number of edges is close to 3n but not so
good for dense graphs. For instance, for the complete graph Kn the lemma guarantees a
quadratic number of crossings, whereas the Guy-Harary-Hill Conjecture [8] claims

cr(Kn) =
1

4

⌊n
2

⌋ ⌊n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
∈ Θ(n4).

The conjecture has been verified, in part with extensive computer help, for the complete
graph on n ⩽ 14 vertices [2, 9, 11]; though it remains open for n ⩾ 15.

So for dense graphs G we ought to have sharper lower bounds. Given that the bound
in Lemma 3.2 is reasonably good for sparse graphs, why not apply it to some sparse
subgraph of G and then try scaling back to G? This simple idea turns out to work
astonishingly well, as the following theorem demonstrates.

Theorem 3.7 (Crossing Lemma [4]). For a graph G with n vertices and e ⩾ 4n edges,
we have cr(G) ⩾ e3/(64n2).

Proof. Consider a minimum-crossing drawing Γ of G, with cr(G) crossings. We select
each vertex independently with probability p (a suitable value for p will be determined
later). By this process we obtain a random subset U ⊆ V, the corresponding induced sub-
graph G[U], along with its induced drawing Γ [U]. Consider the following three random
variables:
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• N = |U|, the number of selected vertices, with E[N] = pn;

• M, the number of edges in G[U], with E[M] = p2e; and

• C, the number of crossings in Γ [U], with E[C] = p4cr(G). (Here we use Lemma 3.1,
which says that adjacent edges do not cross in the minimum-crossing drawing Γ .)

According to Lemma 3.2, these quantities satisfy C ⩾ cr(G[U]) ⩾ M − 3N under
all outcomes of the random experiment. Taking expectations on both sides and using
linearity of expectation yields E[C] ⩾ E[M]−3E[N] and so p4cr(G) ⩾ p2e−3pn. Setting
p = 4n/e (which is ⩽ 1 due to the assumption e ⩾ 4n) gives

cr(G) ⩾
e

p2
− 3

n

p3
=

e3

16n2
− 3

e3

64n2
=

e3

64n2
.

The beautiful proof described above is attributed to Chazelle, Sharir, and Welzl and
listed in “Proofs from THE BOOK” [3, Chapter 40], a collection inspired by Paul Erdős’
belief in “a place where God keeps aesthetically perfect proofs”. The original proof of the
Crossing Lemma was more complicated and had a worse constant.

Asymptotically the bound in Theorem 3.7 is tight: Pach and Tóth [10] describe
graphs with n≪ e≪ n2 that have crossing number at most

16

27π2

e3

n2
<

1

16.65

e3

n2
.

Hence it is not possible to replace 1/64 by 1/16.65 in the statement of the theorem.
However, the constant 1/64 is not the best possible: Ackerman [1] showed that 1/64 can
be replaced by 1/29, at the cost of requiring e ⩾ 6.95n. Very recently, Büngener and
Kaufmann [5] further improved the constant to 1/27.48, at the cost of requiring e ⩾
6.77n.

Exercise 3.8. Show that the bound from the Crossing Lemma is asymptotically tight:
There exists a constant c so that for every n, e ∈ N with e ⩽

(
n
2

)
there is a graph with

n vertices and e edges that admits a plane drawing with at most ce3/n2 crossings.

Exercise 3.9. A graph is quasiplanar if it can be drawn in the plane such that no
three edges pairwise cross. Denote by qp(n) the maximum number of edges in a
quasiplanar graph on n vertices. Show that qp(n) ∈ O(n3/2).

3.3 Applications of the Crossing Lemma

In the remainder of this chapter, we will discuss several nontrivial bounds on the size of
combinatorial structures that can be obtained by judicious application of the Crossing
Lemma. These beautiful connections were observed by Székely [13]; their original proofs
were different and more involved.

We say that a point and a geometric object (such as a line or a circle) are incident
if the former lies on the latter.
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Theorem 3.10 (Szemerédi-Trotter [14]). The maximum number of incidences between
n points and m lines in R2 is at most 25/3 · n2/3m2/3 + 4n+m.

Proof. Let P denote the given set of n points, and let L denote the given set of m lines.
We may suppose that every line from L contains at least one point from P. (Discard all
lines that do not, as they contribute no incidence.) Denote by I the number of incidences
between P and L. Consider the graph G = (P, E) whose vertices are the points P, and
where two points p, q are joined by an edge if they appear consecutively along some line
ℓ ∈ L (that is, p, q ∈ ℓ and no other point from P lies on the line segment pq). The
arrangement of P and L naturally induces a straight-line drawing of G. It has at most(
m
2

)
crossings because every crossing must be an intersection of two lines, and any two

lines can intersect at most once.
Each line ℓ ∈ L is incident to some Iℓ ⩾ 1 point(s) from P and contributes Iℓ − 1

edge(s) to E. Hence |E| =
∑

ℓ∈L(Iℓ − 1) = I −m. If |E| ⩽ 4n, then I ⩽ 4n +m and the
theorem holds. Otherwise, we can apply the Crossing Lemma to obtain(

m

2

)
⩾ cr(G) ⩾

|E|3

64n2
=

(I−m)3

64n2

and so I ⩽ 25/3 n2/3m2/3 +m.

The bound in Theorem 3.10 is asymptotically tight, in the following sense [10, Re-
mark 4.2]. There exist sets of n points and m lines inR2 that have c·n2/3m2/3 incidences,
for some constant c > 0.42 that is independent of n and m.

Theorem 3.11. The maximum number of unit distances between n points in R2 is at
most 5n4/3.

Proof. Let P be the given set of n points, and consider the set C of n unit circles centered
at the points in P. Then the number I of incidences between P and C is exactly twice
the number of unit distances between points from P. So it suffices to upper bound I.

Define a graph G = (P, E) on P as follows. For each circle c ∈ C, we list the points
from P∩c in circular order, and add a new edge between every pair of consecutive points.
By construction, if c contains Ic points from P, then it contributes exactly Ic edges to
E, hence I = |E|. Note however that G is not necessarily simple, as it may contain loops
(if some Ic = 1) and parallel edges (if some Ic = 2, or if some p, q ∈ P are consecutive
along different circles).

Obtain a new graph G ′ = (P, E ′) from G by removing all edges along circles c ∈ C of
Ic ⩽ 2. Since at most |C| = n circles are removed and each removed circle contributed at
most two edges to E, we have |E ′| ⩾ |E|− 2n. In G ′ there are neither loops, nor parallel
edges contributed by the same circle. Therefore, now between any two points p and
q there are up to two parallel edges, since at most two different unit circles can pass
through p, q in R2.

Obtain a new graph G ′′ = (P, E ′′) from G ′ by removing one copy of every double
edge. Clearly G ′′ is a simple graph with |E ′′| ⩾ |E ′|/2 ⩾ |E|/2−n. Rearranging, we have
I = |E| ⩽ 2(|E ′′|+ n).
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If |E ′′| ⩽ 4n, then I ⩽ 10n < 10n4/3 and the theorem holds. Otherwise, by the
Crossing Lemma we have

n2 > 2

(
n

2

)
⩾ cr(G ′′) ⩾

|E ′′|3

64n2
.

Here the upper bound on cr(G ′′) is due to that every pair of circles can intersect at most
twice. Rearranging, it follows that |E ′′| < 4n4/3 and so I < 8n4/3 + 2n < 10n4/3.

Exercise 3.12. Show that the maximum number of unit distances determined by n

points in R2 is Ω(n logn). Hint: Consider the hypercube.

The final application comes from arithmetic combinatorics. Given a set A ⊂ R, we
denote the sum set by A + A := {a + a ′ : a, a ′ ∈ A} and similarly the product set
by A · A := {a · a ′ : a, a ′ ∈ A}. It is easy to construct ground sets that have a small,
that is, linear size sum set: Just take an arithmetic progression, such as 2, 4, 6, 8, 10, . . ..
Similarly, geometric progressions exhibit a small product set. However, it is much more
challenging to find a ground set A for which both the sum set and the product set are
small. In fact, Erdős conjectured [7] that for every set A of n numbers, we have max{|A+
A|, |A · A|} ∈ Ω(n2−ϵ), for every ϵ > 0. The general conjecture is still open. But the
statement is known to hold for some reasonably small values of ϵ. At a first glance, it
is not so clear why there should be a connection between this problem and questions
about crossings in drawings of graphs. But there is such a connection, as discovered by
Elekes [6]. He used the Crossing Lemma to give an elegant proof of the following bound.

Theorem 3.13 (Elekes [6]). For A ⊂ R with |A| = n ⩾ 3 we have

max {|A+A|, |A ·A|} ⩾
1

4
n

5
4 .

Proof. Let A = {a1, . . . , an}. Set X = A + A and Y = A · A. We will show that
|X||Y| ⩾ 1

16
n5/2, which proves the theorem. Let P = X × Y ⊂ R2 be the set of points

whose x-coordinate is in X and whose y-coordinate is in Y. So we have |P| = |X||Y|. Next
define a set L of lines by ℓij = {(x, y) ∈ R2 : y = ai(x−aj)}, for i, j ∈ {1, . . . , n}. Clearly,
we have |L| = n2.

On the one hand, every line ℓij contains at least n points from P because for each
k ∈ {1, . . . , n}, the point (xk, yk) := (aj + ak, aiak) ∈ X × Y satisfies the equation
yk = ai(xk−aj) and thus is on ℓij. Therefore the number I of incidences between P and
L is at least |L| · n = n3.

On the other hand, by the Szemerédi-Trotter Theorem we have

I ⩽ 25/3|P|2/3n4/3 + 4|P|+ n2 .

Combining both bounds we obtain

25/3|P|2/3n4/3 + 4|P|+ n2 ⩾ n3 .
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Hence, at least one of the two summands 25/3|P|2/3n4/3 and 4|P| + n2 is at least half of
the sum, that is, at least n3/2. If it is the latter, then we have

|P| ⩾
n2

4

(n
2
− 1
)
.

Using that n ⩾ 3 and therefore
√
n ⩾ 3/2, we continue to bound

n2

4

(n
2
− 1
)
=

n2

4

(√
n
√
n

6
+

n

3
− 1

)
⩾

n2

4

√
n

4
=

n5/2

16
.

To conclude the proof it remains to consider the former case, in which

|P|2/3 ⩾
n3

2 · 25/3 n4/3
=

(
n5

256

)1/3

=⇒ |P| ⩾
n5/2

16
.

The lower bound has been gradually improved in a series of papers. The current state
of the art is

max {|A+A|, |A ·A|} ⩾ n
4
3+

2
1167 > n1.335

by Rudnev and Stevens [12].

Questions

8. What is the crossing number of a graph? What is the rectilinear crossing
number? Give the definitions and examples. Explain the difference.

9. For a nonplanar graph, the more edges it has, the more crossings we would
expect. Can you quantify such a correspondence more precisely? State and
prove Lemma 3.2 and Theorem 3.7 (The Crossing Lemma).

10. Why is it called “Crossing Lemma” rather than “Crossing Theorem”? Explain
at least two applications of the Crossing Lemma, for instance, your pick out of the
Theorems 3.10, 3.11, and 3.13.
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Chapter 4

Polygons

Although a line ℓ ⊂ R2 can be treated as an infinite point set, it has a finite description.
For instance, we may encode it by three coefficients a, b, c ∈ R with (a, b) ̸= (0, 0) and
interpret it as all the points satisfying the equation ax + by = c. Actually all of the
fundamental geometric objects that we mentioned in Chapter 1 can be described by a
constant number of parameters; hence they have constant description complexity or,
informally, just size.1

In this course we typically deal with objects that have unbounded size. Sometimes
they are formed by merely aggregating constant-size objects. For instance, aggregation
of points forms a finite point set. At other times we also demand additional structure
beyond aggregation. Probably the most fundamental example is what we call a polygon.
You probably learned this term in school, but what is a polygon precisely? Consider the
examples shown in Figure 4.1. Are these all polygons? If not, where would you draw
the line?

(a) (b) (c) (d) (e) (f)

Figure 4.1: What is a polygon?

4.1 Classes of Polygons

Ironically, there is no the right answer to the question, and there are different types of
polygons. Usually, the sloppy term “polygon” refers to what we call a simple polygon
defined below.

1Unless specified otherwise, we always assume that the dimension is a small constant. If we work in
high-dimensional space Rd where d varies, then their description complexity become Θ(d).
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Definition 4.1. A simple polygon is a compact region P ⊂ R2 whose boundary is a simple
closed curve ∂P : [0, 1]→ R2 consisting of finitely many consecutive line segments.

Out of the examples shown above only Polygon 4.1a is simple. For each of the
remaining polygons the bounding segments do not make a simple closed curve.

When describing a simple polygon P it is sufficient to describe only its boundary
∂P.2 As ∂P by definition consists of finitely many consecutive line segments, it can be
encoded by a sequence p1, . . . , pn of points, so that ∂P is formed by the line segments
p1p2, p2p3, . . . , pn−1pn, pnp1. These points and segments are referred to as the vertices
and the edges of the polygon, respectively. The set of vertices of a polygon P is denoted
by V(P), and the set of edges of P is denoted by E(P).

Recall from Theorem 2.1 (Jordan curve theorem) that any simple closed curve sep-
arates the plane R2 into a (bounded) interior and an (unbounded) exterior. To prove
this theorem in its full generality is surprisingly difficult. But for simple polygons the
situation is easier, and in fact we can readily tell apart the interior from the exterior
algorithmically, which we leave as an exercise.

Exercise 4.2. Describe an algorithm to decide whether a point lies inside or outside
of a simple polygon. More precisely, given a simple polygon P ⊂ R2 as a list of its
vertices (v1, v2, . . . , vn) in counterclockwise order and a query point q ∈ R2, decide
whether q is inside P, on the boundary of P, or outside. The runtime of your
algorithm should be O(n).

There are good reasons to ask for the boundary of a polygon to form a simple curve:
For instance, in the example depicted in Figure 4.1b there are several regions for which it
is completely unclear whether they should belong to the interior or to the exterior of the
polygon. A similar problem arises for the interior regions in Figure 4.1f. But there are
more general classes of polygons that some of the remaining examples fall into. We will
discuss only one such class here. It comprises polygons like the one from Figure 4.1d.

Definition 4.3. A region P ⊂ R2 is a simple polygon with holes if it can be described as
P = F \

⋃
H∈H H◦, where H is a finite collection of pairwise disjoint simple polygons

(called holes) and F is a simple polygon for which F◦ ⊃ ⋃H∈H H.

The way we define them through the notion of simple polygons makes a trichotomy
immediate, just as for simple polygons: Every point in the plane can be either inside,
on the boundary, or outside of P.

4.2 Polygon Triangulation

Topologically speaking, a simple polygon is nothing but a disk and thus a very elementary
object. But geometrically a simple polygon can be—as if mocking the label we attached

2In fact this is not obvious. To see the subtlety, consider a polygon P and the point set Q := P◦∪ (Q2∩
∂P). Note that ∂P = ∂Q, so it is possible to recover different sets out from the same boundary. The catch
here is that Q is not compact. One can show that we can recover only one compact set out from a given
boundary, and that is why we need compactness in the definition of a simple polygon.
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Figure 4.2: A simple (?) polygon.

to it—pretty complicated in shape, see Figure 4.2 for an example. While it has a succinct
one-dimensional representation as the sequence of the boundary vertices, we often want
to work with a more structured representation that retains the two-dimensional shape.
For instance, computing the area of a general simple polygon is not so straighforward
out of a one-dimensional representation. But if we manage to represent the polygon as
a disjoint union of simpler geometric shapes such as triangles, rectangles or trapezoids,
then its area simply sums up all the area of the individual shapes, which are easy to
compute. This motivates the definition of a triangulation.

Definition 4.4. A triangulation of a simple polygon P with vertex set V(P) is a collection
T of triangles, such that

(1) P =
⋃

T∈T T ;

(2) V(P) =
⋃

T∈T V(T); and

(3) for every distinct pair T1, T2 ∈ T, the intersection T1 ∩ T2 is either a common
vertex, a common edge, or empty.

Exercise 4.5. Show that each condition in Definition 4.4 is necessary in the following
sense: Give an example of a non-triangulation that would form a triangulation if
the condition was omitted. Is the definition equivalent if (3) is replaced by T◦

1 ∩T◦
2 =

∅, for every distinct pair T1, T2 ∈ T?

Beyond area computation, triangulations are incredibly useful in planar geometry.
The significance roots in the fact that every simple polygon admits a triangulation.

Theorem 4.6. Every simple polygon has a triangulation.

Proof. Let P be a simple polygon on n vertices. We prove the statement by induction
on n. For n = 3, the polygon P is a triangle, which forms a triangulation by itself.
For n > 3, consider the lexicographically smallest vertex v of P. That is, among all
vertices with the smallest x-coordinate we pick the one with the smallest y-coordinate.
Let vertices u and w be the predecessor and successor of v along a counterclockwise
traversal of ∂P, respectively, so that P is locally to the left of u → v → w. By choice
of v, the walk u→ v→ w forms a strict left turn. Hence T := uvw forms a triangle that
lies in P. We distinguish two cases.
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Case 1: relint(uw) ⊂ P◦ (Figure 4.3a). That is, the segment uw except for its two
endpoints is fully contained in P◦. Hence P can be split into two interior-disjoint
simple polygons: the triangle T and a polygon P ′ := (P \ T) ∪ uw on n − 1

vertices. By the inductive hypothesis, the polygon P ′ admits a triangulation. This
triangulation together with T yields a triangulation of P.

v

u

w

(a) Case 1.

v

u

w

p

(b) Case 2.

Figure 4.3: Cases in the proof of Theorem 4.6.

Case 2: relint(uw) ̸⊂ P◦ (Figure 4.3b). Then some point from ∂P must be in T◦ or
on uw. As ∂P is composed of line segments, some vertex of P must be in T◦ or
on uw. Among all such vertices select p to maximize the distance to the line uw.
Imagine a line through p that is parallel to uw. This line together with uv, vw

bounds a triangle that does not contain any part of ∂P in its interior. It follows
that relint(vp) ⊂ P◦. Therefore, the segment vp splits P into two interior-disjoint
polygons P1 and P2 on fewer than n vertices each (the vertex u does not appear in
one of them, whereas w does not appear in the other). By the inductive hypothesis,
both P1 and P2 have triangulations, and their union yields a triangulation of P.

Exercise 4.7. In the proof of Theorem 4.6, would the argument in Case 2 also work
if the point p was chosen to be a vertex of P in T◦ that minimizes the Euclidean
distance to v?

The configuration from Case 1 above is called an ear : three consecutive vertices
u, v,w of a simple polygon P such that the relative interior of uw lies in P◦. In fact, we
could have skipped the analysis for Case 2 by referring to the following theorem.

Theorem 4.8 (Meisters [13, 14]). Every simple polygon with n ⩾ 4 vertices has two ears
A and B such that A◦ ∩ B◦ = ∅.

But conversely, knowing Theorem 4.6 and the theorem below, we can recover Theo-
rem 4.8 as a direct consequence.

Theorem 4.9. Every triangulation of a simple polygon P with n ⩾ 4 vertices contains
at least two triangles that serve as ears in P.
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Exercise 4.10. Prove Theorem 4.9.

Exercise 4.11. Let P be a simple polygon with vertices v1, v2, . . . , vn in counterclockwise
order, where vi has coordinates (xi, yi). Show that the area of P is

1

2

n∑
i=1

xiyi+1 − xi+1yi,

where we agree that (xn+1, yn+1) = (x1, y1).

A triangulation naturally induces a plane straight-line graph, whose vertices are the
polygon vertices and whose edges come from the sides of triangles. The number of
edges and triangles (faces) are completely determined by the number of vertices, as the
following simple lemma shows.

Lemma 4.12. Every triangulation of a simple polygon on n ⩾ 3 vertices consists of
n− 2 triangles and 2n− 3 edges.

Proof. We prove the statement by induction on n. For n = 3, a triangulation has n−2 =
1 triangle and 2n− 3 = 3 edges. Thus, the stamement holds.

In the general case, take any triangulation T of a simple polygon P on n ⩾ 4 vertices.
Let X be a triangle of T that serves as an ear of P, which exists by Theorem 4.9. Then T−X

is a triangulation of a simple polygon on n−1 vertices. By the inductive hypothesis, the
triangulation T − X consists of (n − 1) − 2 = n − 3 triangles and 2(n − 1) − 3 = 2n − 5

edges. Putting X back adds one more triangle and two more edges. Therefore, the
triangulation T consists of n− 3+ 1 = n− 2 triangles and 2n− 5+ 2 = 2n− 3 edges.

Tetrahedralizations inR3. The universal presence of triangulations is something particular
about the plane: The natural generalization of Theorem 4.6 to dimension three and
higher does not hold. Here we discuss the issue in R3.

A simple polygon is a topological disk in R2 that is locally bounded by patches of
lines. The corresponding term in R3 is a polyhedron, which can be informally defined
via a literal translation of the previous sentence: it is a topologically ball that is locally
bounded by patches of planes. A triangle in R2 corresponds to a tetrahedron in R3 and
a tetrahedralization is a nice partition into tetrahedra. Being “nice” means that the
union of the tetrahedra covers the object, the vertices of the tetrahedra are vertices of
the polyhedron, and any two distinct tetrahedra intersect in either a common triangular
face, a common edge, or a common vertex, or not at all.3

Unfortunately, there are polyhedra in R3 that do not admit a tetrahedralization.
The following construction is due to Schönhardt [18]. It is based on a triangular prism,
that is, two congruent triangles placed in parallel planes, where the corresponding sides
of both triangles are connected by a rectangle (Figure 4.4a). We slightly rotate one

3These “nice” subdivisions can be defined in an abstract combinatorial setting, where they are called
simplicial complexes.
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triangle within its plane, thus twisting the prism. As a consequence, the rectangles are
dented inward along their diagonal in direction of the rotation, and are no longer plane.
(Figure 4.4b). The other diagonals of the (former) rectangles—labeled ab ′, bc ′, and

(a)

a

b

c

a ′ c ′

b ′

(b)

Figure 4.4: The Schönhardt polyhedron cannot be subdivided into tetrahedra without
adding new vertices.

ca ′ —are now epigonals, that is, they lie in the exterior of the polyhedron. Since these
epigonals are the only missing edges between the vertices, there is no way to add edges
to form a tetrahedron for a subdivision. Clearly the polyhedron is not a tetrahedron
by itself, and so we conclude that it does not admit a tetrahedralization. Actually, it is
NP-complete to decide whether a non-convex polyhedron has a tetrahedralization [15].
However, if adding new vertices—which are called Steiner vertices—is allowed, then a
tetrahedralization is possible, both in this example and in general.

Even if a tetrahedralization of a polyhedron exists, there is another significant differ-
ence to polygons in R2. While the number of triangles in a triangulation of a polygon
depends only on the number of vertices, the number of tetrahedra in two different tetra-
hedralization of the same polyhedron may be different. See Figure 4.5 for a simple exam-
ple of a polyhedron that has tetrahedralizations with two or three tetrahedra. Deciding
whether a convex polyhedron has a tetrahedralization with at most a given number of
tetrahedra is NP-complete [6].

Exercise 4.13. Characterize all possible tetrahedralizations of the three-dimensional
cube.

Triangulation algorithms. Knowing that a triangulation exists is nice, but it is even nicer
to know that it can also be constructed efficiently.

Exercise 4.14. Convert Theorem 4.6 into an O(n2) time algorithm to construct a
triangulation for a given simple polygon with n vertices.

The runtime of this straightforward application of Theorem 4.6 is not optimal. For
those who are interested in more efficient algorithms, please refer to Appendices ?? and
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t

b

t

b

Figure 4.5: Two tetrahedralizations of the same polyhedron, a triangular bipyramid.
The left partition uses two polyhedra; both the top vertex t and the bottom
vertex b belong to only one tetrahedron. The right partition uses three
polyhedra that all share the dashed diagonal bt.

??. The best (in terms of worst-case runtime) algorithm known due to Chazelle [7]
computes a triangulation in linear time, but it is very complicated. There is also a
somewhat simpler randomized algorithm in expected linear time [4]. We will not cover
either of them in the notes. It remains open whether there exists a simple (which is
not really well-defined, except that Chazelle’s Algorithm does not qualify) deterministic
linear time algorithm to triangulate a simple polygon [10].

Polygons with holes. It is interesting to note that the complexity of the triangulation
problem changes to Θ(n logn), if the polygon may contain holes [5]. This means that
(1) there is an algorithm to construct a triangulation for a given simple polygon with
holes on n vertices (counting both the vertices on the outer boundary and on the holes’
boundaries) in O(n logn) time; and (2) there is a lower bound of Ω(n logn) operations
in any model of computation that is subject to the same lower bound for comparison-
based sorting. This difference in complexity is a very common pattern: There are many
problems that are (sometimes much) harder for simple polygons with holes than for
simple polygons. So maybe the term “simple” has some justification, after all. . .

General triangle covers. What if we drop the “niceness” conditions for triangulations and
just want to describe a given simple polygon as a union of triangles? It turns out this
is a rather drastic change. For instance, it is unlikely that we can efficiently find an
optimal/minimal description of this type: Christ has shown [8] that it is NP-hard to
decide whether for a simple polygon P with n vertices and a positive integer k, there
exists a set of at most k triangles whose union is P. In fact, the problem is not even
known to be in NP, because it is not clear whether the coordinates of solutions can always
be encoded succinctly.
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4.3 The Art Gallery Problem

In 1973 Victor Klee posed the following question: “How many guards are necessary, and
how many are sufficient to patrol the paintings and works of art in an art gallery with
n walls?” Thinking in geometric terms, we may model “an art gallery with n walls” as
a simple polygon P bounded by n edges, hence also n vertices. And a guard is modeled
as a point g ∈ P where he stands. The edges are opaque and prevent one from seeing
what is behind, thus g watches over all the points p for which the line segment gp lies
completely in P; see Figure 4.6. The task is then to place as least points as possible so
that the entire P is being watched.

g

Figure 4.6: The region that a guard g can observe.

It is not hard to see that ⌊n/3⌋ guards are necessary in some cases.

Exercise 4.15. Describe a family (Pn)n⩾3 of simple polygons such that Pn has n vertices
and requires at least ⌊n/3⌋ guards.

What is more surprising: ⌊n/3⌋ guards are always sufficient for all P with n vertices.
Chvátal [9] was the first to show it, but then Fisk [11] gave a much simpler proof using—
as you may have guessed—triangulations. Fisk’s proof was considered so beautiful that
was selected in “Proofs from THE BOOK” [3]. It is based on the following lemma.

Lemma 4.16. Every triangulation of a simple polygon is 3-colorable. That is, each
vertex can be assigned one of three colors so that adjacent vertices receive different
colors.

Proof. Induction on n. For n = 3 the statement is obvious. For n > 3, by Theorem 4.9
the triangulation contains an ear uvw. Cutting off the ear creates a triangulation of a
polygon on n−1 vertices, which by the inductive hypothesis admits a proper 3-coloring.
Now whichever two colors the vertices u and w receive in this coloring, there remains a
spare color for v.

Theorem 4.17 (Fisk [11]). Every simple polygon with n vertices can be guarded using
at most ⌊n/3⌋ guards.
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Figure 4.7: A triangulation of a simple polygon on 17 vertices and a 3-coloring of it.
The orange vertices form the smallest color class and guard the polygon
using 5 ⩽ ⌊17/3⌋ guards.

Proof. Fix a triangulation of the polygon and then a 3-coloring of the vertices, as ensured
by Lemma 4.16. Place a guard at each vertex of the smallest color class, which clearly
amounts to at most ⌊n/3⌋ vertices. As any point p in the polygon lands in some triangle
T and exactly one of T ’s vertices has the selected color, the point p is watched by that
vertex. Hence the whole polygon is guarded.

4.4 Optimal Guarding

While Exercise 4.15 shows that the bound in Theorem 4.17 is tight in general, it is easy
to see that Fisk’s method does not necessarily minimize the number of guards. Also,
we do not have to restrict ourselves to place the guards at vertices only, but can rather
place them anywhere on the boundary or even in the interior of the polygon. In all
these cases, we can ask for the minimum number of guards required to guard a given
polygon P. These problems have been shown to be NP-hard by Lee and Lin [12] already
in the 1980s. Actually, if the guards are not constrained to lie on vertices, it is not even
clear whether the corresponding decision problem is in NP. In fact, recent results by
Abrahamsen et al. suggest the opposite. In the remainder of this section we will briefly
discuss some of these results.

Recall that a decision problem is in NP if for any “yes” instance, one can present a
certificate that allows polynomial-time verification of the “yes” status.4 In our context,
if we restrict the guards to be on vertices, a natural certificate is the set of vertices where
the guards stand. It allows us to verify that the guards indeed watch the entire polygon
and that the number of guards is within the specified limit.

However, if we drop the restriction, a natural certificate would be the coordinates
of the guards. Since no more than ⌊n/3⌋ guards are required, this seems a reasonable
certificate. But what if the number of bits needed to explicitly represent these coordinates
are exponential in input size? One might be tempted to think that any reasonable guard
can be placed at an intersection point of some lines that are defined by polygon vertices.

4And of course, for any “no” instance there should not be any fake certificate that tricks the verification...
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g`

gm gr

Figure 4.8: To guard this polygon with three guards, there must be one guard on each
of the green dashed segments. The middle guard gm must be to the left of
the blue curve, to the right of the red curve, and on the dashed green line.
The intersection point of these three curves has irrational coordinates.

Alas, in general this is not correct: some guards with irrational coordinates may be
required, even if all vertices of P have integral coordinates! This surprising result has
been presented in 2017 and we will sketch its main ideas, referring to the paper by
Abrahamsen, Adamaszek, and Miltzow [1] for more details and the exact construction.

Consider the polygon shown in Figure 4.8, which consists of a main rectangular region
with triangular, rectangular, and trapezoidal regions attached. On the one hand, it can
be watched by three guards. On the other hand, we will argue that, if this polygon is
guarded with less than four guards, at least one of the guards has an irrational coordinate.
The polygon contains three pairs of triangular regions with the following structure. Each
pair is connected by a green dashed segment in the figure. This segment contains one
edge of each of the two triangles and separates their interiors. Hence, a single guard
that sees both of these triangles has to be placed on this separating segment. Further,
there is no other point that can guard two of these six triangles. Therefore, if we have
only three guards, each of them must be placed on one of these three disjoint segments.
The small rectangular regions to the left, top, and bottom outside the main rectangular
region further constrain the positions of the guards along these segments.

Let the guards be gℓ, gm, and gr, as in the figure. The guard gℓ cannot see all the
points inside the left two trapezoidal regions, and thus gm has to be placed appropriately.
For each position of gℓ on its segment, we get a unique rightmost position on which a
second guard can be placed to guard the two trapezoids. The union of these points defines
an arc that is a segment of a quadratic curve (the roots of a quadratic polynomial). We
get an analogous curve for gr and the two trapezoids attached to the right. By a careful
choice of the vertex coordinates, these two curves cross at a point p that also lies on the
segment for the guard gm and has irrational coordinates. It then follows from a detailed
argument (see [1]) that p is the only feasible placement of gm. Let us point out that the
choice of the vertex coordinates to achieve this is far from trivial. For example, there
can only be a single line defined by two points with rational coordinates that passes
through p, and this is the line on which the guard gm is constrained to lie on.
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Exercise 4.18. Let P be a polygon with vertices on the integer grid, and let g be a
point inside that polygon with at least one irrational coordinate. Show that there
can be at most one diagonal of P passing through g.

Nevertheless, the sketched construction leads to the following result.

Theorem 4.19 (Abrahamsen et al. [1]). For any k, there is a simple polygon P with
integer vertex coordinates such that P can be guarded by 3k guards, while a guard
set having only rational coordinates requires 4k guards.

Abrahamsen, Adamaszek, and Miltzow [2] showed recently that the art gallery prob-
lem is actually complete in a complexity class called ∃R. The existential theory of the
reals (see [16, 17] for details) is the set of true sentences of the form ∃x1, . . . , xn ∈ R :
ϕ(x1, . . . , xn) for a quantifier-free Boolean formula ϕ without negation5 that can use
the constants 0 and 1 as well as the operators +, ∗, and <. For example, ∃x, y : (x <

y) ∧ (x ∗ y < 1 + 1) is such a formula. A problem is in the complexity class ∃R if it
allows for a polynomial-time reduction to the problem of deciding such formulas, and it
is complete if in addition every problem in ∃R can be reduced to it in polynomial time.

Exercise 4.20. Show that NP ⊆ ∃R.

For the art gallery problem, the result by Abrahamsen et al. [2] implies that the
coordinates of an optimal guard set may be doubly-exponential in the input size. This
statement does not exclude the possibility of a more concise, implicit way to express the
existence of an optimal solution. However, if we found such a way, then this would imply
that the art gallery problem is in NP, which, in turn, would imply NP = ∃R.

Questions

11. What is a simple polygon/a simple polygon with holes? Explain the definitions
and provide some examples of members and non-members of the respective classes.
For a given polygon you should be able to tell which of these classes it belongs to
or does not belong to and provide justifications.

12. What is a closed/open/bounded set in Rd? What is the interior/closure of
a point set? Explain the definitions and provide some illustrative examples. For
a given set you should be able to argue which of the aforementioned properties it
possesses.

13. What is a triangulation of a simple polygon? Does it always exist? Explain the
definition and provide some illustrative examples. Present the proof of Theorem 4.6
in detail.

5If we also allowed negation (and hence also the relations ⩽ and =), then it would be possible to express
statements like ∃x : x ∗ x = 1 + 1 that have only irrational solutions, which is impossible to achieve by
using only strict inequalities <. Interestingly, however, the complexity class ∃R, when defined in terms of
these more expressive formulas, would remain the same, see [17].
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14. How many points are needed to guard a simple polygon? Present the proofs of
Theorem 4.9, Lemma 4.16, and Theorem 4.17 in detail.

15. How about higher dimensional generalizations? Can every polyhedron in R3

be nicely subdivided into tetrahedra? Explain Schönhardt’s construction.

16. (This topic was not covered in HS24 and therefore the question will not be asked in the
exam.) Is there a succinct representation for optimal guard placements? State
Theorem 4.19 and sketch the construction.
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Chapter 5

Convexity and Convex Hulls

There is an incredible variety of point sets and polygons, but some of them are “nicer”
than others in some respect. Look at the two polygons below, for instance:

(a) A convex polygon. (b) A non-convex polygon.

Figure 5.1: Examples of polygons: Which one do you prefer?

The polygon shown on the left is visually and geometrically much simpler than the
one on the right. But let us take a more algorithmic stance, as aesthetics is hard to argue
about. When designing algorithms, the left polygon turns out to be much easier to deal
with. A particular exploitable property is that one can walk straight between any two
points in it without ever leaving it. A polygon, or more generally a point set, with this
property is called convex.

Definition 5.1. A point set P ⊆ Rd is convex if pq ⊆ P for every pair p, q ∈ P.
Equivalently, the intersection of P with any line is a connected segment.

The polygon in Figure 5.1b is not convex because the line segment between some pair
of points does not completely lie within the polygon. An immediate consequence of the
definition is the following:

Observation 5.2. For any family (Pi)i∈I of convex sets, the intersection
⋂

i∈I Pi is
convex.
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Many problems are comparatively easy to solve for convex sets but very hard in gen-
eral, and we will encounter some instances of this phenomenon in the course. However,
many polygons are not convex, and a discrete point set is never convex (unless it contains
one or no point). In such cases it is useful to approximate or encompass a given set P

by a convex set H ⊇ P. Ideally, H should differ from P as little as possible, so we want
it to be the smallest convex set encompassing P:

Definition 5.3. The convex hull conv(P) of a set P ⊆ Rd is the intersection of all convex
supersets of P.

At first glance this definition is a bit scary: There can be infinitely many convex
supersets, whose intersection might not yield something sensible to work with. But at
least, (i) the intersection is well-defined, as the whole space Rd is certainly a convex
superset which takes part in the intersection; (ii) the resulting intersection is convex due
to Observation 5.2; and so (iii) the convex hull is the inclusion-wise smallest convex set
containing P.

To see what it really looks like, we appeal to an algebraic characterization to be
introduced in the next section.

5.1 Algebraic Characterizations

In this section we develop algebraic characterizations of convexity. They are indispens-
able tools in studying convex sets in general dimension d.

Consider P ⊆ Rd. In linear algebra course you have learnt the notion of linear
hull lin(P), which is the smallest linear subspace of Rd that contains P. For instance,
the linear hull of {(1, 2)} ⊂ R2 is the line through (0, 0) and (1, 2); the linear hull of
{(1, 2), (3, 4)} is the whole space R2. One can show that lin(P) is exactly the set of all
linear combinations of P:

lin(P) =

{
n∑

i=1

λipi

∣∣∣∣∣ n ∈ N; pi ∈ P, λi ∈ R for 1 ⩽ i ⩽ n

}
.

A finite set P = {p1, . . . , pN} is linearly independent if no point in P is a linear com-
bination of the others. Equivalently, the equation

∑N
i=1 λipi = 0 has only the trivial

solution λ1 = · · · = λN = 0. Indeed, if some λj ̸= 0 then pj is a linear combination of the
other points with coefficients {−λi/λj}i ̸=j. Vice versa, if pj is a linear combination of the
others, this gives us a non-trivial solution to the equation with λj = −1.

In analogue, the affine hull of P is the smallest affine subspace1 of Rd that contains
P. For instance, the affine hull of {(1, 2), (3, 4)} ⊂ R2 is the line through (1, 2) and (3, 4).

1An affine space is simply a linear space “shifted” by an offset. That is, adding a constant vector to all
vectors in a linear space yields an affine space; conversely, subtracting a fixed vector in the affine space
from all vectors sends us back to a linear space. In view of this correspondence, all concepts related to
linear space can be translated directly to affine space.
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One can show that aff(P) is exactly the set of all affine combinations of P.

aff(P) =

{
n∑

i=1

λipi

∣∣∣∣∣ n ∈ N; pi ∈ P, λi ∈ R for 1 ⩽ i ⩽ n;
n∑

i=1

λi = 1

}
.

A finite set P = {p1, . . . , pN} is affinely independent if no point of P is an affine combi-
nation of the others. Equivalently, the equation system

∑N
i=1 λipi = 0,

∑N
i=1 λi = 0 has

only the trivial solution λ1 = · · · = λN = 0. This equivalence can be argued as we did
for linear independence. The following proposition is then immediate.

Proposition 5.4. Let P ⊆ Rd be a finite point set, and obtain a point set P ′ ⊆ Rd+1

by appending a new coordinate 1 to each point in P. For example, from P =
{(2, 3), (0, 4)} ⊆ R2 we obtain P ′ = {(2, 3, 1), (0, 4, 1)} ⊆ R3. Then P is affinely inde-
pendent if and only if P ′ is linearly independent.

Corollary 5.5. Any set of d+ 2 points in Rd is affinely dependent, as any set of d+ 2

points in Rd+1 is linearly dependent.

It turns out that convex hulls can be described algebraically in a very similar way.

Proposition 5.6. For any P ⊆ Rd we have

conv(P) =

{
n∑

i=1

λipi

∣∣∣∣∣ n ∈ N; pi ∈ P, λi ⩾ 0 for 1 ⩽ i ⩽ n;
n∑

i=1

λi = 1

}
.

the set of all convex combinations of P.

To prove it, we need a powerful characterization of convexity.

Proposition 5.7. A set P ⊆ Rd is convex if and only if it is closed under convex
combination (i.e. any convex combination of P lands in P).

Proof. “⇐”: Convexity only requires closure under convex combination of n = 2 points,
a special case of n ∈ N.

“⇒”: By induction on n, the number of points taking part in the convex combination.
For n = 1 the statement is trivial. For n ⩾ 2, consider an arbitrary convex combination
p :=

∑n
i=1 λipi where pi ∈ P and λi > 0 for 1 ⩽ i ⩽ n, and

∑n
i=1 λi = 1. Here we

assumed λi > 0 because otherwise we can just omit those points whose coefficients are
zero. We need to show that p ∈ P.

Let us write

p =

(
n−1∑
i=1

λipi

)
+ λnpn = λ

(
n−1∑
i=1

λi

λ
pi

)
+ (1− λ)pn

where λ :=
∑n−1

i=1 λi = 1−λn ∈ [0, 1]. Note that q :=
∑n−1

i=1
λi

λ
pi is a convex combination

of n− 1 points of P, so q ∈ P by the inductive hypothesis. Consequently p = λq+ (1−
λ)pn ∈ P by convexity of P.
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Proof of Proposition 5.6. Denote the set on the right hand side by R.

conv(P) ⊇ R: Consider an arbitrary convex superset C ⊇ P. By Proposition 5.7 (“⇒”
direction), any convex combination of C (and in particular of P) is contained in C.
Hence C ⊇ R, and it follows that conv(P) ⊇ R.

conv(P) ⊆ R: Clearly R is a superset of P. We will show that R is convex, so it
participates in the intersection that defines conv(P).

To this end, take any two points p, q ∈ R. We may express p =:
∑n

i=1 λipi

and q =:
∑n

i=1 µipi as convex combinations of a common collection of points
p1, . . . , pn ∈ P. This is always possible because we may take the union of their
individual collections and set irrelevant coefficients to zero.

Now for any λ ∈ [0, 1] we have λp + (1 − λ)q =
∑n

i=1(λλi + (1 − λ)µi)pi ∈ R, as
λλi︸︷︷︸
⩾0

+(1− λ)︸ ︷︷ ︸
⩾0

µi︸︷︷︸
⩾0

⩾ 0 for all 1 ⩽ i ⩽ n, and
∑n

i=1(λλi+(1−λ)µi) = λ+(1−λ) = 1.

Therefore pq ∈ R, meaning that R is convex, indeed.

In a linear space, the notion of a basis plays a fundamental role. It is a minimal
description of the linear space of interest. Similarly, we want to describe convex sets
using as few entities as possible, which leads to the notion of extreme points.

Definition 5.8. The convex hull conv(P) of a finite point set P ⊂ Rd is called a convex
polytope (or a convex polygon when d = 2). Every p ∈ P such that p /∈ conv(P \ {p}) is
called an extreme point of P.

Exercise 5.9. Show that a “convex polygon” defined above is really a “simple polygon
that is convex”.

Proposition 5.10. Any convex polytope conv(P) is the convex hull of the extreme points
of P.

Proof. Let P = {p1, . . . , pn}. Assume without loss of generality that its extreme points
are p1, . . . , pk. We will prove by induction on i = n, . . . , k that conv(P) = conv{p1, . . . , pi}.

For i = n the statement is trivial. For k ⩽ i < n, we have conv(P) = conv{p1, . . . , pi+1}

by induction hypothesis. Since the point pi+1 is not extreme, it can be expressed as a
convex combination pi+1 =

∑i
j=1 λjpj. Thus any x ∈ conv(P) can be expressed as

x =

i+1∑
j=1

µjpj =

i∑
j=1

µjpj + µi+1pi+1 =

i∑
j=1

(µj + µi+1λj)pj.

Note that the coefficients are non-negative and sum up to 1, thus x ∈ conv{p1, . . . , pi}.
So we conclude conv(P) ⊆ conv{p1, . . . , pi}; the reverse inclusion is trivial.
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5.2 Classic Theorems for Convex Sets

Next we will discuss a few fundamental theorems about convex sets in Rd. The proofs
typically employ the algebraic characterization of convexity and some techniques from
linear algebra.

Theorem 5.11 (Radon [8]). Any set P ⊂ Rd of d+ 2 points can be partitioned into two
disjoint subsets P+ and P− such that conv(P+) ∩ conv(P−) ̸= ∅.
Proof. Let P = {p1, . . . , pd+2}, which by Corollary 5.5 is affinely dependent. Hence∑d+2

i=1 λipi = 0 and
∑d+2

i=1 λi = 0 for some λ1, . . . , λd+2 ∈ R that are not all zero. In
particular, there exist strictly positive and strictly negative coefficients.

Let P+ be the set of all points pi for which λi > 0, and denote P− := P \ P+.
Then P+, P− ̸= ∅ and

∑
pi∈P+ λipi =

∑
pi∈P−(−λi)pi. Observe that

∑
pi∈P+ λi =∑

pi∈P− −λi =: s > 0. So with renormalized coefficients

µi :=

{
λi/s pi ∈ P+

−λi/s pi ∈ P−
⩾ 0

we have
∑

pi∈P+ µipi =
∑

pi∈P− µipi, which describes a common point of conv(P+) and
conv(P−).

Theorem 5.12 (Carathéodory [3]). For any P ⊂ Rd and q ∈ conv(P) there exist k ⩽ d+1

points p1, . . . , pk ∈ P such that q ∈ conv(p1, . . . , pk).

Exercise 5.13. Prove Theorem 5.12.

Exercise 5.14. Given a finite point set P ⊂ Rd, a point q ∈ conv(P), and a point x ∈ Rd.
Show that there exists a subset P ′ ⊆ P of at most d points such that q ∈ conv(P ′∪{x}).
Theorem 5.15 (Helly). Consider a collection C = {C1, . . . , Cn} of n ⩾ d + 1 convex
subsets of Rd, such that any d+ 1 sets from C have non-empty intersection. Then⋂n

i=1 Ci ̸= ∅, i.e. all sets from C have non-empty intersection.

Proof. Induction on n. The base case n = d + 1 holds by assumption. Hence suppose
that n ⩾ d + 2. Define sets Di =

⋂
j̸=i Cj, for i ∈ {1, . . . , n}. As Di is an intersection of

n−1 sets from C, by the inductive hypothesis we know that Di ̸= ∅. Hence we may take
an arbitrary point pi ∈ Di, for each i ∈ {1, . . . , n}. By Theorem 5.11 the set {p1, . . . , pn}

can be partitioned into two disjoint subsets P+ and P− such that there exists a point
p ∈ conv(P+) ∩ conv(P−). We claim that p ∈ ⋂n

i=1 Ci, which completes the proof.
Fix any i ∈ {1, . . . , n} and consider Ci. By construction pi ′ ∈ Di ′ ⊆ Ci for all

i ′ ̸= i. Suppose, say, pi ∈ P−, then P+ ⊆ {pi ′}i ′ ̸=i ⊆ Ci. By convexity of Ci we see
conv(P+) ⊆ Ci and thus p ∈ Ci. The other case that pi ∈ P+ is symmetric.

There is a nice application of Helly’s theorem showing the existence of so-called
centerpoints of finite point sets. Basically, a centerpoint is one way to generalize the
notion of a median to higher dimensions.
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Definition 5.16. Let P ⊂ Rd be a set of n points. A point p ∈ Rd, not necessarily in
P, is a centerpoint of P if every open halfspace containing more than dn

d+1
points of P

also contains p.

Stated differently, every closed halfspace containing a centerpoint also contains at
least n

d+1
points of P (which is equivalent to containing at least

⌈
n

d+1

⌉
points). We have

the following result.

Theorem 5.17. Every set P ⊂ Rd of n points has a centerpoint.

Proof. We may assume that P contains at least d+ 1 points; otherwise, we may embed
P in a lower-than-d-dimensional affine subspace and reduce d.

Define a family of subsets of P by

A :=

{
P ∩H

∣∣∣ H an open halfspace, |P ∩H| >
dn

d+ 1

}
.

Since |P| = n, the number of subsets in A =: {A1, . . . , Am} is also finite. For each
1 ⩽ i ⩽ m, we denote Ci := conv(Ai) which, due to convexity, is contained in the open
halfspaces that define Ai.

Suppose there is a point c ∈ ⋂m
i=1 Ci, then c is also contained in every open halfspace

H : |P ∩H| > dn
d+1

and thus is a centerpoint. So it suffices to show the existence of c. To
this end, we will prove that any d + 1 sets in A have a common point; so do any d + 1

sets among C1, . . . , Cm. The claim then follows via Theorem 5.15.
For any d + 1 sets in A, each set by definition contains more than dn

d+1
points of P,

so the total number of point occurrences is more than (d + 1) dn
d+1

= dn. Therefore,
there exists a point p ∈ P that occurs more than d times, that is, in all d+ 1 sets. This
completes the proof.

Exercise 5.18. Show that the number of points in Definition 5.16 is best possible, that
is, for every n there is a set of n points in Rd such that for any p ∈ Rd there is an
open halfspace containing

⌊
dn
d+1

⌋
points but not p.

Theorem 5.19 (Separation Theorem). Any two compact convex sets C,D ⊂ Rd with
C ∩D = ∅ can be separated strictly by a hyperplane, that is, there exists a hyperplane
h such that C and D lie in the opposite open halfspaces bounded by h.

Proof. Consider the distance function δ : C × D → R with (c, d) 7→ ||c − d||. Since
C×D is compact and δ is continuous, the function δ attains its minimum at some point
(c0, d0) ∈ C ×D. Note that δ(c0, d0) > 0 because C ∩D = ∅. Let h be the hyperplane
perpendicular to the line segment c0d0 and passing through its midpoint; see Figure 5.2.
We claim that h strictly separates C and D.

To see this, suppose first that that there was a point c ′ ∈ C ∩ h, say. Then by
convexity of C we have c0c ′ ⊆ C. But some point along this segment is closer to d0 than
is c0, in contradiction to the choice of c0. Suppose, then, that C has points on both

78



Geometry: C&A 2024 5.2. Classic Theorems for Convex Sets

c0
d0

C
Dh

c ′

Figure 5.2: The hyperplane h strictly separates the compact convex sets C and D.

sides of h. Then by convexity of C it has also a point on h, but we just saw that it is
impossible. The argument for D is symmetric. Therefore, C and D must lie in opposite
open halfspaces bounded by h.

The statement above is wrong for arbitrary (not necessarily compact) convex sets.
Only if we allow non-strict separation (i.e. the hyperplane may intersect both sets), can
we guarantee such a separation. However, the proof is a bit more involved (cf. Matoušek’s
book [7], but also check the errata on his webpage).

Exercise 5.20. Show that the Separation Theorem does not hold in general if not both
of the sets are convex.

Exercise 5.21. Prove or disprove:

a) The convex hull of a compact subset of Rd is compact.

b) The convex hull of a closed subset of Rd is closed.

Altogether we obtain various equivalent definitions for the convex hull, summarized
in the following theorem.

Theorem 5.22. For a compact set P ⊂ Rd we can characterize conv(P) equivalently as
one of

1. the smallest (w. r. t. set inclusion) convex subset of Rd that contains P;

2. the set of all convex combinations of points from P;

3. the set of all convex combinations formed by d+ 1 or fewer points from P;

4. the intersection of all convex supersets of P;

5. the intersection of all closed halfspaces containing P.

Exercise 5.23. Prove Theorem 5.22.
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5.3 Planar Convex Hull

Although we know by now what is the convex hull of a point set, it is not yet clear how
to construct it algorithmically. As a first step, we have to find a suitable representation
for convex hulls. In this section we focus on the problem in R2, where the convex hull
of a finite point set forms a convex polygon. A convex polygon is easy to represent,
for instance, as a sequence of its vertices in counterclockwise orientation. In higher
dimensions finding a suitable representation for convex polytopes is a much more delicate
task.

Problem 5.24 (Convex hull).

Input: P = {p0, . . . , pn−1} ⊂ R2, for some n ∈ N.

Output: A sequence (q0, . . . , qh−1) of the vertices of conv(P), ordered counterclockwise.

q1

q2

q3

q4

q5

q6

q7

(a) Input.

q1

q2

q3

q4

q5

q6

q7

(b) Output.

Figure 5.3: Convex Hull of a set of points in R2.

Another possible algorithmic formulation of the problem is to ignore the structure of
the convex hull and just consider it as a point set.

Problem 5.25 (Extreme points).

Input: P = {p0, . . . , pn−1} ⊂ R2, for some n ∈ N.

Output: The set of vertices of conv(P).

Degeneracies. A couple of further clarifications regarding the above problem definitions
are in order.

First of all, for efficiency reasons an input is usually specified as a sequence of points.
Do we insist that this sequence forms a set or are duplications of points allowed?

What if three points are collinear? Are all of them considered extreme? They are
not, according to our definition from above; and that is what we will stick to. But there
may be situations where one wants to include these points nevertheless.
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By the Separation Theorem, every extreme point p can be separated from the convex
hull of the remaining points by a line. If we translate the line so that it passes through
p, then every point in P other than p shall strictly lie in one side of it. In R2 it turns
out convenient to work with the following “directed” reformulation.

Proposition 5.26. Let P ⊂ R2 be a finite point set. A point p ∈ P is extreme for P

⇐⇒ there is a directed line ℓ through p such that P \ {p} is (strictly) to the left of ℓ.

c
r

The interior angle at a vertex v of a polygon P is the angle
between the two edges of P incident to v whose corresponding
angular domain lies in P◦. If this angle is smaller than π, the
vertex is called convex ; if the angle is larger than π, the vertex
is called reflex. In the polygon depicted on the right, the vertex
c is convex whereas the vertex r is reflex.

Exercise 5.27.
A set S ⊂ R2 is star-shaped if there exists a point c ∈ S,
such that for every point p ∈ S the line segment cp is
contained in S. A simple polygon with exactly three convex
vertices is called a pseudotriangle (see the example shown
on the right).
In the following we consider subsets of R2. Prove or disprove:

a) Every convex vertex of a simple polygon lies on its convex hull.

b) Every star-shaped set is convex.

c) Every convex set is star-shaped.

d) The intersection of two convex sets is convex.

e) The union of two convex sets is convex.

f) The intersection of two star-shaped sets is star-shaped.

g) The intersection of a convex set with a star-shaped set is star-shaped.

h) Every triangle is a pseudotriangle.

i) Every pseudotriangle is star-shaped.

5.4 Trivial algorithms

One can compute the extreme points using Carathéodory’s Theorem as follows: Test for
every point p ∈ P whether there are q, r, s ∈ P \ {p} such that p is inside the triangle
qrs. Runtime O(n4).

Another option, inspired by the Separation Theorem: Test for every pair (p, q) ∈ P2

whether all points from P \ {p, q} are to the left of the directed line −→pq (or on the line
segment pq). Runtime O(n3).
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Exercise 5.28. Let P = (p0, . . . , pn−1) be a sequence of n points in R2. Someone claims
that you can check by means of the following algorithm whether or not P describes
the boundary of a convex polygon in counterclockwise order:

bool IsConvex(p0, . . . , pn−1) {
for i = 0, . . . , n− 1:

if (pi, p(i+1)modn, p(i+2)modn) form a rightturn:
return false;

return true;
}

Disprove the claim and describe a correct algorithm to solve the problem.

Exercise 5.29. Let P ⊂ R2 be a convex polygon, given as an array p[0 . . . n − 1] of its
n vertices in counterclockwise order.

a) Describe an O(logn) time algorithm to determine whether a point q lies inside,
outside or on the boundary of P.

b) Describe an O(logn) time algorithm to find a (right) tangent to P from a query
point q located outside P. That is, find a vertex p[i], such that P is contained
in the closed halfplane to the left of the oriented line qp[i].

5.5 Jarvis’ Wrap

We are now ready to describe a first simple algorithm to construct the convex hull. It is
inspired by Proposition 5.26 and works as follows:

Find a vertex q0 of conv(P) (e.g., the point in P with smallest x-coordinate).
“Wrap” P starting from q0, i.e., always find the next vertex qi of conv(P)
as the rightmost point with respect to the directed line −−−−−−→qi−2qi−1.

Besides comparing x-coordinates, the only geometric primitive needed is an orienta-
tion test: For three points p, q, r ∈ R2, the predicate rightturn(p, q, r) is true if and
only if r is (strictly) to the right of the directed line pq.

q[0]=p start

q next

q[1]

q[2]
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Code for Jarvis’ Wrap.

p[0..n-1] contains a sequence of n points.
p_start is the point with smallest x-coordinate.
q_next is some other point in p[0..n-1].

int h = 0;
Point q_now = p_start;
do {

q[h] = q_now;
h = h + 1;

for (int i = 0; i < n; i = i + 1)
if (rightturn(q_now, q_next, p[i]))

q_next = p[i];

q_now = q_next;
q_next = p_start;

} while (q_now != p_start);

q[0..h-1] describes a convex polygon bounding the convex hull of p[0..n-1].

Analysis. For every output point the above algorithm spends n rightturn tests, which is
O(nh) in total.

Theorem 5.30. [6] Jarvis’ Wrap computes the convex hull of n points in R2 using
O(nh) rightturn tests, where h is the number of hull vertices.

In the worst case we have h = n, that is, O(n2) rightturn tests. Jarvis’ Wrap has a
remarkable property called output sensitivity : the runtime depends not only on the size
of the input but also on the size of the output. For a huge point set whose convex hull
consists of a constant number of vertices only, the algorithm constructs the convex hull
in optimal linear time. But the worst case performance of Jarvis’ Wrap is suboptimal,
as we will see soon.

Degeneracies. The algorithm may have to cope with some degeneracies.

• Several points have smallest x-coordinate ⇒ sort by lexicographical order:

(xp, yp) < (xq, yq) ⇐⇒ (xp < xq)∨ (xp = xq ∧ yp < yq) .

• Three or more points collinear, so potentially multiple points are rightmost ⇒
choose the farthest one.
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Predicates. As mentioned above, the Jarvis’ Wrap (and most other 2D convex hull
algorithms) need the rightturn predicate, or more generally, orientation tests. The
rightturn computation amounts to evaluating a polynomial of degree two, see the ex-
ercise below. We therefore say that it has algebraic degree two. In contrast, the lexico-
graphic comparison has degree one only. Higher algebraic degree not only means more
time-consuming multiplications, but also creates large intermediate results which may
lead to overflows as well as challenges for storage and exact computation.

Exercise 5.31. Prove that for three points (xp, yp), (xq, yq), (xr, yr) ∈ R2, the sign of
the determinant∣∣∣∣∣∣

1 xp yp

1 xq yq

1 xr yr

∣∣∣∣∣∣
determines if r lies to the right, to the left or on the directed line −→pq.

Exercise 5.32. The InCircle predicate: Given four points p, q, r, s ∈ R2, is s located
inside the circle defined by p, q, r? The goal of this exercise is to derive an algebraic
formulation of this predicate as a determinant, similar to the rightturn predicate
in Exercise 5.31. To this end we employ the so-called parabolic lifting map, which
will also play a prominent role in later chapters.

The parabolic lifting map ℓ : R2 → R3 lifts a point p = (x, y) ∈ R2 to ℓ(p) =
(x, y, x2 + y2) ∈ R3. For a circle C ⊆ R2 of positive radius, show that the “lifted
circle” ℓ(C) := {ℓ(p) | p ∈ C} is contained in a unique plane hC ⊆ R3. Moreover,
show that a point p ∈ R2 is strictly inside (outside, respectively) of C if and only if
the lifted point ℓ(p) is strictly below (above, respectively) hC.

Use these insights to formulate the InCircle predicate for given points (xp, yp),
(xq, yq), (xr, yr), (xs, ys) ∈ R2 as a determinant.

5.6 Graham Scan (Successive Local Repair)

There exist many algorithms that exhibit a better worst-case runtime than Jarvis’ Wrap.
Here we discuss only one of them: a particularly elegant and easy-to-implement variant of
the so-called Graham Scan [5]. This algorithm is referred to as Successive Local Repair
because it starts with some (possibly non-convex) polygon enclosing all the points and
then step-by-step repairs the deficiencies by removing reflex vertices. It goes as follows:

Sort the points lexicographically to obtain a sequence p0, . . . , pn−1 and build
a corresponding circular sequence p0, . . . , pn−1, . . . , p0 that walks around
the point set in counterclockwise direction.
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p0

p1

p2

p3

p4

p5

p6

p7

p8

p0, p1, . . . , p7, p8, p7, . . . , p1, p0

As long as there is a consecutive triple (p, q, r) such that r is to the right
of or on the directed line −→pq, remove q from the sequence.

Code for Graham Scan.

p[0..n-1] is a lexicographically sorted sequence of n ⩾ 2 distinct points.

q[0] = p[0];
int h = 0;
// Lower convex hull (left to right):
for (int i = 1; i < n; i = i + 1) {

while (h>0 && !leftturn(q[h-1], q[h], p[i]))
h = h - 1;

h = h + 1;
q[h] = p[i];

}

// Upper convex hull (right to left):
for (int i = n-2; i >= 0; i = i - 1) {

while (!leftturn(q[h-1], q[h], p[i]))
h = h - 1;

h = h + 1;
q[h] = p[i];

}

q[0..h-1] describes a convex polygon bounding the convex hull of p[0..n-1].

Correctness. We argue for the lower convex hull only. The argument for the upper hull is
symmetric. A point p is on the lower convex hull of P if there is a rightward directed line
g through p such that P \ {p} is strictly to the left of g. A directed line is rightward if it
forms an absolute angle of at most π with the positive x-axis. (Compare this statement
with the one in Proposition 5.26.)

First, we claim that every point that the algorithm discards does not appear on the
lower convex hull. A point qh is discarded only if there exist points qh−1 and pi with
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qh−1 < qh < pi (lexicographically) so that qh−1qhpi does not form a leftturn. Thus,
for every rightward directed line g through qh at least one of qh−1 or pi lies on or to
the right of g. It follows that qh is not on the lower convex hull, as claimed.

Upon finishing the construction of lower hull, in the sequence q0, . . . , qh−1 every
consecutive triple qiqi+1qi+2, for 0 ⩽ i ⩽ h− 3, forms a leftturn with qi < qi+1 < qi+2.
Thus, for every such triple there exists a rightward directed line g through qi+1 such that
P\{p} is (strictly) to the left of g (for instance, take g to be perpendicular to the angular
bisector of \qi+2qi+1qi). It follows that every inner point of the sequence q0, . . . , qh−1

is on the lower convex hull. The extreme points q0 and qh−1 are the lexicographically
smallest and largest point of P, respectively, both of which are easily seen to be on the
lower convex hull as well. Therefore, q0, . . . , qh−1 form the lower convex hull of P, which
proves the correctness of the algorithm.

Analysis.

Theorem 5.33. The convex hull of a set P ⊂ R2 of n points can be computed using
O(n logn) geometric operations.

Proof. 1. Sorting and removal of duplicate points: O(n logn).

2. At the beginning we have a sequence of 2n − 1 points; at the end the sequence
consists of h points. Observe that for every “false” leftturn, one point is discarded
from the sequence for ever. Therefore, we have exactly 2n − h − 1 such tests. In
addition there are at most 2n − 2 “true” leftturn, as bounded by the number of
iterations of the outer for loop. Altogether we have at most 4n− h− 3 tests.

In total the algorithm uses O(n logn) geometric operations. Note that the number
of leftturn tests is linear only, whereas we need worst-case Θ(n logn) lexicographic
comparisons which dominates the runtime.

5.7 Lower Bound

It is not hard to see that the runtime of Graham Scan is asymptotically optimal in the
worst-case.

Theorem 5.34. Ω(n logn) geometric operations are needed to construct the convex
hull of n points in R2 (in the algebraic computation tree model).

Proof. Reduction from the sorting problem, for which Ω(n logn) comparisons are needed
in the algebraic computation tree model. Given n real numbers x1, . . . , xn, we construct
a point set P = {(xi, x

2
i ) | 1 ⩽ i ⩽ n} ⊆ R2. This construction can be regarded as

embedding the numbers into R2 along the x-axis and then lifting them vertically onto
the unit parabola. The counterclockwise order in which the points appear along the
lower convex hull of P corresponds to the sorted order of the xi’s. Therefore, if we could
construct the convex hull in o(n logn) time, then we could also sort in o(n logn) time,
a contradiction.

86



Geometry: C&A 2024 5.8. Chan’s Algorithm

Clearly this reduction does not work for the Extreme Points problem. But using a re-
duction from Element Uniqueness (see Section 1.1) instead, one can show that Ω(n logn)
operations is also needed for computing merely the set of extreme points. This was first
shown by Avis [1] for linear computation trees, then by Yao [9] for quadratic computation
trees, and finally by Ben-Or [2] for general algebraic computation trees.

5.8 Chan’s Algorithm

Given matching upper and lower bounds we may be tempted to consider the algorithmic
complexity of the planar convex hull problem settled. However, there are fine-grained
structures to be discovered: Recall that the lower bound is a worst case bound. For
instance, the Jarvis’ Wrap runs in O(nh) time and thus beats the Ω(n logn) bound
whenever h = o(logn). The question remains whether one can achieve both output
sensitivity and optimal worst case performance at the same time. Indeed, Chan [4]
presented an algorithm to achieve this by cleverly combining the best of Jarvis’ Wrap
and Graham Scan. Let us look at this algorithm in detail. It first guesses an upper
bound H for the number of vertices h. Then it proceeds in two phases that are executed
one after another.

Divide. Input: a set P ⊂ R2 of n points and a number H ∈ {1, . . . , n}.

1. Divide P into k = ⌈n/H⌉ sets P1, . . . , Pk with |Pi| ⩽ H.

2. Construct conv(Pi) using Graham Scan for i ∈ {1, . . . , k}.

Analysis. Step 1 takes O(n) time. Step 2 can be handled in O(H logH) time for each
Pi, hence O(kH logH) = O(n logH) time in total.

Conquer. Output: the first H vertices of conv(P) in counterclockwise order.

1. Find the lexicographically smallest point p< in P.

2. Starting from p<, find the first H vertices of conv(P) in counterclockwise order by
Jarvis’ Wrap on the convex polygons conv(P1), . . . , conv(Pk). Specifically, in each
wrap step, determine for every i the right tangent ti to conv(Pi) from the current
vertex (see Exercise 5.29 for definition, and the figure below for illustration). Select
our next vertex among the k candidates t1, . . . , tk such that it is rightmost with
respect to the direction of the last two vertices.
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Analysis. Step 1 takes O(n) time. Step 2 consists of at most H wrap steps. Each wrap
step needs O(k logH) time for finding the right tangents (see Exercise 5.29) and O(k)
time for selecting the rightmost candidate. That amounts to O(Hk logH) = O(n logH)
time in total.

Remark. Using a more clever strategy instead of many tangency searches one can
handle the conquer phase in O(n) time, see Exercise 5.35 below. However, this is irrele-
vant as far as the asymptotic runtime is concerned, since already the divide phase takes
O(n logH) time.

Exercise 5.35. Consider k convex polygons P1, . . . Pk, for some constant k ∈ N, where
each polygon is given as a list of its vertices in counterclockwise order. Show how
to construct the convex hull of P1 ∪ . . . ∪ Pk in O(n) time, where n =

∑k
i=1 ni and

ni is the number of vertices of Pi, for 1 ⩽ i ⩽ k.

Searching for h. While the runtime bound for H ≈ h is exactly what we were heading
for, we still need a means to estimate h closely, whose exact value is unknown in general.
Fortunately we can address this problem rather easily, by applying what is called a
doubly exponential search. It works as follows.

Try the algorithm from above iteratively with parameter H = min{22t

, n}, for
t = 0, 1 . . . until the conquer phase finds all vertices of conv(P) (i.e., the
wrap returns to its starting point).

Analysis: Let 22
s be the last parameter for which the algorithm is called. Since the

previous trial with H = 22
s−1 did not find all vertices, we know that 22

s−1

< h, namely
2s−1 < logh, where h is the actual number of vertices of conv(P). The total runtime is
therefore at most

s∑
t=0

cn log 22
t

= cn

s∑
t=0

2t = cn(2s+1 − 1) < 4cn logh = O(n logh),

for some constant c ∈ R. In summary, we obtain the following theorem.

Theorem 5.36. The convex hull of a set P ⊂ R2 of n points can be computed using
O(n logh) geometric operations, where h is the number of convex hull vertices.
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Questions

17. How is convexity defined? What is the convex hull of a set in Rd? Give at
least three possible definitions and show that they are equivalent.

18. What is a centerpoint of a finite point set in Rd? State and prove the cen-
terpoint theorem (Theorem 5.17) and the two classic theorems used in its proof
(Theorems 5.11 and 5.15).

19. What does it mean to compute the convex hull of a set of points in R2? Discuss
input and expected output and possible degeneracies.

20. How can the convex hull of a set of n points in R2 be computed efficiently?
Describe and analyze (including proofs) Jarvis’ Wrap, Graham Scan, and Chan’s
Algorithm.

21. Is there a linear time algorithm to compute the convex hull of n points in R2?
Prove the lower bound and define/explain the model in which it holds.

22. Which geometric predicates are used to compute the convex hull of n points
in R2? Explain the two predicates and how to compute them.
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Chapter 6

Delaunay Triangulations

In Chapter 4 we have discussed triangulations of simple polygons. A triangulation parti-
tions a polygon into triangles, which allows to easily compute the total area, or to derive
a small guarding set, for instance. Another typical application is interpolation: Suppose
a function f is defined on the vertices of the polygon P, and we want to extend it “rea-
sonably” and continuously to the entire P. To this end we take a triangulation T. Given
any point p ∈ P we find a triangle v1v2v3 ∈ T that contains p, and so p =

∑3
i=1 λivi

can be written as a (unique) convex combination of the three vertices. We may use the
same coefficients to define an interpolated value f(p) :=

∑3
i=1 λif(vi).

If triangulations are a useful tool when working with polygons, they might also turn
out useful for other geometric objects, such as point sets. But what could be a trian-
gulation of a point set? Polygons have a clearly defined interior, which naturally lends
itself to be covered by triangles. A point set does not have an interior, unless... we make
one. Here the notion of convex hull comes handy. One way to think of a point set is as
a convex polygon (its convex hull) potentially with some little holes (those points in the
interior of the hull). A triangulation should then partition the convex hull while respect-
ing the points in the interior. Figure 6.1b shows an example. In contrast, Figure 6.1c
gives a counterexample: although the triangles do partition the convex hull, some points
in the interior are not respected as they are swallowed by large triangles.

(a) Simple polygon triangulation. (b) Point set triangulation. (c) Not a triangulation.

Figure 6.1: Examples of (non-)triangulations.

This interpretation directly leads to the following adaption of Definition 4.4.
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Definition 6.1. A triangulation of a finite point set P ⊂ R2 is a collection T of triangles,
such that

(1) conv(P) =
⋃

T∈T T ;

(2) P =
⋃

T∈T V(T); and

(3) for every distinct pair T, T ′ ∈ T, the intersection T ∩ T ′ is either a common
vertex, or a common edge, or empty.

Just as for polygons, triangulations are universally available for point sets, meaning
that (almost) every point set admits at least one.

Proposition 6.2. Every set P ⊆ R2 of n ⩾ 3 points has a triangulation, unless all
points in P are collinear.

Proof. In order to construct a triangulation for P, consider the lexicographically sorted
sequence p1, . . . , pn of points in P. Let m be minimal such that p1, . . . , pm are not
collinear. We triangulate p1, . . . , pm by connecting pm to all of p1, . . . , pm−1 (which are
on a common line), see Figure 6.2a.

(a) Getting started. (b) Adding a point.

Figure 6.2: Constructing the scan triangulation of P.

Then we add pm+1, . . . , pn one by one. Let us inductively assume that we had built
a triangulation of Pi−1 := {p1, . . . , pi−1}, and we are about to add pi. Note that pi is not
contained in Ci−1 := conv(Pi−1) because of the lexicographic order. We connect it with
all “visible” vertices of Ci−1; that is, every vertex v of Ci−1 for which piv ∩ Ci−1 = {v}.
Among these vertices are two tangent points from pi to Ci−1, and the vertices in between
are exactly the visible ones. After adding these connections, we have covered Ci \ Ci−1

by several new disjoint triangles, so overall we obtain a triangulation of Pi.

The triangulation constructed in Proposition 6.2 is called a scan triangulation. Fig-
ure 6.3a shows a larger example. It is usually “ugly”, though, as the lexicographic order
tends to produce many long and skinny triangles. This is not only an aesthetic deficit,
but also a practical concern in the context of interpolation, for example, since long and
skinny triangles imply a less local interpolation. In contrast, the Delaunay triangula-
tion of the same point set (Figure 6.3b) looks much nicer, and we will discuss in the
next section how to get this triangulation.
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(a) Scan triangulation. (b) Delaunay triangulation.

Figure 6.3: Two triangulations of the same set of 50 points.

Exercise 6.3. Describe how to implement the scan triangulation in O(n logn) time for
a set of n points in R2.

On another note, if you look closely into the Graham Scan algorithm for planar
convex hulls in Chapter 5, then you will realize that we also could have used it to prove
Proposition 6.2. Whenever a point q is discarded during Graham Scan due to a right
turn p → q → r, we add the triangle pqr to fill the space. Eventually this leads to a
triangulation of the point set.

Every triangulation of P induces a plane straight-line graph G = (P, E), where the
edges are the sides of the triangles. As shown by the lemma below (cf. Corollary 2.5),
the counts of edges and triangles are determined by P.

Lemma 6.4. Any triangulation of a set P ⊂ R2 of n points has exactly 3n−h−3 edges
and 2n − h − 1 faces in its induced graph, where h := |P ∩ ∂conv(P)| is the number
of points on the outer cycle.

Proof. Consider the graph induced by an arbitrary triangulation of P. Denote by E the
set of edges and by F the set of faces. We count the number of edge-face incidences in
two ways. Denote X = {(e, f) ∈ E× F : e bounds f}.

On the one hand, every edge is incident to exactly two faces and therefore |X| = 2|E|.
On the other hand, every inner face is a triangle and the outer face is bounded by h edges,
therefore |X| = 3(|F| − 1) + h. Together we obtain 3|F| = 2|E| − h + 3. Combining with
Euler’s formula n− |E|+ |F| = 2 we can solve for |E| = 3n−h−3 and |F| = 2n−h−1.

In graph theory, the term “triangulation” is sometimes used as a synonym for “max-
imal planar graph”. But geometric triangulations are somewhat weaker: They are not
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maximal in the sense that no abstract edge can be added; rather, only in the sense that
no straight-line edge can be added without sacrificing planarity.

Corollary 6.5. A triangulation of a set P ⊂ R2 of n points is maximal planar, if and
only if conv(P) is a triangle.

Proof. Combine Corollary 2.5 and Lemma 6.4.

Exercise 6.6. Find for every n ⩾ 3 a simple polygon P with n vertices such that P has
exactly one triangulation. P should be in general position, meaning that no three
vertices are collinear.

Exercise 6.7. Show that every set of n ⩾ 5 points in general position (no three points
are collinear) has at least two different triangulations.
Hint: Show first that every set of five points in general position contains a convex
4-hole, that is, a subset of four points that span a convex quadrilateral that does
not contain the fifth point.

6.1 The Empty Circle Property

We will now move on to study the ominous and supposedly nice Delaunay triangulations
mentioned above. They are defined in terms of an “empty circumcircle” property. The
circumcircle of a triangle is the unique circle passing through the three vertices of the
triangle, see Figure 6.4. Observe that long and skinny triangles usually have unpro-
portionally large circumcircles, which tend to (though not always) enclose other points
inside. A Delaunay triangulation forbids such enclosure, in hope of avoiding skinny
triangles as much as possible.

Figure 6.4: Circumcircle of a triangle.

Definition 6.8. A triangulation T of a finite point set P ⊂ R2 is a Delaunay triangulation,
if the circumcircle of every triangle T ∈ T is empty, that is, the circle does not
enclose any point from P strictly inside.

Consider the example depicted in Figure 6.5. It shows a Delaunay triangulation of a
set of six points: The circumcircles of all five triangles are empty (we also say that the
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Figure 6.5: All triangles satisfy the empty circle property.

triangles satisfy the empty circle property). The dashed circle is not empty, but that is
fine since it is not a circumcircle of any triangle.

It is instructive to look at the toy example where four points are arranged in convex
position. Obviously, there are two possible triangulations. If the four points happen
to lie on the same cycle C, the circumcircle of any three points is exactly C, which
is empty, so both triangulations shall be Delaunay (see Figure 6.6a). But in general
position, i.e. when the four points are not cocircular, only one triangulation is Delaunay
(see Figures 6.6b and 6.6c). This case is formalized in the proposition below, whose
proof technique will show up frequently in this chapter.

(a) Two Delaunay triangulations. (b) Delaunay triangulation. (c) Non-Delaunay triangulation.

Figure 6.6: Triangulations of four points in convex position.

Proposition 6.9. Given a set P ⊂ R2 of four points that are in convex position but not
cocircular. Then P has exactly one Delaunay triangulation.

Proof. Consider a set of four points P = {p, q, r, s} arranged counterclockwise in con-
vex position. There are only two possible triangulations: T1 := {prq, prs} and T2 :=
{qsp, qsr}.

Let C1 be the circumcircle of triangle prq ∈ T1, and C ′
1 be the circumcircle of the

other triangle prs ∈ T1. Since the four points are not cocircular, we have only two cases:
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s is strictly outside C1. First we argue that q must be strictly outside C ′
1. Imagine the

process of continuously moving from C1 to C ′
1 while keeping p, r on the cycle

(Figure 6.7a). More precisely, we move the center towards s along the perpendicular
bisector of pr. At some point the cycle hits s and becomes C ′

1 and the point q

must be “left behind”. Thus q is strictly outside C ′
1, indeed.

As both C1 and C ′
1 are empty, T1 is a Delaunay triangulation. Next we argue

that T2 is not Delaunay. Consider the continuous motion from C1 to C2, the
circumcircle of qsp ∈ T2, while keeping p, q intact (Figure 6.7b). The point r is
on C1 and remains within the circle all the way up to C2. This means C2 is not
empty, thus T2 is not Delaunay.

p

q
r

s

C1

C ′
1

(a) Going from C1 to C ′
1 in C1.

p

q r

s

C1

C2

(b) Going from C1 to C2 in C2.

Figure 6.7: Circumcircles and containment for triangulations of four points.

s is strictly inside C1. The case is symmetric: just shift the roles of pqrs to qrsp.

Exercise 6.10. Prove or disprove that every minimum weight triangulation (that is,
a triangulation for which the sum of edge lengths is minimum) is a Delaunay
triangulation.

6.2 The Lawson Flip algorithm

It is not clear yet that every point set P of n points actually has a Delaunay triangulation
(given that not all points are collinear). In this and the next two sections, we will prove
that this is the case, via the Lawson flip algorithm :

1. Compute some triangulation of P (for example, the scan triangulation).

2. While there exist two adjacent triangles ∆,∆ ′ such that the circumcircle of ∆

encloses a vertex of ∆ ′ (see Figure 6.6c; observe that the four vertices must be in
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convex position), replace them by the other pair of adjacent triangles (Figure 6.6b).
In other words, we flip the diagonal of the convex quadrilateral.

We call the replacement operation in the second step a (Lawson) flip.

Theorem 6.11. Let P ⊆ R2 be a set of n points, equipped with some triangulation
T. The Lawson flip algorithm terminates after at most

(
n
2

)
= O(n2) flips, and the

resulting triangulation D is a Delaunay triangulation of P.

We will prove Theorem 6.11 in two steps: In Section 6.3 we show that the program
described above always terminates and, therefore, is an algorithm indeed. (If you think
about it a little, it is not obvious whether the algorithm would loop indefinitely.) Then
in Section 6.4 we show that the algorithm does produce a Delaunay triangulation upon
termination.

6.3 Termination of the Lawson Flip Algorithm

For the termination proof, we make use of the (parabolic) lifting map ℓ:

p = (x, y) ∈ R2 7→ ℓ(p) = (x, y, x2 + y2) ∈ R3.

Geometrically, ℓ “lifts” the point vertically up until hitting the unit paraboloid {(x, y, z) |
z = x2 + y2} ⊆ R3, see Figure 6.8a.

(a) The lifting map. (b) Points on/inside/outside a circle are lifted to
points on/below/above a plane.

Figure 6.8: The lifting map: circles map to planes.

Recall the following important property of the lifting map that we proved in Exercise 5.32.
It is illustrated in Figure 6.8b.

Lemma 6.12. Let C ⊆ R2 be a circle of positive radius. The “lifted circle” ℓ(C) :=
{ℓ(p) | p ∈ C} is contained in a unique plane hC ⊆ R3. Moreover, a point p ∈ R2 is
strictly inside (respectively outside) C if and only if the lifted point ℓ(p) is strictly
below (respectively above) hC.
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Using the lifting map, we can interpret triangulations in the 3D space. For each
triangle ∆ = pqr, we define its “lifted version” as ℓ(∆) := conv{ℓ(p), ℓ(q), ℓ(r)}, which is
a triangle hanging in the space with ∆ being its “shadow”. This way, the triangulation
is lifted to a piecewise linear surface in the space consisting of patches of triangles.

Consider a Lawson flip on adjacent triangles ∆ = pqr and ∆ ′ = pqs, where p, q, r, s

are in convex position. Let C and C ′ be their respective circumcircles. By the condition
of a flip, C encloses s, and similarly C ′ encloses r. In the lifted picture, Lemma 6.12
states that ℓ(s) is strictly below the plane that contains ℓ(∆), and similarly ℓ(r) is strictly
below the plane that contains ℓ(∆ ′). In other words, the triangles ℓ(∆) and ℓ(∆) form a
mountain that protrudes upward; see Figure 6.9a.

After the flip, the two triangles are replaced by prs and qrs. In the lifted picture,
triangles form a valley that protrudes downward by a similar reasoning; see Figure 6.9b.

More pictorially, imagine an opaque tetrahedron conv{ℓ(p), ℓ(q), ℓ(r), ℓ(s)} in the
space. When you look at it from the top, you see two faces corresponding to the two
triangles before the flip; and when you look from the bottom, you see the other two faces
corresponding to the two triangles after the flip. (You cannot see three faces from either
direction, since p, q, r, s are in convex position.) Hence a Lawson flip can be interpreted
as replacing the two top faces by the two bottom faces of the tetrahedron.

(a) Before the flip: the top two triangles of
the tetrahedron and the corresponding non-
Delaunay triangulation in the plane.

(b) After the flip: the bottom two triangles of the
tetrahedron and the corresponding Delaunay
triangulation in the plane.

Figure 6.9: Lawson flip: the height of the surface of lifted triangles decreases.

It follows that the 3D surface can only grow strictly downward pointwise. In partic-
ular, once an edge pq has been flipped, it becomes strictly above the surface thereafter
and thus can never show up again. Since n points can span at most

(
n
2

)
edges, the bound

on the number of flips follows.

6.4 Correctness of the Lawson Flip Algorithm

The triangulation of P that we get upon termination of the Lawson flip algorithm is
“locally Delaunay”: it checks the empty circle property for adjacent triangles only. But
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in fact it is “globally Delaunay”, too.

Proposition 6.13. The triangulation D that results from the Lawson flip algorithm is
a Delaunay triangulation.

Proof. Suppose for contradiction that there is some triangle ∆ ∈ D and some point p ∈ P

strictly inside the circumcircle C of ∆. Among all such pairs (∆, p), we choose one that
minimizes the distance from p to ∆. Note that this distance is positive by definition of
a triangulation. We assume for now that the point on ∆ closest to p lies on the relative
interior of some edge e of ∆; we will deal with the other case later. The situation is as
depicted in Figure 6.10a.

q

∆

p

(a) A point p inside the cir-
cumcircle C of a triangle ∆.

q

∆

p

q

∆ ′

e

(b) The edge e of ∆ closest to p
and the second triangle ∆ ′

incident to e.

∆

p

q

∆ ′

e

C ′
C

(c) The circumcircle C ′ of ∆ ′ also
contains p, and p is closer to
∆ ′ than to ∆.

Figure 6.10: Correctness of the Lawson flip algorithm.

There must be another triangle ∆ ′ in D that is incident to the edge e. By the local
Delaunay property of D, the third vertex q of ∆ ′ is on or outside of C, see Figure 6.10b.
But then the circumcircle C ′ of ∆ ′ contains the whole portion of C on p’s side of e, hence
it also contains p; moreover, p is closer to ∆ ′ than to ∆ (Figure 6.10c). But this is a
contradiction to our choice of ∆ and p. Hence there was no (∆, p), and D is a Delaunay
triangulation.

Consider now the special case where the point on ∆ closest to p happens to be a
vertex v of the triangle ∆. In this case, we need some additional care when choosing
∆. Among all triangles that use v as a vertex and that have p in their circumcircle, we
choose our actual ∆ as the one for which the edge e (as before, this is the edge that faces
p in the circumcircle) and the segment pv form an angle closest 90 degrees.

From here, the proof proceeds as in the first case. We construct a new triangle ∆ ′

that also uses the edge e and that also contains the point p in its circumcircle. The
difference is that we do not necessarily get the same type of contradiction because the
point on ∆ ′ closest to p might still be v. If that is the case, however, the angle between
the edge e ′ (this is the edge that faces p in the circumcircle of ∆ ′) and the segment pv
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has will be closer to 90◦ compared to e. This now stands in contradiction to our more
careful choice of the triangle ∆, which finishes the proof.

Exercise 6.14. The Euclidean minimum spanning tree (EMST) of a finite point set
P ⊂ R2 is a spanning tree for which the sum of the edge lengths is minimum (among
all spanning trees of P). Show:

(a) Every EMST of P is a plane graph.

(b) Every EMST of P contains a closest pair, that is, an edge between two points
p, q ∈ P that have minimum distance to each other among all point pairs in(
P
2

)
.

(c) Every Delaunay Triangulation of P contains an EMST of P.

Exercise 6.15. (a) Show that for any two triangulations T1 and T2 on a point set P,
it is possible to transform T1 into T2 using O(n2) edge flips.

(b) Let D = P ∪Q where P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qn} each forms a
slightly bent arc, facing against each other. For any line qiqj the set P is on
its left; and symmetrically, for any line pipj the set Q is on its right. Show
that there are two triangulations T1 and T2 on D such that at least Ω(n2) edge
flips are needed to transform T1 into T2.

(c) Show that D can be constructed in such a way that one of the triangulations
from (b), say, T1 is a Delaunay triangulation.

6.5 The Delaunay Graph

Despite the fact that a point set may have more than one Delaunay triangulation, there
are certain edges that are present in every Delaunay triangulation, for instance, the edges
of the convex hull.

Definition 6.16. The Delaunay graph of P ⊆ R2 consists of all line segments pq, for
p, q ∈ P, that are contained in every Delaunay triangulation of P.

The following characterizes the edges of the Delaunay graph.

Lemma 6.17. The segment pq, for p, q ∈ P, is in the Delaunay graph of P if and only
if there exists a circle through p and q for which all other points of P are strictly
outside.

Proof. “⇒”: Let pq be an edge in the Delaunay graph of P, and let D be a Delaunay
triangulation of P. Then there exists a triangle ∆ = pqr in D, whose circumcircle C does
not enclose any point from P strictly inside.

If there is a point s on C such that rs intersects pq, then let ∆ ′ = pqt ̸= ∆ denote the
other triangle in D that is incident to pq (Figure 6.11a). Note that t must be on C, for
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p

q

r

s
C

∆

t

∆ ′

(a) Another point s ∈ ∂C.

p

q

r

C

∆

C ′

(b) Moving C away from s.

Figure 6.11: Characterization of edges in the Delaunay graph (I).

otherwise the circumcircle of ∆ ′ would enclose s. Now flipping the edge pq to rt yields
another Delaunay triangulation that does not contain the edge pq, in contradiction to
pq being an edge in the Delaunay graph. Therefore, there is no such point s.

Otherwise we can slightly change the circle C by moving away from r while keeping
p and q on the circle. As P is a finite point set, we can do such a modification without
catching another point from P with the circle. In this way we obtain a circle C ′ through
p and q such that all other points from P are strictly outside C ′ (Figure 6.11b).

“⇐”: Let D be a Delaunay triangulation of P. If pq is not an edge of D, there must
be another edge of D that crosses pq (otherwise, we could add pq to D and still have
a plane graph, a contradiction to D being a triangulation of P). Let rs denote the first
edge of D that the directed line segment −→pq intersects.

Consider the triangle ∆ of D that is incident to rs on the side that faces p (given
that rs intersects pq this is a well defined direction). By the choice of rs neither of the
other two edges of ∆ intersects pq, and p /∈ ∆◦ because ∆ is part of a triangulation of P.
The only remaining option is that p is a vertex of ∆ = prs. As ∆ is part of a Delaunay
triangulation, its circumcircle C∆ needs to be empty.

Consider now a circle C through p and q for which all other points are strictly outside.
Fixing p and q, we expand C towards r to eventually obtain the circle C ′ through p, q, r

(Figure 6.12a). Recall that r and s are on different sides of the line through p and
q. Therefore, s lies strictly outside C ′. Next fix p and r and expand C ′ towards s to
eventually obtain the circle C∆ through p, r, s (Figure 6.12b). Recall that s and q are on
the same side of the line through p and r. Therefore, q ∈ C∆, which is in contradiction
to C∆ being empty. It follows that there is no Delaunay triangulation of P that does not
contain the edge pq.

The Delaunay graph is useful to prove uniqueness of the Delaunay triangulation in
case of general position.

Corollary 6.18. Let P ⊂ R2 be a finite set of points in general position (no four points
of P are cocircular). Then P has a unique Delaunay triangulation.
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(a) Expanding C towards r.

p

q

r

s
C ′

C∆

∆

(b) Expanding C ′ towards s.

Figure 6.12: Characterization of edges in the Delaunay graph (II).

Exercise 6.19. Prove Corollary 6.18.

6.6 Every Delaunay Triangulation Maximizes the Smallest Angle

Why are we interested in Delaunay triangulations? It turns out that Delaunay triangu-
lations satisfy a number of interesting properties. Here we give a scientific explanation
for their nice looks.

Recall that when we compared a scan triangulation with a Delaunay triangulation of
the same point set in Figure 6.3, we claimed that the scan triangulation is “ugly” because
it contains many long and skinny triangles. The triangles of the Delaunay triangulation,
at least in this example, look much nicer, that is, much closer to an equilateral triangle.
One way to quantify this “niceness” is to look at the angles that appear in a triangulation:
If all angles are large, then all triangles are reasonably close to an equilateral triangle.
Indeed, we will show that Delaunay triangulations maximize the smallest angle among
all triangulations of a given point set. This is not saying that there are no long and
skinny triangles in a Delaunay triangulation. But if there is one, then the small angle
is inherent: there would exist at least as skinny triangle in every triangulation of the
point set.

Every triangulation T of P induces an angle sequence A(T) = (θ1, θ2, . . . , θ3m) which
lists the measures of interior angles of all T ∈ T, sorted increasingly so that 0 < θ1 ⩽
θ2 ⩽ · · · ⩽ θ3m < π. Here m is the number of triangles, which is a constant determined
by P; see Lemma 6.4. Let T,T ′ be two triangulations of P. We say that A(T) < A(T ′)
if there is some i for which θi < θ ′

i and θj = θ ′
j, for all j < i. (This is nothing but the

lexicographic order on angle sequences.) We write A(T) ⩽ A(T ′) if A(T) < A(T ′) or
A(T) = A(T ′).

Theorem 6.20. Let P ⊆ R2 be a finite set of points in general position (not all collinear
and no four cocircular). Let D∗ be the unique Delaunay triangulation of P, and let
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T be any triangulation of P. Then A(T) ⩽ A(D∗).

In particular, D∗ maximizes the smallest angle among all triangulations of P.

α1

α4

α2α1

α3

α2

α4 α3

p

q

r

s

(a) Four cocircular points and the
induced eight angles.

α1

α4

α2α1
α3

α2

α4 α3

(b) The situation before a flip.

Figure 6.13: Angle-optimality of Delaunay triangulations.

Proof. We know that T can be transformed into D∗ through the Lawson flip algorithm,
and we are done if we can show that each flip lexicographically increases the angle
sequence. Recall that a flip involves two triangles and thus effectively expels six angles
from the sequence and injects another six. We claim that the minimum of the six new
angles is strictly larger than the minimum of the six old angles. This claim, once proven,
would imply that the sequence increases lexicographically: Before flipping, let 0 < θ < π

be the minimum of the six old angles and i ∈ {1, . . . , 3m} be the last position that the
value occurs in the sequence; after flipping, all values at positions j < i shall persist
whereas the value at position i shall strictly increase.

Next we proceed to show the claim. Let us first look at the situation of four cocircular
points; see Figure 6.13a. The inscribed angle theorem (a generalization of Thales’
Theorem, stated below as Theorem 6.21) tells us that the eight depicted angles come in
four equal pairs. For instance, the angles labeled α1 at s and r are angles on the same
side of the chord pq of the circle.

In our situation, however, no four points are cocircular. When we perform a Lawson
flip, the picture is as in Figure 6.13b where we are about to replace the solid with the
dashed diagonal. Here we use under- and over-lines to suggest the relation between
angles; angle α (repectively α) is strictly smaller (respectively larger) than α. At the
flip, the six old angles are

α1 + α2, α3, α4, α1, α2, α3 + α4,

and the six new angles are

α1, α2, α3, α4, α1 + α4, α2 + α3.
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Now, every new angle is larger than some old angle:

α1 > α1,

α2 > α2,

α3 > α3,

α4 > α4,

α1 + α4 > α4,

α2 + α3 > α3.

So the minimum of the new angles is strictly larger than the minimum of the old angles,
as claimed.

Theorem 6.21 (Inscribed Angle Theorem). Let pq be a chord on a circle C. Then \prq
stays constant when the point r moves along any of the two arcs between p and q.

p

q

r

s

t

C

2θ

θ

θ

π− θ

c

π+ θ

Figure 6.14: The Inscribed Angle Theorem with θ := \prq.

Proof. Without loss of generality we may assume that c is located to the left of or on
the oriented line pq.

Consider first the case that the triangle ∆ = pqr

contains c. Then ∆ can be partitioned into three trian-
gles: pcr, qcr, and cpq. All three triangles are isosce-
les, because two sides of each form the radius of C. De-
note α = \prc, β = \crq, γ = \cpq, and δ = \pcq

(see the figure shown to the right). The angles we are
interested in are θ = \prq = α+ β and δ, and we will
show that δ = 2θ.

Indeed, the angle sum in ∆ is π = 2(α + β + γ)
and the angle sum in the triangle cpq is π = δ + 2γ.
Combining both yields δ = 2(α+ β) = 2θ.

p

q

r

C

δ

α

c

β

β

α γ
γ
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Next suppose that pqcr are in convex position and
r is to the left of or on the oriented line pq. Without
loss of generality let r be to the left of or on the oriented
line qc. (The case that r lies to the right of or on the
oriented line pc is symmetric.) Define α, β, γ, δ as
above and observe that θ = α−β. Again we show that
δ = 2θ.

The angle sum in the triangle cpq is π = δ + 2γ

and the angle sum in the triangle rpq is π = (α−β) +
α+γ+(γ−β) = 2(α+γ−β). Combining both yields
δ = π− 2γ = 2(α− β) = 2θ. p

q

r

C

δ

c

α

α
β

γ

γ

β

It remains to consider the case that r is to the right of the
oriented line pq. Consider the point r ′ that is antipodal to r

on C, and the quadrilateral Q = prqr ′. We are interested in
the angle ϕ of Q at r. By Thales’ Theorem the inner angles
of Q at p and q are both π/2. Hence the angle sum of Q is
2π = θ + ϕ + 2π/2 and so ϕ = π − θ. As shown in the first
two cases, θ is a constant and thus ϕ is also a constant.
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What happens in the case where the Delaunay triangulation is not unique? The
following still holds.

Theorem 6.22. Let P ⊆ R2 be a finite set of points, not all on a line. Every Delaunay
triangulation D of P maximizes the smallest angle among all triangulations T of P.

Proof. Let D be some Delaunay triangulation of P. We infinitesimally perturb the points
in P such that no four are on a common circle anymore. Then the Delaunay triangulation
becomes unique (Corollary 6.18). Starting from D, we keep applying Lawson flips until
we reach the unique Delaunay triangulation D∗ of the perturbed point set. Now we
examine this sequence of flips on the original unperturbed point set. All these flips must
involve four cocircular points (only in the cocircular case, an infinitesimal perturbation
can change “good” edges into “bad” edges that still need to be flipped). But as Figure 6.13
(a) easily implies, such a “degenerate” flip does not change the smallest of the six involved
angles. It follows that D and D∗ have the same smallest angle, and since D∗ maximizes
the smallest angle among all triangulations T (Theorem 6.20), so does D.

6.7 Constrained Triangulations (not covered in 2024)

Sometimes one would like to have a Delaunay triangulation, but certain edges are al-
ready prescribed. Of course, one cannot expect to be able to get a proper Delaunay
triangulation where all triangles satisfy the empty circle property. But it is possible to
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obtain some triangulation that comes as close as possible to a proper Delaunay triangu-
lation, given that we are forced to include the edges in E. Such a triangulation is called
a constrained Delaunay triangulation, a formal definition of which follows.

Let P ⊆ R2 be a finite point set and G = (P, E) a geometric graph with vertex set P

and straight-line edges E. A triangulation T of P is said to be a constrained Delaunay
triangulation with respect to G if it contains all edges in E and, for every triangle ∆ ∈ T,

The circumcircle of ∆ does not enclose any point q ∈ P visible from ∆◦. A
point q ∈ P is visible from ∆◦ if there exists a point p ∈ ∆◦ such that the line
segment pq does not cross any e ∈ E. We can thus imagine the line segments
of E as “blocking the view”.

For illustration, consider the simple polygon and its constrained Delaunay triangula-
tion shown in Figure 6.15, where the thick edges are prescribed. The circumcircle of the
shaded triangle ∆ contains a lot of points in its interior, but that does not matter since
the points are blocked by the edge e and are thus invisible from ∆◦.

∆
e

Figure 6.15: Constrained Delaunay triangulation of a simple polygon.

Theorem 6.23. For every finite point set P and every plane graph G = (P, E), there
exists a constrained Delaunay triangulation of P with respect to G.

Exercise 6.24. Prove Theorem 6.23. Also describe a polynomial algorithm to construct
such a triangulation.

Questions

23. What is a triangulation? Provide the definition and prove a basic property: every
triangulation with the same set of vertices and the same outer face has the same
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number of triangles.

24. What is a triangulation of a point set? Give a precise definition.

25. Does every point set (not all points on a common line) have a triangulation?
You may, for example, argue with the scan triangulation.

26. What is a Delaunay triangulation of a set of points? Give a precise definition.

27. What is the Delaunay graph of a point set? Give a precise definition and a
characterization.

28. How can you prove that every set of points (not all on a common line) has a
Delaunay triangulation? You can for example sketch the Lawson flip algorithm
and the Lifting Map, and use these to show the existence.

29. When is the Delaunay triangulation of a point set unique? Show that general
position is a sufficient condition. Is it also necessary?

30. What can you say about the “quality” of a Delaunay triangulation? Prove
that every Delaunay triangulation maximizes the smallest interior angle in the
triangulation, among the set of all triangulations of the same point set.
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Chapter 7

Incremental Construction of Delaunay
Triangulation

We have learned about the Lawson flip algorithm which computes a Delaunay trian-
gulation of a given n-point set P ⊆ R2 by performing O(n2) flips. With some care,
the algorithm can be implemented to run in O(n2) time. On the other hand, we have
also seen in an exercise that certain point sets require Ω(n2) flips, meaning that the
worst-case running time is Θ(n2).

Here we will present a different, randomized algorithm which runs in O(n logn)
time in expectation. (The probability comes from the random choices made by the
algorithm, not from the input P.) Throughout we assume general position (no three
points collinear and no four points cocircular), so that the Delaunay triangulation is
unique by Corollary 6.18. There are techniques to deal with non-general position, but
we will leave that out.

7.1 Incremental construction

To avoid special cases, we augment the set P with three “far-out” points a, b and c. For
now suffice it to say that the huge triangle abc contains P with abundant space cushion.

The idea is to start from the triangle abc and insert other points one after another
according to a uniformly random order (p1, p2, . . . , pn) of P. For 1 ⩽ s ⩽ n, we denote
Ps = {p1, . . . , ps} and P+

s = {a, b, c} ∪ Ps. Suppose that in the first s − 1 rounds we had
built the Delaunay triangulation Ds−1 of P+

s−1. At round s we shall insert point ps and
repair the structure to get the Delaunay triangulation Ds of P+

s . In the end, we obtain
the Delaunay triangulation Dn of P+

n .
From Dn we want to “read off” the Delaunay triangulation of P by simply ignoring

the three artificial points. For this to work, the convex hull boundary ∂conv(P) should
be respected by Dn. It can be ensured by placing a, b, c far enough so that they are not
enclosed by the empty circumcircles going through adjacent convex hull vertices. But
practically speaking, a simpler approach is to choose a = (−∞,−∞), b = (∞,−∞) and
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c = (0,∞) and extend the algebra to handle symbols −∞,∞.
Below is the outline of round s, which will be fleshed out in subsequent sections. In

our figures, we suppress the artificial points since they are merely a technicality.

(a) Find the triangle ∆ ∈ Ds−1 that contains ps, and split it into three triangles by
connecting ps with the three vertices of ∆. We now have a triangulation T of P+

s .
(Figure 7.1a)

(b) Perform Lawson flips on T until we obtain the Delaunay triangulation Ds. (Figure
7.1b)

ps
∆

(a)

ps ps

ps ps

(b)

Figure 7.1: Insert ps to ∆ ∈ Ds−1 and perform Lawson flips.

7.2 Organizing the Lawson flips

First off, let us implement (b) in the outline. It turns out that the Lawson flips proceed
quite systematically.
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Lemma 7.1. The following invariants hold at any particular moment in round s:

(i) Every edge incident to ps must belong to Ds; in particular, it cannot be flipped
away in the rest of round s.

(ii) Every applicable Lawson flip at this moment involves some triangle psuv and
some triangle uvw ∈ Ds−1. It replaces them with triangles psuw and psvw,
both incident to ps, thus the degree of ps increases by one.

Proof. We argue by strong induction over time. As the base case, we consider the
moment before any flip is performed.

(i) Let us take any incident edge psw, where w must be a vertex of ∆. Since ∆ ∈ Ds−1,
its circumcircle C encloses nothing but the new point ps. We can thus shrink C

to an empty circle C ′ passing through ps and w only, see Figure 7.2a. So the edge
psw must be in Ds by Lemma 6.17.

(ii) Only the three edges of ∆ are potentially flippable, since they are the only edges
whose incident triangles have changed and form a convex quadrilateral. So any
next flip must adhere to the claimed format.

ps

w

∆

C ′
C

(a)

ps

C ′

w

C

(b)

Figure 7.2: Newly created edges incident to ps are in the Delaunay graph

Next we consider the moment after some flip(s) have been performed. Denote by
R ⊆ R2 the union of all triangles incident to ps right now. Note that R is a star-shaped
polygon. One can see by inductively applying (ii) that the affected region of the previous
flips is restricted in R. In other words, all triangles outside R are not yet touched, meaning
they must belong to Ds−1.

(i) Let us take the incident edge psw generated by the last flip. By induction hy-
pothesis (ii), this flip destroys exactly one triangle in Ds−1. Its circumcircle C

contains ps only, and shrinking it yields an empty circle C ′ through ps and w, see
Figure 7.2b. Thus psw must be in Ds by Lemma 6.17.
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(ii) As established in (i), all edges incident to ps are not flippable. So any flippable
edges has to be a boundary edge of polygon R, say uv. On one side it is incident to
some triangle psuv (by definition of R); on the other side it is incident to a triangle
uvw ∈ Ds−1 (as we argued above).

This completes the induction.

The lemma suggests that we can maintain a queue of potentially flippable edges that
we process in turn. Initially the queue contains only the three edges of ∆. In each
step, we remove an edge uv from the queue. If its two incident triangles psuv and
uvw are not locally Delaunay, then we perform the flip and push uw and vw to the
queue. Otherwise we simply discard it because it cannot become flippable in the future.
(Suppose to contradiction that it becomes flippable, then by Lemma 7.1 the flip must
involve psuv and some uvw ∈ Ds−1. But the two triangles are in place right now, so we
should have performed the flip right away.)

Corollary 7.2. Let ds := degDs
(ps) be the degree of vertex ps in the (graph of) triangu-

lation Ds. Then in round s we perform exactly ds−3 Lawson flips. Moreover, these
flips can be implemented to consume time only linear in ds. The total number of
triangles created in round s is 2ds − 3 (although some of them can be flipped away
within the same round).

Proof. By Lemma 7.1, every Lawson flip increases the number of edges incident to ps

by exactly one. So the number of flips is equal to the final degree ds minus the initial
degree 3. Each flip creates two new triangles, along with the initial three triangles we
get 2ds − 3 in total. Using the queue implementation discussed above, every flip needs
only a constant number of operations, so the total running time is linear in ds.

7.3 The History Graph

Let us get back to part (a) in the outline and specify how we find the triangle ∆ ∈ Ds−1

that contains the point ps. Doing this in the naïve way (checking all triangles) is not
a good idea, as it would then amount to Θ(n2) work throughout the whole algorithm.
Here is a smarter method, based on a data structure called history graph.

Definition 7.3. For 1 ⩽ s ⩽ n, the history graph Hs is a directed acyclic graph whose
nodes are all triangles ever been created in the first s rounds. Whenever the algo-
rithm splits a triangle ∆, we add a directed edge from ∆ to the three new triangles
(Figure 7.3a). Whenever the algorithm flips triangles ∆1, ∆2 to ∆ ′

1, ∆
′
2, we add

directed edges ∆i → ∆ ′
j for i, j ∈ {1, 2}. (Figure 7.3b)

The history graph Hs contains triangles of outdegrees 3, 2 and 0, where the ones with
zero outdegree are exactly the triangles of Ds. It can be built during the incremental
construction at asymptotically no extra cost; but it may need extra space to keeps all
triangles ever created.
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ps

u1

u2

u3

u1

u3

ps

u1

u2

ps

u2

u3

ps

(a)

ps

u

w

ps

u

v

u

v

w

v

ps

w

(b)

Figure 7.3: The history graph

Given Hs−1, we can search for the triangle ∆ ∈ Ds−1 that contains ps by starting
from the big triangle abc—it certainly contains ps—and tracking down a directed path
in Hs−1. If the current triangle still has outneighbors, we move on to the unique out-
neighbor containing ps (recall that we assume general position) and search iteratively.
If the current triangle has no outneighbors, it must be in Ds−1 and contains ps, so we
are done.

7.4 Analysis of the algorithm

The runtime analysis heavily exploits conditional expectations. Here is a quick refresher.
Let X, Y be two random variables in a finite probability space. When we “condition on”
variable X, what we mean is to “freeze” or “reveal” the outcome of X as a concrete value.
Consequently some randomness dissipates, and the distribution of Y is thus biased. In
general this distribution shall depend on the concrete X-value. For example, suppose we
sample a uniform permutation π of {1, 2, 3}, and define X = π(1) and Y = π(2). So Y by
itself is uniformly distributed over {1, 2, 3}. Conditioning on X shall make Y uniformly
distributed on {1, 2, 3} \ X instead.

The conditional expectation E(Y | X) is defined as the expectation of Y taken with
respect to this now-biased distribution. Hence E(Y | X) is a function of X in general. In
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our illustrative example,

E(Y | X) =


2.5, X = 1

2, X = 2

1.5, X = 3

 = 3−
X

2
.

It is easy to prove the so-called total expectation formula E(Y) = E[E(Y | X)], but
it might be more important to remember its interpretation. To compute E(Y), we first
partition the universe depending on the outcome of X. Then for each part, we compute
the expectation E(Y | X) individually, which are our “partial results”. Finally, we put
these pieces together by a weighted average. One can view this as a natural generalization
of elementary counting principle: To count the number of certain objects, we could
partition them into several types, count each type individually, and then sum them up.

Cost of Lawson flips. Recall from Corollary 7.2 that ds := degDs
(ps) captures the running

time of Lawson flips as well as the growth of history graph in round s. This leads us to
study the expected value of ds.

Lemma 7.4. E[ds] ⩽ 6 for all s.

Proof. Let us condition on the set Ps, i.e. we freeze the set of the first s points. Note that
the exact ordering of these points is not revealed, and remains uniformly random. In par-
ticular, ps is uniformly distributed in Ps. On the other hand, the Delaunay triangulation
Ds is no longer random because it is uniquely determined by Ps.

Hence E[ds | Ps] means “the expected degree of ps in the fixed graph Ds = Ds(Ps),
where the point ps is sampled from the fixed set Ps uniformly at random”.

Since Ds is a triangulation on s+3 points with triangular convex hull, it follows from
Lemma 6.4 that it has 3(s+ 3) − 6 edges. Excluding the three edges of the convex hull,
the total degree of all points in Ps is at most 2(3(s + 3) − 9) = 6s. This implies that
E[ds | Ps] ⩽ 6. The lemma follows by removing the condition via total expectation.

By combining the above lemmas, we can also prove the following bound on the
expected number of triangles created by the algorithm. Note that this is at the same
time a bound on the expected size of the history graph.

Corollary 7.5. The expected number of triangles ever created in n rounds is at most
9n + 1 = O(n). All the same, the expected running time of all Lawson flips in n

rounds is O(n).

Proof. Before inserting any points from the set P, we only have the artificial triangle
abc. During round s of the algorithm, we know from Corollary 7.2 that the number of
new triangles created is 2ds − 3. Combined with Lemma 7.4, the expected number of
created triangles in all n iterations is

1+ E

[
n∑

s=1

2ds − 3

]
= 1+

n∑
s=1

(2E[ds] − 3) ⩽ 1+ (2 · 6− 3)n = 9n+ 1.
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Note that we cannot say that every round creates at most 9 triangles; as there could
be very costly insertions with some probability. But the claim holds in expectation which
is enough to provide a linear expected runtime.

Cost of locating points. We proceed now to the most difficult part of the analysis: to
bound the time for finding the triangle in Hs−1 that contains ps. This is proportional
to the number of triangles in Hs−1 that contains ps. Hence let us take a closer look at
all the triangles in the history graph Hs−1.

Suppose a triangle ∆ was added to the graph in round r. If ∆ ∈ Dr then we call it
valid, as it survived the round that it was born. Otherwise we call it ephemeral, as it
got flipped away in the very same round it was born. To make the analysis possible, we
want to express the running time in terms of valid triangles only.

Observation 7.6. The number of triangles in Hs−1 that contains ps is proportional to
the number of valid triangles in Hs−1 whose circumcircle contains ps.

Indeed, recall from Lemma 7.1 that at every Lawson flip in some round r, one of the
replaced triangles is in Dr−1 (hence valid) and the other one was created in the current
round r (hence ephemeral). That is, a flip always destroys valid and ephemeral triangles
in pair. Therefore, for any ephemeral triangle ∆ ∈ Hs−1 that contains ps, we may charge
it to its partner ∆ ′, the valid triangle that was destroyed together with ∆. It is clear that
the triangle ∆ ′ is charged at most once. We also know from the condition of Lawson
flip that ∆, hence also ps, is contained in the circumcircle of ∆ ′. So the observation is
established.

Back to time analysis, let us introduce some handy random variables. For every
1 ⩽ r < s ⩽ n,

• τr = Dr \ Dr−1 consists of all triangles in Dr newly created in round r;

• φr,s is the number of triangles in τr whose circumcircle contains the point ps.

Then the observation implies that the searching time in round s is proportional to∑s−1
r=1 φr,s. This works since any valid triangle in Hs−1 that contains ps must be in

τr for some r < s.
Instead of bounding this cost for a particular round s, we try to bound the combined

cost over all rounds, i.e.

T :=

n∑
s=1

s−1∑
r=1

φr,s =

n∑
r=1

n∑
s=r+1

φr,s

where we exchanged the summations in the second equality.

Lemma 7.7. It holds that E[T ] = O(n logn).
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Proof. Using linearity of expectation, we have

E[T ] =

n∑
r=1

n∑
s=r+1

E[φr,s].

Observe that the variables φr,r+1, φr,r+2, . . . , φr,n are identically distributed due to
symmetry. To see this more clearly, recall that φr,s is defined in terms of τr and ps. Let
us condition on (i.e. freeze) the ordering (p1, . . . , pr). Then τr is fixed, whereas each of
pr+1, pr+2, . . . , pn is uniformly distributed over the fixed set P \ {p1, . . . , pr}. It follows
that the variables of interest are identically distributed under the condition; but we may
remove the condition nonetheless via total probability.

Hence we may simplify the expectation as

E[T ] =

n∑
r=1

(n− r) · E[φr,r+1] (7.8)

It remains to analyze the expected value E[φr,r+1] for every particular 1 ⩽ r ⩽ n.
Let Γ consist of all triangles in Dr whose circumcircle contains pr+1. This is nothing but
“all triangles in Dr that are destroyed in round r+ 1”. From Lemma 7.1 we immediately
have |Γ | = dr+1 − 2 (we also count the triangle that is split into three).

On the other hand, by definition we may rewrite φr,r+1 =
∑

∆∈Γ X∆. Here X∆ is the
indicator variable for the event ∆ /∈ Dr−1, which takes value 1 if the event happens and
value 0 otherwise. In order to apply linearity of expectation, the summation must be
“derandomized”; that is, it should not run over a random set Γ . Hence we condition on
(i.e. freeze) the set Pr as well as the point pr+1. We stress that the concrete ordering of
Pr is not revealed. Nevertheless, the Delaunay triangulation Dr is uniquely determined,
so is Γ . Therefore,

E[φr,r+1 | Pr, pr+1] =
∑
∆∈Γ

E[X∆ | Pr, pr+1]

=
∑
∆∈Γ

Pr[∆ ̸∈ Dr−1 | Pr, pr+1]

⩽
∑
∆∈Γ

3

r

=
3

r
· |Γ | = 3

r
· (dr+1 − 2)

To see the inequality, observe that if a triangle ∆ ∈ Γ is not contained in Dr−1, then it
must be created in round r. In particular, pr needs to be its vertex by Lemma 7.1. As pr

is uniformly distributed over the set Pr (under conditions Pr, pr+1), the event happens
with probability at most 3/r. (“At most” because some vertex of ∆ might be the artificial
points a, b or c; in that case pr cannot hit it).
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Now we remove the condition via total expectation and obtain

E[φr,r+1] ⩽
3

r
· (E[dr+1] − 2) ⩽

12

r
, (7.9)

where we used Lemma 7.4 in the last step. We are finally able to plug (7.9) back into (7.8)
to conclude the proof:

E[T ] ⩽
n∑

r=1

12(n− r)

r
⩽ 12n

n∑
r=1

1

r
= O(n logn).

The main theorem. Having the previous lemmas at hand, assembling our main result is
now straightforward.

Theorem 7.10. The Delaunay triangulation of a set P of n points in the plane can be
computed in O(n logn) expected time, using O(n) expected space.

Proof. The correctness of the algorithm follows from the correctness of the Lawson flip
algorithm, and from the fact that we perform all possible Lawson flips in each round.
For the space consumption, only the history graph might use more than linear space,
but Lemma 7.5 bounds its expected size by O(n), so the claim follows.

For the running time, Lemma 7.7 bounds the expected time spent on point location
(over all n rounds) by O(n logn), and Lemma 7.5 bounds the expected time spent on
Lawson flips (over all n rounds) by O(n). So the algorithm runs in O(n logn) time in
expectation.

Exercise 7.11. For a sequence of n pairwise distinct numbers y1, . . . , yn consider the
sequence of pairs (min{y1, . . . , yi},max{y1, . . . , yi})i=0,1,...,n (min ∅ := +∞,max ∅ :=
−∞). How often do these pairs change in expectation if the sequence is permuted
randomly, each permutation appearing with the same probability? Determine the
expected value.

Exercise 7.12. Given a set P of n points in convex position represented by the clockwise
sequence of the vertices of its convex hull, provide an algorithm to compute its
Delaunay triangulation in O(n) time.

Questions

31. What conditions should the three “far-out” points a, b, c satisfy? Explain the
reason.

32. Describe the algorithm for the incremental construction of DT(P): how do we
find the triangle containing the point ps to be inserted into Ds−1? How do we
transform Ds−1 into Ds? How many steps does the latter transformation take?

33. What are the two types of triangles that the history graph contains?
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Voronoi Diagrams

8.1 The Post Office Problem

Suppose there are n post offices in a city, and a citizen would like to know which one is
closest to him.1 Modeling the city in the plane, we think of the post offices as a point
set P = {p1, . . . pn} ⊂ R2, and the query location as a point q ∈ R2. The task is to find
pi ∈ P that minimizes ∥pi − q∥.

Figure 8.1: Closest post offices for various query points.

While the post offices P are considered stable, the query point q is not known in
advance and can be changing frequently. Therefore, our long term goal is to come up
with a (static) data structure on top of P that allows to answer any possible query
efficiently.

As there can be only n possible answers, the idea is to apply the so-called locus
approach : we subdivide the query space (in our case R2) into n regions according to
the answer; the i-th region contains all points for which pi is the closest. The resulting
structure is called a Voronoi diagram ; see Figure 8.2 for an example.

1Another—possibly historically more accurate—way to think of the problem: You want to send a letter
to a person living in the city. For this you should know his zip code, which is the code of the post office
closest to him.
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Figure 8.2: The Voronoi diagram of a point set.

Let us remark right away that such approach works for a variety of distance functions
and spaces [2, 7]. So the Voronoi diagram can be viewed as a broadly applicable paradigm.
Without further qualification, the underlying distance function is Euclidean.

What exactly does a Voronoi diagram look like? As a warmup, suppose there are only
two post offices: P = {p, p ′}. Then the plane subdivides into two regions delimited by
the bisector of p and p ′, i.e. the points that are equidistant to p and p ′. The following
proposition characterizes the shape of the bisector.

Proposition 8.1. The bisector of two distinct points p, p ′ ∈ Rd is a hyperplane (a line
when d = 2). It is orthogonal to the line pp ′ and goes through the midpoint of pp ′.

Proof. Let us understand points as column vectors, so for any points a = (a1, . . . , ad)

and b = (b1, . . . , bd) in Rd we have the identity ∥a−b∥2 =
∑d

i=1(ai−bi)
2 =

∑d
i=1 a

2
i −

2
∑d

i=1 aibi +
∑d

i=1 b
2
i = ∥a∥2 − 2a⊤b+ ∥b∥2.

The bisector of p, p ′, by definition, consists of all points x ∈ Rd such that

∥p− x∥ = ∥p ′ − x∥ ⇐⇒ ∥p− x∥2 = ∥p ′ − x∥2

⇐⇒ ∥p∥2 − 2p⊤x+ ∥x∥2 = ∥p ′∥2 − 2p ′⊤x+ ∥x∥2

⇐⇒ 2(p ′ − p)⊤x = ∥p ′∥2 − ∥p∥2.
As p ̸= p ′, this is the equation of a hyperplane orthogonal to the vector p ′−p (hence the
line pp ′). One can easily verify that the midpoint x = (p+p ′)/2 fits in the equation.

Let us then denote by H(p, p ′) the closed halfspace bounded by the bisector of p, p ′

that contains p. In this chapter we only study R2, so H(p, p ′) is a halfplane (Figure 8.3).
As we noted earlier, when there are only two post offices p and p ′, the plane is subdivided
by H(p, p ′) and H(p ′, p).

Exercise 8.2.

(a) What is the bisector of a line ℓ and a point p ∈ R2 \ ℓ, that is, the set of all
points x ∈ R2 with ||x− p|| = minr∈ℓ ||x− r||?
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p

p ′

H(p, p ′)

Figure 8.3: The bisector of two points in R2.

(b) For two distinct points p, p ′ ∈ R2, what is the region that contains all points
whose distance to p is exactly twice their distance to p ′?

8.2 Voronoi Diagram

Understanding the situation for two points essentially teaches us the law for the general
case. In the following we formally define and study the Voronoi diagram for a given
point set P = {p1, . . . , pn} ⊂ R2.

Definition 8.3. For i ∈ {1, . . . , n}, the Voronoi cell of point pi is defined as

VP(i) :=
{
q ∈ R2 : ∥q− pi∥ ⩽ ∥q− pj∥, ∀j ∈ {1, . . . , n}

}
.

Observe that (1) each Voronoi cell is non-empty since pi ∈ VP(i); (2) the interiors
of the cells are disjoint; and (3) the cells cover the entire plane. So these cells form a
subdivision of the plane. It turns out that every cell looks quite regular:

Proposition 8.4. For every i ∈ {1, . . . , n},

VP(i) =
⋂
j̸=i

H(pi, pj) .

In particular, it is a convex set whose boundary is piecewise linear (i.e. consisting
of segments, rays or lines).

Proof. For every j ̸= i, we have ∥q − pi∥ ⩽ ∥q − pj∥ if and only if q ∈ H(pi, pj).
Hence VP(i) is exactly the intersection of these halfplanes (which are all convex); this is
a convex set with piecewise linear boundary.

Definition 8.5. The Voronoi Diagram VD(P) of a set P = {p1, . . . , pn} of points in R2 is
the subdivision of the plane induced by the Voronoi cells VP(i), for i = 1, . . . , n. We
denote by VV(P) the set of vertices, by VE(P) the set of edges, and by VR(P) the
set of regions/cells.

Lemma 8.6. Every vertex v ∈ VV(P) satisfies the following statements:

(a) v is incident to at least three cells from VR(P);
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(b) v is the common endpoint of at least three edges from VE(P);

(c) v is the center of an empty circle C(v) through at least three points from P;
“empty” means that no point from P is strictly enclosed by C(v).

Proof. Consider a vertex v ∈ VV(P). As all Voronoi cells are convex, k ⩾ 3 of them
must be incident to v. This proves a) and b).

Without loss of generality let these incident cells be VP(1), . . . ,VP(k) in circular order;
see Figure 8.4. Since v ∈ VP(i) for all i ⩽ k, the points p1, . . . , pk are simultaneously
closest to v. (Any pj where j > k is strictly farther away; for otherwise v should have
been incident to VP(j), too.) With r denoting this smallest distance, we have ∥v−pi∥ =
r < ∥v− pj∥ for 1 ⩽ i ⩽ k < j ⩽ n. In other words, p1, . . . , pk are on an empty circle of
radius r centered at v. This proves (c).

v

e2

ek−1

eke1

VP(k)

VP(1)

VP(2)

. . .

Figure 8.4: Voronoi cells around v.

Corollary 8.7. If P is in general position (no four points cocircular), then every vertex
v ∈ VV(P) satisfies the following statements:

(a) v is incident to exactly three cells from VR(P);

(b) v is the common endpoint of exactly three edges from VE(P);

(c) v is the center of an empty circle C(v) through exactly three points from P.

Lemma 8.8. There is an unbounded Voronoi edge shared by VP(i) and VP(j), if and
only if pipj ∩ P = {pi, pj} and pipj ⊆ ∂conv(P).

Proof. Denote by bi,j the bisector of pi and pj, and let D denote the family of circles
with center on bi,j and passing through pi, pj. It is not hard to see that the following
statements are equivalent:

• There is an unbounded Voronoi edge shared by VP(i) and VP(j).

• There is a ray ρ ⊂ bi,j such that for all r ∈ ρ and k ̸∈ {i, j}, we have ||r − pk|| >

||r− pi|| = ||r− pj||.
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pi pj

ρ

H

r0

r

bi,j

C

D

Figure 8.5: The correspondence between pipj appearing on ∂conv(P) and the existence
of a divergent family of empty disks.

• There is a ray ρ ⊂ bi,j such that every circle D ∈ D with center on ρ is empty.
(Figure 8.5)

Assuming the last statement, we have two observations. First, no point from P is on
the segment pipj except pi, pj. Second, the open halfplane H bounded by line pipj and
containing the infinite part of ρ contains no point from P. Therefore pipj appears on
∂conv(P).

Conversely, assume pipj ∩ P = {pi, pj} and pipj ⊆ ∂conv(P). Then one of the open
halfplanes H bounded by line pipj contains no point from P. Since all points from
P \ {pi, pj} are strictly away from the segment pipj, there exists an empty circle C ∈ D

provided its center r0 is sufficiently far away from the line. Let ρ ⊆ bi,j ∩ H be a ray
emanating from r0. Any circle D ∈ D centered on ρ encloses only a subset of H∪C. As
neither H nor C contains any point from P, the circle D is empty. This establishes the
last statement, and the proof is complete.

8.3 Duality With Delaunay Triangulations

A straight-line dual of a plane graph G is a geometric graph G ′ defined as follows: For
each face of G, designate a point in R2 as its representative. Connect two representatives
if their corresponding faces are adjacent in G.

Note that the notion depends heavily on the plane embedding G (the word “face”
does not make sense for an abstract G), as well as the choice for representatives. In
general, G ′ may have crossings.

Every Voronoi diagram can be treated as a plane graph. It is particularly natural to
pick pi as the representative for face VP(i). With this choice, the dual has no crossing
and satisfies interesting properties. We thus call it the straight-line dual of a Voronoi
diagram.
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Theorem 8.9 (Delaunay [3]). Let P ⊂ R2 be a set of n ⩾ 3 points in general position
(no three points collinear and no four points cocircular). The straight-line dual of
VD(P) is exactly the (unique) Delaunay triangulation of P.

Proof. We write G := VD(P) (understood as a plane graph). Denote by G ′ its straight-
line dual, and by D the Delaunay triangulation of P. Note that V(G ′) = P = V(D). We
aim to show E(G ′) = E(D).

First we argue E(G ′) ⊆ E(D). By construction of the dual, every edge pipj ∈ E(G ′)
originates from adjacent cells VP(i), VP(j) in G.

• If the cells share an unbounded Voronoi edge, then by Lemma 8.8, pipj is on
∂conv(P) which is also contained in E(D).

• Otherwise, the cells share a bounded Voronoi edge uv. By Corollary 8.7(b)(c), the
Voronoi vertex v is incident to exactly three Voronoi cells VP(i), VP(j) and some
VP(k), and the circle through pi, pj, pk is empty. In particular pipj is in E(D) by
Lemma 6.17.

Conversely we argue E(G ′) ⊇ E(D). Any edge in E(D) appears in some Delaunay
triangle pipjpk with empty circumcircle. The center v of the circle thus has pi, pj, pk as
its closest points. So v must be incident to the cells VP(i), VP(j), VP(k). Therefore, by
construction of the dual we know that pipj, pjpk, pkpi are edges in E(G ′).

Figure 8.6: The Voronoi diagram of a point set and its dual Delaunay triangulation.

As a remark, the proof in fact establishes a correspondence between Voronoi vertices
and Delaunay triangles: Given a Voronoi vertex, the three points from its incident
cells form a Delaunay triangle; vice versa, given a Delaunay triangle, the center of its
circumcircle is a Voronoi vertex.

It is not hard to remove the general position assumption in Theorem 8.9. In this
case, a Voronoi vertex of degree k > 3 corresponds in the dual to a convex k-gon with
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cocircular vertices. If we triangulate all these polygons in the dual arbitrarily, then we
obtain a Delaunay triangulation of P. In fact, the dual of the Voronoi diagram for points
in non-general position turns out to be equal to the Delaunay graph.

Corollary 8.10. |VE(P)| ⩽ 3n− 3−h and |VV(P)| ⩽ 2n− 2−h, where h := |P∩∂conv(P)|
is the number of points on the convex hull boundary.

Proof. We assume general position (otherwise the proof can be adapted easily). Every
Voronoi edge corresponds to an edge in the Delaunay triangulation. Every Voronoi
vertex corresponds to a triangle in the Delaunay triangulation. So the counts follow
from Lemma 6.4.

Corollary 8.11. For a set P ⊂ R2 of n points in general position, the Voronoi diagram
of P can be constructed in expected O(n logn) time and O(n) space.

Proof. We have seen that a Delaunay triangulation for P can be obtained using ran-
domized incremental construction within the asserted time and space bounds. Using the
correspondence between Voronoi vertices/edges and Delaunay triangles/edges, we may
generate the Voronoi diagram in O(n) additional time and space.

Exercise 8.12. Consider the Delaunay triangulation T for a set P ⊂ R2 of n ⩾ 3 points
in general position. Prove or disprove:

(a) Every edge of T intersects its dual Voronoi edge.

(b) Every vertex of VD(P) is contained in its dual Delaunay triangle.

Exercise 8.13. Given a Voronoi diagram of some unknown point set P, can you com-
pute P along with a Delaunay triangulation in linear time?

8.4 A Lifting Map View

Recall that the lifting map ℓ : (x, y) 7→ (x, y, x2+y2) raises a point in the plane vertically
to the unit paraboloid U in R2. We used it in Section 6.3 to prove that the Lawson Flip
Algorithm terminates. Interestingly, it also plays a role here with Voronoi diagrams.

For p ∈ R2 let Hp ⊆ R3 be the plane tangent to U at ℓ(p). We denote by hp(q) the
vertical projection of a point q ∈ R2 onto the plane Hp (see Figure 8.7).

Lemma 8.14. ∥ℓ(q) − hp(q)∥ = ∥p− q∥2, for any points p, q ∈ R2.

Exercise 8.15. Prove Lemma 8.14. Hint: First determine the equation of the plane
Hp tangent to U at ℓ(p).

Theorem 8.16. Let H+
p be the closed halfspace above plane Hp. Define H :=

⋂
p∈P H+

p .
Then the vertical projection of ∂H onto the xy-plane forms the Voronoi diagram of
P. That is, the faces/edges/vertices of ∂H project to Voronoi cells/edges/vertices.

Proof. Consider a point q ′ on the face defined by the plane Hp. Let q ∈ R2 be its
vertical projection onto the xy-plane, so q ′ = hp(q). Note that ℓ(q) is above q ′, while
all planes other than Hp are below q ′, thus ∥ℓ(q)−hp(q)∥ ⩽ ∥ℓ(q)−hr(q)∥ for all r ∈ P.
By Lemma 8.14, p is the closest point from P to q.
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p

U

`(p)

q

`(q)

hp(q)

Hp

Figure 8.7: A cross section of the lifting map interpretation for Voronoi diagram.

8.5 Planar Point Location

One last bit is still missing in order to solve the post office problem optimally.

Theorem 8.17. Given a triangulation T for a set P ⊂ R2 of n points, one can build
in O(n) time and space a data structure which allows for finding in O(logn) time
a triangle ∆ ∈ T that contains any given query point q ∈ conv(P).

The data structure is known as Kirkpatrick’s hierarchy. Before discussing it in
detail, let us put things together to solve the post office problem.

Corollary 8.18 (Nearest Neighbor Search). Given a set P ⊂ R2 of n points, one can build
in expected O(n logn) time an O(n) size data structure which allows for reporting
in O(logn) time a nearest point p ∈ P to any given query point q ∈ conv(P).

Proof. First we construct the Voronoi diagram VD(P) in expected O(n logn) time; see
Corollary 8.11. It has exactly n convex cells. Truncate every unbounded cell by ∂conv(P)
into a bounded one, since we are concerned with query points within conv(P) only.2 Now
that all the cells are convex polygons, we may triangulate all of them in overall O(n)
time (the procedure only traverses each edge twice, and the number of edges is O(n)
by Corollary 8.10). We put a label “pi” on all triangles in cell Vp(i). Now we have a
triangulation of the point set P. Apply Theorem 8.17 to build Kirkpatrick’s hierarchy,
which takes O(n) time and space.

When we receive a query point q ∈ conv(P), we use the data structure to find in
O(logn) time a triangle containing q. Output the label of the triangle, which is exactly
the nearest point from P to q.

2We even know how to decide in O(logn) time whether or not a given point lies within conv(P), see
Exercise 5.29.
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8.6 Kirkpatrick’s Hierarchy

We will now develop a data structure for point location in a triangulation, as described
in Theorem 8.17. For simplicity we assume that the triangulation T we work with is
maximal planar, that is, the outer face is a triangle as well. This can easily be achieved
by wrapping a huge triangle ∆ around T and triangulating the vacuum in between ∆ and
T in linear time (how?).

The main idea for the data structure is to construct a sequence

T = T0, T1, . . . , Th−1, Th = {∆}

of triangulations such that the vertices of Ti are a proper subset of the vertices of Ti−1,
for i = 1, . . . , h. Hence the triangulations get coarser as we move forward.

Given a query point q, we hunt for a triangle in T0 that contains q by tracing the
sequence backwards:

• Start from the big triangle ∆ ∈ Th which certainly contains q;

• Then find a triangle in the finer triangulation Th−1 that contains q;

• ...

• Finally, find a triangle in the target triangulation T0 that contains q.

Locating the query point.

1. Let Th := ∆.

2. For each i = h, . . . , 1, examine all triangles in Ti−1 that intersects Ti, until we find
a triangle Ti−1 that contains q.

3. Output T0.

Proposition 8.19. The search procedure can be implemented to use at most 3ch orien-
tation tests, provided every triangle in Ti intersects at most c triangles in Ti−1.

Proof. In the data structure we link each triangle in Ti to at most c intersecting triangles
in Ti−1. With this implementation, step 2 examines at most ch triangles in total. For
each triangle, three orientation tests suffice to determine if it contains q.

We will show next how to construct the sequence so that both c and h are small.
Concretely, we will make c a constant and h = O(logn).

Thinning. Suppose we have Ti−1 at hand and want to construct Ti by removing several
vertices and re-triangulating. Note that removing a vertex p (and its incident edges)
from Ti−1 creates a hole, which is a star-shaped polygon with p being its star-point.

Lemma 8.20. A star-shaped polygon, given as a sequence of n ⩾ 3 vertices and a
star-point, can be triangulated in O(n) time.
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Exercise 8.21. Prove Lemma 8.20.

As a side remark, the kernel of a simple polygon, that is, the (possibly empty) set
of all star-points, can be constructed in linear time as well [8].

Since we want h to be small, we had better remove a decent number of vertices.
These vertices should have low degrees, since the degree is a natural upper bound for
the number of triangles in Ti−1 intersecting the triangles after re-triangulation.

Our working plan is thus to remove a constant proportion of independent (i.e. pair-
wise non-adjacent) low-degree vertices. The following lemma asserts the existence of
such a set of vertices in every triangulation.

Lemma 8.22. In every triangulation of n ⩾ 3 points, there is a set of at least ⌈n/18⌉
independent vertices whose degrees are at most 8. Moreover, such a set can be
found in O(n) time.

Proof. Let G = (V, E) denote the graph of the triangulation, which we treat as an
abstract planar graph. We may assume without loss of generality that G is maximal
planar. (Otherwise use Theorem 2.33 to combinatorially triangulate G arbitrarily in
linear time. Any independent set in the resulting graph is independent in the old graph,
and the degree of a vertex can only increase.)

For n = 3 the statement is trivially true. Next assume n ⩾ 4. The total degree of
G is

∑
v∈V degG(v) = 2|E| < 6n by Corollary 2.5. On the other hand, G is 3-connected

by Theorem 2.30, so every vertex has degree at least 3. Let W ⊆ V denote the set of
vertices of degree at most 8. Then we have

6n >
∑
v∈V

degG(v) =
∑
v∈W

degG(v) +
∑

v∈V\W

degG(v)

⩾ 3|W|+ 9(n− |W|) = 9n− 6|W|,

hence |W| > n/2.
Let us pick an independent set greedily: In each iteration, pick a remaining vertex

in W, then eliminate itself and its neighbors. Repeat until all vertices in W have been
eliminated.

By construction, the picked vertices are independent and have degrees at most 8.
Each iteration eliminates at most nine vertices (the picked vertex and its at most eight
neighbors) from W, so upon termination we have picked at least |W|/9 ⩾ ⌈n/18⌉ vertices.

Regarding the running time, if G is represented by adjacency lists, for example, we
can obtain the neighborhood of any vertex v ∈W in degG(v) = O(1) time. As there are
at most |W| iterations, the greedy procedure runs in overall O(n) time.

Proof of Theorem 8.17. We construct the hierarchy T0, . . .Th iteratively. Let T0 = T,
and derive Ti from Ti−1 as follows. We remove an independent set of Ti−1 provided
by Lemma 8.22. This creates several holes, each being a star-shaped polygon. We re-
triangulate the holes by Lemma 8.20, and the result is Ti. Each new triangle in Ti keeps
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pointers to the intersecting triangles in Ti−1; the number of needed pointers is at most
c = 8.

The above steps cost time linear ni, the number of vertices in Ti. Since at least
⌈ni−1/18⌉ vertices are removed, we have

ni ⩽
17

18
ni−1 ⩽ · · · ⩽

(
17

18

)i

n

Therefore, the total cost for building the hierarchy is proportional to

h∑
i=0

ni ⩽ n ·
h∑

i=0

(
17

18

)i

< n ·
∞∑
i=0

(
17

18

)i

= 18n ∈ O(n).

Similarly the space consumption is linear.
The number of levels amounts to h = log18/17 n. Thus by Proposition 8.19 each

query needs at most 3ch = 3 · 8 · log18/17 n < 292 logn orientation tests.

Improvements. As the name suggests, the hierarchical approach discussed above is due
to David Kirkpatrick [6]. The constant 292 that appears in the query time is somewhat
formidable. There has been a whole line of research trying to improve it using different
techniques.

• Sarnak and Tarjan [9]: 4 logn.

• Edelsbrunner, Guibas, and Stolfi [4]: 3 logn.

• Goodrich, Orletsky, and Ramaiyer [5]: 2 logn.

• Adamy and Seidel [1]: 1 logn+ 2
√

logn+O( 4
√

logn).

Comparison with history graph. Similar to Kirkpatrick’s hierarchy, the history graph for
the incremental construction (Chapter 7) is also used to locate query points in a trian-
gulation. But the two data structures have fundamental differences. First, the history
graph is built during the construction of a Delaunay triangulation, whereas Kirkpatrick’s
hierarchy is built on top of any given triangulation (in our case a triangulation of the
Voronoi diagram). Second, the history graph does not guarantee a logarithmic time for
an arbitrary query point—not even in the probabilistic sense. In fact, the analysis there
only bounds the expected total running time over all rounds, and the random choice of
insertion (=query) points turns out crucial.

Exercise 8.23. Let {p1, p2, . . . , pn} be a set of points in the plane, which we call obsta-
cles. Imagine there is a disk of radius r centered at the origin which can be moved
around the obstacles but is not allowed to intersect them (touching the boundary is
okay). Is it possible to move the disk out of these obstacles? See Figure 8.8.

More formally, the question is whether there is a continuous curve γ : [0, 1]→ R2

with γ(0) = (0, 0) and ∥γ(1)∥ ⩾ max{∥p1∥, . . . , ∥pn∥}, such that at any time t ∈ [0, 1]
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and ∥γ(t)−pi∥ ⩾ r, for any 1 ⩽ i ⩽ n. Describe an algorithm to decide this question
and to construct such a path—if one exists—given arbitrary points {p1, p2, . . . , pn}

and a radius r > 0. Argue why your algorithm is correct and analyze its running
time.

r

(0, 0)

pi

Figure 8.8: Motion planning: Illustration for Exercise 8.23.

Exercise 8.24. This exercise is about an application from Computational Biology:
You are given a set of disks P = {a1, .., an} in R2, all with the same radius ra > 0.
Each of these disks represents an atom of a protein. A water molecule is represented
by a disc with radius rw > ra. A water molecule cannot intersect the interior of
any protein atom, but it can be tangent to one. We say that an atom ai ∈ P is
accessible if there exists a placement of a water molecule such that it is tangent to
ai and does not intersect the interior of any other atom in P. Given P, find an
O(n logn) time algorithm which determines all atoms of P that are inaccessible.

Exercise 8.25. Let P ⊂ R2 be a set of n points. Describe a data structure to find in
O(logn) time a point in P that is furthest from a given query point q among all
points in P.

Exercise 8.26. Show that the bounds given in Theorem 8.17 are optimal in the alge-
braic computation tree model.

Questions

34. What is the Voronoi diagram of a set of points in R2? Give a precise definition
and explain/prove the basic properties: convexity of cells, why is it a subdivision
of the plane?, Lemma 8.6, Lemma 8.8.
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35. What is the correspondence between the Voronoi diagram and the Delaunay
triangulation for a set of points in R2? Prove duality (Theorem 8.9) and explain
where general position is needed.

36. How to construct the Voronoi diagram of a set of points in R2? Describe an
O(n logn) time algorithm, for instance, via Delaunay triangulation.

37. What is the Post-Office Problem and how can it be solved optimally? De-
scribe the problem and a solution using linear space, O(n logn) preprocessing, and
O(logn) query time.

38. How does Kirkpatrick’s hierarchical data structure for planar point location
work exactly? Describe how to build it and how the search works, and prove the
runtime bounds. In particular, you should be able to state and prove Lemma 8.22
and Theorem 8.17.

39. How can the Voronoi diagram be interpreted in context of the lifting map?
Describe the transformation and prove its properties to obtain a formulation of the
Voronoi diagram as an intersection of halfspaces one dimension higher.
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Chapter 9

Arrangements

During this course we encountered several situations where it was convenient to assume
a point set “in general position”. In the plane it usually means no three points are
collinear and/or no four points are cocircular. This raises an algorithmic question: How
do we test for n given points whether or not three of them are collinear? The exact
computational complexity of this innocent-looking problem is a major open problem in
theoretical computer science. Obviously we could test all triples in O(n3) time, but can
we do better? As it turns out: Yes, we can! We will see how to employ the so-called
projective duality transform to solve the problem in O(n2) time. Despite some interest,
nobody knows if and how general position testing can be done in subquadratic time; the
only known lower bound is Ω(n logn).

The aforementioned duality transformation is interesting because it offers an equiva-
lent dual perspective to a problem. Sometimes the dual form is easier to work with, and
its solution can be efficiently translated back into a solution to the original or primal
form. So what is this transformation about? Recall that a hyperplane in Rd is the set of
solutions x ∈ Rd to a linear equation

∑d
i=1 hixi = hd+1, where at least one of h1, . . . , hd

is nonzero. If hd = 1, we call the hyperplane non-vertical. Now observe that points
and non-vertical hyperplanes in Rd can both be described by d real numbers. It is thus
tempting to map them to each other. In R2, hyperplanes are lines and the standard pro-
jective duality transform maps a point p = (a, b) to the non-vertical line p∗ : y = ax − b,
and a non-vertical line ℓ : y = ax+ b to the point ℓ∗ := (a,−b).

Proposition 9.1. The standard projective duality transform is

• incidence preserving: p ∈ ℓ ⇐⇒ ℓ∗ ∈ p∗ and

• order preserving: p is above ℓ ⇐⇒ ℓ∗ is above p∗.

Exercise 9.2. Prove Proposition 9.1.

Exercise 9.3. For each of the following point sets, what image do we get after applying
the duality transform pointwise?

(a) k ⩾ 3 collinear points;

130



Geometry: C&A 2024 9.1. Line Arrangements

(b) a line segment;

(c) a halfplane;

(d) the boundary points of the upper convex hull of a finite point set.

One can also visualize duality in terms of the parabola P : y = 1
2
x2. Let p = (a, b)

be any point. If it is on P, then its dual line p∗ is the tangent to P at p. Otherwise we
consider its vertical projection p ′ := (a, 1

2
a2) onto P. As we argued, (p ′)∗ is the tangent

to P at p ′. Note that the slopes of p∗ and (p ′)∗ are the same, and p∗ is just (p ′)∗ shifted
vertically by 1

2
a2 − b.

p

p∗

q

q∗

`∗

`

P

Figure 9.1: Point ↔ line duality through the lens of the parabola P : y = 1
2
x2.

The problem of whether or not three points in the primal plane are collinear trans-
forms to whether or not three lines in the dual plane meet in a common point. We will
solve the latter problem with the help of line arrangements, as defined below.

9.1 Line Arrangements

The subdivision of the plane induced by a finite set L of lines is called the line arrangement
A(L). We may imagine its creation as follows. First, from the plane R2 we subtract all
lines in L (considered as point sets), thus breaking R2 into one or more open connected
regions. Note that every region is an intersection of open halfplanes and hence convex.
We call these regions the (2-dimensional) cells of the arrangement. Next, from each
line ℓ ∈ L we subtract all the other lines, thus splitting ℓ into one or more open connected
components. These collectively form the 1-dimensional cells or edges. What remains are
the intersection points of lines from L. They are called the 0-dimensional cells or vertices.

The notion naturally generalizes to curve arrangements in R2 and hyperplane ar-
rangements in Rd. Without further specification, the word “arrangement” refers to line
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arrangements in this chapter. The complexity of an arrangement is just the total number
of vertices, edges and cells (in general, the total number of cells of any dimension).

A line arrangement is called simple if no two lines are parallel and no three lines meet
at a common point.

Theorem 9.4. Every simple arrangement of n lines has
(
n
2

)
vertices, n2 edges, and(

n
2

)
+ n+ 1 cells.

Proof. Since every pair of lines intersect and all the intersection points are distinct, there
are

(
n
2

)
vertices.

We count the number of edges by induction on n. For n = 1 we have 12 = 1

edge. By adding a new line to an arrangement of n − 1 lines, we split n − 1 existing
edges into two and also introduce n edges along the new line. So inductively there
are (n− 1)2 + (n− 1) + n = n2 edges in total.

The number f of cells can be obtained from Euler’s formula. For this we need to
treat the arrangement as a planar graph G = (V, E) by adding a vertex at “infinity”
which absorbs all unbounded edges. Then the faces of G one-to-one correspond to the
cells of the arrangement, with |V | =

(
n
2

)
+ 1 and |E| = n2. By Euler’s formula we

have |V |− |E|+ f = 2. It follows that

f = 2− |V |+ |E| = 1−

(
n

2

)
+ n2 = 1+

(
n

2

)
+ n .

So the complexity of a simple arrangement is Θ(n2). Tweaking the above proof, it is
easy to see that the complexity of any line arrangement is O(n2).

Exercise 9.5. Consider a set of lines in R2 with no three meeting at a common point.
Form a plane graph G whose vertices are the intersection points of the lines. Two
vertices are adjacent if and only if they appear consecutively along some line. Prove
that G is 3-colorable. That is, we can paint the vertices using at most three colors
so that adjacent vertices receive different colors.

9.2 Constructing Line Arrangements

How do we store a line arrangement in computers? Although some cells and edges are
unbounded, we can effectively bound the arrangement by a sufficiently large box that
cages all vertices. Such a box can be constructed in O(n logn) time for n lines.

Exercise 9.6. How?

Moreover, as we have seen in the previous proof, we can view the arrangement as a
planar graph by adding a symbolic vertex that absorbs all (unbounded) edges leaving the
box. For algorithmic purposes, we usually represent the graph by a doubly connected
edge list (DCEL), cf. Section 2.2.1.

132



Geometry: C&A 2024 9.3. Zone Theorem

How do we construct an arrangement algorithmically? We would be satisified with
any O(n2) algorithm, as the worst case complexity of line arrangements is quadratic
already. A natural approach is incremental construction: just insert the lines one by one
in some arbitrary order ℓ1, . . . , ℓn.

At Step i, suppose that the edges leaving the left side of the bounding box were
ordered by slope. Hence we can locate in O(i) time the leftmost cell F in A{ℓ1, . . . , ℓi−1}

that ℓi intersects. Then we traverse the boundary of F counterclockwise, until we intersect
ℓi again when walking on some halfedge h (see Figure 9.2 for illustration). Insert a new
vertex at this intersection point, split F and h accordingly, and continue in the same way
with the cell on the twin side of h.

`

Figure 9.2: Incremental construction: Insertion of a line ℓ. (Only part of the ar-
rangement is shown in order to increase readability.)

The insertion and splits are both constant time operations. But what is the time
needed for the traversal? The worst case complexity of A{ℓ1, . . . , ℓi−1} is Ω(i2), but not
all cells and edges are relevant to our traversal. In fact, the relevant zone has linear
complexity only, as we will show next.

9.3 Zone Theorem

For an arrangement A(L) and an arbitrary line ℓ (not necessarily from L), the zone
ZA(L)(ℓ) is the set of cells from A(L) whose closure intersects ℓ.

Theorem 9.7. Given an arrangement A(L) of n lines and a line ℓ, there are at most
10n edges in all cells of ZA(L)(ℓ).

Proof. Fix the line ℓ and assume with loss of generality that it is horizontal (otherwise
rotate the plane accordingly). For each cell, orient its horizontal edges from left to right,
and the other edges from bottom to top. An oriented edge is left-bounding if the cell is
to its right; otherwise it is right-bounding. Figure 9.3 gives an example.
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Figure 9.3: Left-bounding edges (blue and bold) of a cell.

We will show that there are at most 5n left-bounding edges in all cells of ZA(L)(ℓ) by
induction on n = |L|. By symmetry, the same also holds for the number of right-bounding
edges, thus the theorem follows.

For n = 1, there is at most 1 < 5n left-bounding edge in ZA(L)(ℓ). (The number
could be zero because the only line in L might be horizontal and above ℓ.)

Now assume the statement is true for n − 1. If ℓ does not intersect with L, then all
lines are horizontal and there is at most 1 < 5n left-bounding edge in ZA(L)(ℓ). Else let
p be the rightmost point where ℓ intersects with L. We distinguish two cases:

Case 1: there is a unique line r ∈ L through p. Consider ZA(L\{r})(ℓ), namely the cells of the
arrangement A(L\ {r}) that touch ℓ. They have at most 5n−5 left-bounding edges
by the induction hypothesis. Now we add r back to the arrangement and see what
happens. Let R be the rightmost cell in ZA(L\{r})(ℓ). The line r intersects ∂R in
at most two points and thus splits at most two edges of R (call them ℓ0 and ℓ1),
both of which may be left-bounding. Further, the new edge r ∩ R is left-bounding
for the rightmost cell R ′ of ZA(L)(ℓ). So locally the number of left-bounding edges
increases by at most three.

Note that r does not contribute left-bounding edges to any cell of ZA(L)(ℓ) other
than R ′: To any cell of ZA(L)(ℓ) that lies to the left of r, the line r can contribute
right-bounding edges only; and any cell other than R ′ that lies to the right of r is
shielded away from ℓ by ℓ0 or ℓ1, that is, it is not a cell in ZA(L)(ℓ). Therefore, the
total number of left-bounding edges in ZA(L)(ℓ) is at most (5n− 5) + 3 < 5n.

ℓ

r

ℓ0

ℓ1

p

R

Figure 9.4: At most three new left-bounding edges are created by adding r to A(L\{r}).
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Case 2: there are multiple lines through p. We add these lines to the arrangement of the
remaining lines one by one. Adding the first line r creates at most three left-
bounding edges by Case 1. From then on, adding another line r ′ that goes through
p would create at most five left-bounding edges. We can argue as in Case 1: The
line r ′ splits at most two left-bounding edges of R, and it also splits the left-
bounding edge r of R ′. Finally, the line r ′ itself provides two left-bounding edges
(joined at the point p). Thus, the number of left-bounding edges increases by at
most five for each additional edge. Hence the claim follows.

Corollary 9.8. The arrangement of n lines in R2 can be constructed in optimal Θ(n2)
time and space.

Proof. Use the incremental construction described earlier. At Step i = 1, . . . , n, we do
a linear search among i − 1 leftmost edges to find the starting cell and then traverse
(part of) the zone of the line ℓi in the arrangement A{ℓ1, . . . , ℓi−1}. By Theorem 9.7
the complexity of this zone and hence the time complexity of Step i altogether is O(i).
Overall we obtain

∑n
i=1 ci = O(n2) time (and space), for some constant c > 0, which is

optimal by Theorem 9.4.

Generally in Rd, a simple hyperplane arrangement has complexity Θ(nd), and a zone
of a hyperplane has complexity O(nd−1).

Exercise 9.9. For an arrangement A of a set of n lines in R2, let

F :=
⋃

C is a bounded cell of A

C

be the union of the closure of all bounded cells. Show that the complexity (number
of vertices and edges of the arrangement lying on the boundary) of F is O(n).

9.4 General Position and Minimum Triangle

The real beauty and power of line arrangements manifest through the projective duality.
It is often convenient to assume that no two points in the primal plane have the same
x-coordinate, so that no line through two points in the primal is vertical (and hence
becomes an infinite point in the dual). This degeneracy can be discovered by sorting
the points according to x-coordinate, and resolved by rotating the whole plane by a
sufficiently small angle ε. To select ε, we can iterate over all non-vertical lines through
two points, compute its (absolute) angle to verticality, and then choose ε to be strictly
less than all these angles. The procedure clearly runs in O(n2) time.

Therefore, the following two problems can be solved in O(n2) time and space by
constructing the dual arrangement.

General position test. Given n points in R2, are there three collinear points? (Dual: do
three of the n dual lines meet at a common point?)
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Minimum area triangle. Given a set P ⊂ R2 of n points, what is the minimum area
triangle spanned by three distinct points from P? This can be viewed as a quantified
version of general position test: the minimum area is zero if and only if there are three
collinear points.

Let us make the problem easier by fixing two distinct points p, q ∈ P and ask for
a minimum area triangle pqr, where r ∈ P \ {p, q}. With pq fixed, the area of pqr is
proportional to the distance between r and the line pq. Thus we want to find

a closest line ℓ parallel to pq and passing through some point r ∈ P \ {p, q}. (⋆)

Consider the set P∗ := {p∗ : p ∈ P} of dual lines and their arrangement A. In A the
statement (⋆) translates to

a closest point ℓ∗ with the same x-coordinate as the vertex p∗ ∩ q∗ and lying
on some line r∗ ∈ P∗.

See Figure 9.5 for illustration. In other words, for the vertex p∗ ∩ q∗ of A we want to
find a line r∗ ∈ P∗ closest to it vertically—above or below. Of course, in the end we
want this information not only for one particular vertex (which provides the minimum
area triangle for fixed p, q) but for all vertices of A, that is, for all possible pairs of fixed
points {p, q} ∈

(
P
2

)
.

p q

r

s

t

`

(a) primal

p∗

s∗
t∗

q∗

r∗
`∗

(b) dual

Figure 9.5: Minimum area triangle spanned by two fixed points p, q.

Luckily, such information can be maintained over the incremental construction of A.
When inserting a new line ℓ, it may become the vertically closest line from vertices
of the already computed partial arrangement. However, only vertices in the zone of ℓ

may be affected. The zone is traversed anyway, so in the same pass we can update the
information for vertices immediately and vertically above or below ℓ, at no extra cost
asymptotically.
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By the end of the incremental construction, each vertex p∗ ∩ q∗ has recorded a
vertically closest line, for {p, q} ∈

(
P
2

)
. These correspond to minimum area triangles

for every fixed p, q. The smallest such candidate can be found by simply comparing
their areas, which takes O(n2) time.

Exercise 9.10. A set P of n points in the plane is said to be in ε-general position for
ε > 0 if no three points of the form

p+ (x1, y1), q+ (x2, y2), r+ (x3, y3)

are collinear, where p, q, r ∈ P and |xi|, |yi| < ε, for i ∈ {1, 2, 3}. In words: The set P

remains in general position under changing point coordinates by less than ε each.
Give an algorithm with runtime O(n2) for checking whether a given point set P

is in ε-general position.

Exercise 9.11. Let F be a family of vertical line segments such that for each three
of them, there exists a line that intersects all three. Show that there exists a line
which intersects all line segments in F.

9.5 Constructing Rotation Systems

Here is an application of line arrangements with a different flavor. Recall the notion
of a combinatorial embedding from Chapter 2. It is specified by the circular order of
boundary edges of each face. Equivalently, we may represent it by the circular order of
edges around each vertex. This latter view is called a rotation system.

In a similar way we can also condense the geometry of a finite point set P ⊂ R2

combinatorially. For a point q ∈ P let cP(q) denote the circular sequence of points from
P \ {q} around q (that is, in the order as they would be encountered by a ray sweeping
around q). The rotation system of P is nothing but {cP(q) : q ∈ P}.1

Given a set P of n points, it is trivial to construct its rotation system in O(n2 logn)
time, by sorting each of the n lists independently. But in fact we can do it optimally in
O(n2) time by duality transform.

Consider a directed line sweeping counterclockwise around a point q ∈ P in the primal
plane, initially vertically downward. The slope increases from −∞ to ∞ until the line
becomes vertically upward. This finishes the right half of the circular sweep. The left
half is similar: the slope changes from −∞ to ∞, until the line completes a full circle.

In the dual plane, this corresponds to traversing the line q∗ from −∞ to ∞ twice.
(The sweeping line ℓ always goes through the point q in the primal, so ℓ∗ always sits on
q∗ in the dual, and its x-coordinate reflects the slope of ℓ.) Hence we may retrieve the
circular sequence cP(q) by two passes in the dual arrangement: In the first (respectively
the second) traversal of q∗ we record the sequence of intersections with p∗ for all p ∈ P

1You may also think of it as the “combinatorial embedding” of the complete geometric graph on P. But
as these graphs are not planar for |P| ⩾ 5, they do not have the notion of faces.

137



Chapter 9. Arrangements Geometry: C&A 2024

to the right (respectively left) of q. The circular sequence is exactly the concatenation
of the two. Clearly, the traversals along all lines in the dual arrangement can be done in
O(n2) time.

9.6 Segment Endpoint Visibility Graphs

In this section we present a more complex application of duality and line arrangements,
in the context of motion planning. Here a fundamental problem is to find a short(est)
path between two given positions in some domain, subject to certain constraints. As
an example, suppose we are given two points p, q ∈ R2 and a set S ⊂ R2 that models
obstacles. What is the shortest path between p and q that avoids S?

Observation 9.12. Let S be a finite set of polygonal obstacles. The shortest path between
two points that avoids S, if it exists, is a polygonal path whose vertices (except the
two ends) are obstacle vertices.

A simplest type of obstacles conceivable is a line segment. In general they might
separate the two query points, say when they form a closed curve that surrounds one of
the points. However, if we require the obstacles to be pairwise disjoint line segments then
there is always a free path between any query points. Hence by the above observation
we may restrict our attention to straight line edges connecting obstacle vertices—in our
case, segment endpoints.

Definition 9.13. Consider a set S of n disjoint line segments in R2. The segment
endpoint visibility graph V(S) is a geometric graph defined on the segment endpoints.
Two segment endpoints p and q are adjacent if they see each other; that is, if

• the line segment pq is in S, or

• pq ∩ s ⊆ {p, q} for all s ∈ S.

Figure 9.6: A set of disjoint line segments and their endpoint visibility graph.

If all segments are on the convex hull boundary, then the visibility graph is complete.
If the segments form parallel chords of a convex polygon, then the visibility graph consists
of copies of K4 glued together side by side, and the number of edges is linear only.
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On another note, these graphs also arise in the context of the following question:
Given a set of disjoint line segments, can we link them at their endpoints via additional
segments to form a closed Jordan curve? This is not always possible: Just consider three
parallel chords of a convex polygon (Figure 9.7a). However, if we do not insist that all
segments appear in the curve, but allow them to be diagonals or epigonals of the curve,
then it is always possible [11, 12]. To rephrase: the segment endpoint visibility graph
of disjoint line segments is Hamiltonian (unless all segments are collinear). It is actually
essential to allow epigonals and not only diagonals [9, 20] (Figure 9.7b).

(a) (b)

Figure 9.7: Sets of disjoint line segments that do not admit certain polygons.

Back to motion planning, our problem essentially reduces to finding a shortest path
in the visibility graph V(S). But first of all, we need to construct the graph. Doing it in
brute force takes O(n3) time where n denotes the number of segments in S. (Take all
pairs of endpoints and check all other segments for obstruction.)

Theorem 9.14 (Welzl [21]). The segment endpoint visibility graph of n disjoint line
segments can be constructed in worst case optimal O(n2) time.

Proof. Let P be the set of endpoints of S. As before we assume general position, so
that no three points in P are collinear and no two have the same x-coordinate. (One can
handle such degeneracy explicitly.)

Conceptually we perform a rotational sweep. That is, we rotate a direction vector
v, initially pointing vertically downwards, in a counterclockwise fashion until it points
vertically upwards. While rotating, we maintain for each point p ∈ P the segment s(p)
that it “sees” in direction v (if any). Figure 9.8 shows an example. If v is parallel to some
segment pq, say pointing in the direction of −→pq, then we assign s(p) := pq.

During the sweep, we can output the edges of the visibility graph on the fly: If
currently q is an endpoint of the segment s(p), and v is in the direction of −→pq, then we
output the edge {p, q}.

Why does it work? Every output edge {p, q} must be in V(S) because p sees s(p) ∋ q

by definition. Conversely, let {p, q} be an edge in V(S) where p is to the left of q, say.
Assume that q is an endpoint of segment s. When v sweeps over the direction of −→pq, we
must have s(p) = s and the output condition is met.

To perform the actual sweep, we first observe that changes of visible segments can
only occur discretely. Indeed, for any point p ∈ P, the segment s(p) can only change
when p sees some point q ∈ P exactly in direction v. Hence, we only need to consider
directions −→pq with p, q ∈ P.
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p

s(p)

v

Figure 9.8: Visible segments along a rotating direction v. The arrow from an end-
point p indicates the segment s(p) it sees; if the arrow extends to infinity,
then no segment is visible from p.

Hence let us call a pair (p, q) ∈
(
P
2

)
, q to the right of p, an event. Its slope is the slope

of the line through p and q. Then the sweep can be implemented as follows: process the
events in order of increasing slope (by general position, all slopes are distinct); whenever
we get to process an event (p, q), there are four cases (Figure 9.9):

(1) p and q belong to the same input segment =⇒ output the edge {p, q}.

(2) q is obscured from p by s(p) =⇒ no change.

(3) q is an endpoint of s(p) =⇒ output {p, q} and update s(p) to s(q).

(4) q is an endpoint of a segment s that now obscures s(p) =⇒ output {p, q} and
update s(p) to s.

s(p)

(1) (2)

s(p)

(3)

s(p)
s(q)

(4)

s(p)

s

p
q

p
q

p
q

p
q

Figure 9.9: Processing an event during the rotational sweep. Arrows indicate the
segment s(p) just before the event.

What is the runtime of this rotational sweep? We have O(n2) events, and sorting
them in increasing slope takes O(n2 logn) time. After this, the actual sweep takes O(n2)
time, as each event is processed in constant time.

To get rid of the O(logn) factor—we promised an O(n2) algorithm—we replace the
sweep by a topological sweep, based on the observation that we do not strictly need
to proceed by increasing slope. We just need property (a) below in order to correctly
handle cases (1)(2)(4), while property (b) takes care of case (3).
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(a) For each fixed p ∈ P, the events (p, q) are processed in order of increasing slope.

(b) When processing event (p, q), we have already processed the events (q, r) of smaller
slope but not any event (q, r) of larger slope.

Any order of events that satisfies properties (a) and (b) will work. We can easily
come by such an order when we interpret these properties in the arrangement A(P∗),
where P∗ := {p∗ : p ∈ P} is the projective dual of P. Recall that the slope of a line
through two points p, q ∈ P corresponds to the x-coordinate of the intersection of the
dual lines p∗, q∗. Moreover, q is to the right of p if and only if q∗ has larger slope than
p∗. Hence, events in the dual are pairs of lines (p∗, q∗) where q∗ has larger slope than p∗.
The x-coordinate of an event is defined as the x-coordinate of the arrangement vertex
p∗ ∩ q∗. Then, properties (a) and (b) translate to

(a*) For each fixed p∗ ∈ P∗, the events (p∗, q∗) are processed in increasing x-coodinate.

(b*) When processing event (p∗, q∗), we have already processed the events (q∗, r∗) of
smaller x-coordinate but not any event (q∗, r∗) of larger x-coodinate.

As the dual events correspond to arrangement vertices, properties (a*) and (b*)
essentially say that if vertex u is to the left of vertex v on the same line, then u

should appear before v. This notion coincides with the topological order on the directed
arrangement graph with all edges directed from left to right. Clearly this directed graph
is acyclic, so a topological order exists and can be computed, for instance, via (reversed)
post order DFS in time linear in the size of the graph, which in our case is O(n2).

Although the topological sweep is easy, the reader may ask whether the real sweep
is also possible in O(n2) time. In other words: given a set of n points, is it possible
to sort the

(
n
2

)
lines defined by the points according to slope in O(n2) time? Standard

lower bounds for sorting do not apply, since the
(
n
2

)
slopes are highly interdependent.

The answer is unknown, and according to Exercise 9.15, the problem is at least as hard
as another, rather prominent, open problem.

Exercise 9.15. The X+ Y sorting problem is the following: given two sets X and Y of
n distinct numbers each, sort the set X + Y = {x + y : x ∈ X, y ∈ Y}. It is an open
problem whether this can be done with o(n2 logn) comparisons.

Prove that X + Y sorting reduces (in O(n) time) to the problem of sorting the(
2n
2

)
lines pq by slope, for all pairs {p, q} from a set of 2n points.

9.7 3-Sum

We have seen a quadratic time algorithm to test whether a point set is in general position
(no three points on a common line). But as we mentioned, the exact computational
complexity of this problem is unsettled. In fact, it is closely related to an abstract
problem called 3-Sum, in the sense that resolving the complexity of one of the problems
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also resolves the complexity of the other. However, doing so is one of the major open
problems in theoretical computer science.

The 3-Sum problem is the following: Given a set S of n integers, is there a triple2 of
elements from S that sum up to zero? Obviously, by testing all triples this can be solved
in O(n3) time. If we pick the triples to be tested more cleverly, we obtain an O(n2)
algorithm. To this end, we sort the elements from S in increasing order and obtain the
sequence s1 < . . . < sn. This takes O(n logn) time. Then we test the triples as follows.

For i = 1, . . . , n {
j = i, k = n.
While k ⩾ j {

If si + sj + sk = 0 then output the triple si, sj, sk and stop.
If si + sj + sk > 0 then k = k− 1 else j = j+ 1.

}
}

The runtime is clearly quadratic. Regarding the correctness, observe the following
invariant at the start of every iteration of the inner loop: si + sx + sk < 0 for all
x ∈ {i, . . . , j− 1}, and si + sj + sx > 0 for all x ∈ {k+ 1, . . . , n}.

Interestingly, until recently this was the fastest algorithm known for 3-Sum. But
at FOCS 2014, Grønlund and Pettie [8] presented a deterministic algorithm that solves
3-Sum in O(n2(log logn/ logn)2/3) time.

They also gave an upper bound of O(n3/2
√

logn) on the decision tree complexity
of 3-Sum, which since then has been further improved in a series of papers. The latest
improvement is due to Kane, Lovett, and Moran [13] who showed that O(n log2 n) linear
queries suffice (each query amounts to asking for the sign of the weighted sum of six
numbers in S, with coefficients in {−1, 0, 1}). In this decision tree model, only queries
that involve the input numbers are counted, all other computation, for instance, using
these query results to analyze the parameter space are for free. So the results demonstrate
that the (supposed) hardness of 3-Sum does not originate from the complexity of the
decision tree.

The big open question remains whether an O(n2−ε) algorithm can be achieved. Only
in some very restricted models of computation—such as the 3-linear decision tree model
where a decision can only be based on the sign of a linear expression in 3 input variables—
it is known that 3-Sum requires quadratic time [6].

There is a whole class of problems that are equivalent to 3-Sum up to sub-quadratic
time reductions [7]; such problems are referred to as 3-Sum-hard.

Definition 9.16. A problem X is 3-Sum-hard if every 3-Sum instance of size n reduces
to solving a constant number of X instances of size O(n), within O(n2−ε) reduction
time for some constant ε > 0.

2That is, an element of S may be chosen twice or even three times, although the latter makes sense for
the number 0 only.
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Exercise 9.17. Show that the following variation of 3-Sum—call it 3-Sum◦—is 3-Sum-
hard: Given a set S of n integers, are there three (distinct) elements of S that sum
up to zero?

As another example, consider the problem Geometry Base: Given n points on the
horizontal lines y = 0, y = 1, and y = 2, is there a non-horizontal line that goes through
at least three points?

Given any 3-Sum instance S = {s1, . . . , sn}, we can reduce it to a Geometry Base
instance P of size 3n: For each si we create three points (2si, 0), (−si, 1) and (2si, 2)
in P. Now, if there is a non-horizontal line through three points in P, then each level
contributes one, and so the three collinear points have form p = (2si, 0), q = (−sj, 1) and
r = (2sk, 2). The inverse slopes of lines pq and qr must be equal, hence −sj−2si

1−0
=

2sk+sj
2−1

,
or si + sj + sk = 0. Conversely, if there is a triple si + sj + sk = 0, then by a reverse
argument we see that the points (2si, 0), (−sj, 1), (2sk, 2) ∈ P are collinear.

A very similar problem is General Position that we studied earlier. For a 3-Sum◦

instance S, we create a General Position instance P by lifting the numbers onto the curve
y = x3, that is P := {(a, a3) |a ∈ S}. Three distinct points (a, a3), (b, b3), (c, c3) ∈ P are
collinear if and only if the slopes of the lines through each pair are equal; that is

(b3 − a3)/(b− a) = (c3 − b3)/(c− b)

⇐⇒ b2 + a2 + ab = c2 + b2 + bc

⇐⇒ b = (c2 − a2)/(a− c)

⇐⇒ b = −(a+ c)

⇐⇒ a+ b+ c = 0.

Hence P has a solution if and only if S has a solution. Note that the “if” part needs a, b, c
to be distinct, and this is why we reduce from 3-Sum◦.

Minimum Area Triangle is a strict generalization of General Position and, therefore, also
3-Sum-hard.

In Segment Separation, we are given a set of n line segments and have to decide whether
there exists a line that does not intersect the segments but separates them into two non-
empty subsets. To show that this problem is 3-Sum-hard, we can reduce from Geometry
Base, where we emulate the points along the three levels y = 0, y = 1, and y = 2 by
punching sufficiently small “holes”. The resulting segments form the Segment Separation
instance. Horizontal splits can be prevented by constant size gadgets next to the left
and right ends:
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Constructing such an instance requires sorting the points along each of the three
levels, which can be done in O(n logn) = O(n2−ε) time. It remains to specify how
“sufficiently small” are those holes. As all input numbers are integers, it is not hard to
show that punching a hole of range ±1/4 around each point is small enough.

In Segment Visibility, we are given a set S of n horizontal line segments and two specific
s1, s2 ∈ S. The question is: Are there two points, p1 ∈ s1 and p2 ∈ s2 that can see each
other, that is, relint(p1p2) does not intersect any segment from S? The reduction from
Geometry Base is basically the same as for Segment Separation, just put s1 above and
s2 below the three levels.

In Motion Planning, we are given a robot (modeled as a line segment), some obstacles
(modeled as a set of disjoint line segments), and a source and a target position. The
question is: Can the robot move (by translation and rotation) from the source to the
target position, without ever intersecting the obstacles? To show that Motion Planning
is 3-Sum-hard, employ the reduction from Geometry Base as above. The holes on the
three punched lines form the doorways from “the top room” to “the bottom room”. Each
room is surrounded by walls on the outer sides, so a robot in the top room can only
reach the bottom room through the doorways. By specifying a long enough robot, the
only way that it can pass is via three collinear holes.

Exercise 9.18. The 3-Sum’ problem asks: Given three sets S1, S2, S3 of n integers each,
are there a1 ∈ S1, a2 ∈ S2, a3 ∈ S3 such that a1 + a2 + a3 = 0? Prove that 3-Sum’
and 3-Sum are equivalent; more precisely, that they are reducible to each other in
subquadratic time.

9.8 Ham Sandwich Theorem

Suppose two thieves have stolen a necklace that contains rubies and diamonds. Now it
is time to distribute the prey. Both, of course, should get the same number of rubies
and the same number of diamonds. On the other hand, it would be a pity to completely
disintegrate the beautiful necklace. Hence they want to use as few cuts as possible to
achieve a fair gem distribution.

To phrase the problem in a geometric (and somewhat more general) setting: Given
two finite sets R and D of points in R2, how do we find a line that bisects both sets?
This means that each side of the line contains half of the points from R and half of
the points from D. To solve this problem, we will make use of the concept of levels in
arrangements.

Definition 9.19. Consider an arrangement A(L) of a set L of n non-vertical lines in
the plane. We say that a point p is on the k-level in A(L) if there are at most k− 1

lines below and at most n − k lines above p. The 1-level and the n-level are also
referred to as lower and upper envelope, respectively.

Another way to look at the k-level is to consider the lines as real functions; then the
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Figure 9.10: The 3-level of an arrangement.

lower/upper envelope is the pointwise minimum/maximum of those functions, and the
k-level is defined by taking pointwise the kth-smallest function value.

Theorem 9.20. Let R,D ⊂ R2 be finite sets of points. Then there exists a line that
bisects both R and D. That is, in either open halfplane bounded by ℓ, there are no
more than |R|/2 points from R and no more than |D|/2 points from D.

Proof. Without loss of generality suppose that both |R| and |D| are odd. (If, say, |R| is
even, simply remove an arbitrary point from R. Any bisector for the resulting set is also
a bisector for R.) We may also suppose that no two points from R ∪ D have the same
x-coordinate; otherwise we rotate the plane infinitesimally.

Let R∗ and D∗ denote the set of lines dual to the points from R and D, respectively.
Consider the arrangement A(R∗). Every point on the median level of A(R∗) corresponds
to a primal line that bisects R. As |R∗| = |R| is odd, both the leftmost and the rightmost
segments of the median level are contributed by the same line ℓr ∈ R∗: the one with
median slope. Similarly there is a line ℓd ∈ D∗ that contributes to the leftmost and
rightmost segments of the median level in A(D∗).

Since no two points from R∪D have the same x-coordinate, no two lines from R∗∪D∗

have the same slope, and thus ℓr and ℓd intersect. Consequently, being piecewise linear
continuous functions, the median level of A(R∗) and the median level of A(D∗) also
intersect (see Figure 9.11 for an example). Any point that lies on this intersection
corresponds to a primal line that bisects both point sets simultaneously.

How can the thieves use Theorem 9.20? If they are smart, they drape the necklace
along some convex curve, say a circle. Then by Theorem 9.20 there exists a line that
simultaneously bisects the set of diamonds and the set of rubies. As any line intersects
the circle at most twice, they need to cut the necklace at only two points.

You can also think of the two point sets as a discrete distribution of a ham sandwich
that is to be cut fairly, that is, in such a way that both parts have the same amount of
ham and the same amount of bread. That is where the name “ham sandwich cut” comes
from. The theorem generalizes both to higher dimension and to more general types of
measures (here we study the discrete setting only where we simply count points). These
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Figure 9.11: An arrangement of 3 red lines and an arrangement of 3 blue lines, drawn
in one picture. Their median levels are marked bold on the right.

generalizations can be proven using the Borsuk-Ulam Theorem, which states that any
continuous map from Sd to Rd must map some pair of antipodal points to the same
point. For a proof of both theorems and many applications see Matoušek’s book [17].

Theorem 9.21. Let P1, . . . , Pd ⊂ Rd be finite sets of points. Then there exists a hyper-
plane h that simultaneously bisects all of P1, . . . , Pd. That is, in either open halfspace
defined by h there are no more than |Pi|/2 points from Pi, for every i ∈ {1, . . . , d}.

This implies that the thieves can fairly distribute a necklace consisting of d types of
gems using at most d cuts.

Exercise 9.22. Prove or disprove the following statement: Given three finite sets
A,B,C of points in the plane, there is always a circle or a line that bisects A,
B and C simultaneously (that is, no more than half of the points of each set are
inside or outside the circle or on either side of the line, respectively).

Knowing about the existence of a ham sandwich cut certainly is not good enough.
It is not hard to turn the proof given above into an O(n2) algorithm, but we can do
better...

9.9 Constructing Ham Sandwich Cuts in the Plane (not covered in 2024)

The algorithm outlined below is interesting not only in itself, but also because it illus-
trates a fundamental paradigm for designing optimization algorithms: prune & search.
The basic idea behind prune & search is to exclude part of the search space from further
consideration (“prune”) at each step, and then search in the remaining space. A well-
known example is binary search: every step takes constant time and discards about half
of the possible solutions, resulting in a logarithmic runtime overall. As another example,
if at each step some 1/d fraction of all potential solutions is discarded, and the step costs
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linear time cn in the number n of (remaining) solutions, then the runtime T satisfies

T(n) ⩽ cn+ T

((
1−

1

d

)
n

)
< cn

∞∑
i=0

(
1−

1

d

)i

= cdn,

which gives a linear time performance.

Theorem 9.23 (Edelsbrunner and Waupotitsch [5]). Let R,D ⊂ R2 be finite sets of points
with n = |R|+ |D|. Then in O(n logn) time one can find a line ℓ that simultaneously
bisects R and D.

Proof. We design a recursive algorithm Find(L1, k1; L2, k2; (x1, x2)) that, for sets of lines
L1, L2, non-negative integers k1, k2 and an open interval (x1, x2), finds an intersection
between the k1-level of A(L1) and the k2-level of A(L2). It operates under two premises:

Distinct slopes: different lines in L1 ∪ L2 have different slopes.

Odd-intersection: the two levels of interest should intersect an odd number of times in
(x1, x2) and do not intersect at x1 or x2. Equivalently, the level above the other at
x1 should run below at x2.

In the end, we are interested in Find
(
R∗, |R|+1

2
; D∗, |D|+1

2
; (−∞,∞)

)
. Rotating the

plane if necessary, we may assume without loss of generality that points in R ∪D have
distinct x-coordinates and thus lines in R∗ ∪D∗ have distinct slopes. Also, as shown in
the proof of Theorem 9.20, the odd-intersection property is satisfied.

Now we describe the algorithm. Let L := L1 ∪ L2 and find the line µ ∈ L of median
slope. Partition L =: L< ∪ {µ} ∪ L> depending on whether a line has slope less than or
greater than the median. Pair the lines in L< with those in L> arbitrarily (with one
line unpaired if |L| is even). Denote by I the ⌊ |L|−1

2
⌋ intersection points generated by the

pairs. and let j be the median x-coordinate of these points.
Find the point on the k1-level of A(L1) at j, and the point on the k2-level of A(L2) at

j. If the points coincide then we simply return it. Otherwise, if j ∈ (x1, x2) then exactly
one of the open intervals (x1, j) or (j, x2) satisfies the odd-intersection property, and we
restrict our attention to it. If j /∈ (x1, x2), then we keep the original interval (x1, x2). In
either case, we may assume by symmetry that the interval of interest is to the left of j.

In the following it is our goal to discard a constant fraction of the lines in L from
future consideration. To this end, let I> denote the set of points from I with x-coordinate
greater than j. Let µ ′ be a line parallel to µ that bisects I>. The two lines x = j and µ ′

subdivides the plane into four quadrants. By definition, each quadrant contains about a
quarter of points from I; that is, about |L|/8 points.

As we assumed, the interval of interest is (x1, t) for some t ⩽ j. In particular, exactly
one of the left two quadrants Q is interesting in the sense that ((x1, t)×R)∩Q contains
an odd number of intersections between the two levels. We will later argue how to
algorithmically determine the interesting quadrant. For now, suppose that the upper
left quadrant Q2 is interesting (Figure 9.12). Consider its opposite (i.e. the lower right)
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µ

L<

L>

I

x = j

µ ′

` ′

Q2

Q4

Figure 9.12: An example with a set L1 of 4 red lines and a set L2 of 3 blue lines.
Suppose that k1 = 3 and k2 = 2. Then the interesting quadrant is the
top-left one (shaded) and the red line ℓ ′ (the line with the smallest slope
in L1) would be discarded because it does not intersect the interesting
quadrant.

quadrant Q4. Any line in L> that passes through Q4 is completely below the interesting
quadrant Q2, so all such lines can be safely discarded from further consideration. How
many are they? Recall that every point in I is generated by paired lines, one from L>

and the other from L<. So there are at least |I ∩Q4| ≈ |L|/8 such lines.
After we discard these lines, we want to resume our search recursively. For every

discarded line from L1 (resp. L2), we decrease the parameter k1 (resp. k2) by one. In
the other case where Q3 is interesting and we discard lines passing through Q1, the
parameters k1 and k2 stay the same. Denote the remaining sets of lines by L ′

1 and L ′
2,

and the adjusted parameters by k ′
1 and k ′

2.
We want to apply the algorithm recursively to compute an intersection between the

k ′
1-level of A(L ′

1) and the k ′
2-level of A(L ′

2). However, discarding lines changes the ar-
rangement and its levels. As a result, it is not clear that the odd-intersection property
holds for the k ′

1-level of A(L ′
1) and the k ′

2-level of A(L ′
2) on the interval (x1, t). Note that

we do know that these levels intersect in the interesting quadrant, and this intersection
persists because none of the involved lines is removed. However, it is conceivable that
the removal of lines changes the parity of intersections in the non-interesting quadrant
of the interval (x1, t). Luckily, this issue can be resolved as a part of the algorithm to
determine the interesting quadrant, which we will discuss next. More specifically, we
will show how to determine an interval (x ′

1, x
′
2) ⊆ (x1, x2) on which the odd-intersection

property holds for the k ′
1-level of A(L ′

1) and the k ′
2-level of A(L ′

2).
So let us argue how to determine the interesting quadrant, that is, how to test whether

the k1-level of A(L1) and the k2-level of A(L2) intersect an odd number of times in
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((x1, t) × R) ∩ H+, where H+ is the open halfplane above µ ′. For this it is enough
to sweep the line µ ′ from left to right in the arrangement A(L) (conceptually) while
keeping track of the relative ordering of the two levels and µ ′. Initially at x = x1, we
know which level is above the other. Then we inspect all intersections between µ and L

from left to right. If the current intersection point is on one of the two levels, then the
relative ordering might change. So we check whether it is still consistent with that initial
ordering. For instance, if the initial ordering is “the k1-level above the k2-level above
µ ′” and the k1-level intersects µ ′ before the k2-level does, then we can deduce that there
must be an intersection of the two levels above µ ′. As the relative position of the two
levels is reversed at x = x2, at some point an inconsistency, that is, the presence of an
intersection will be detected and we will be able to tell whether it is above or below µ ′.
(There could be many more intersections between the two levels, but finding just one
intersection is good enough.) Along with this above/below information we also obtain a
suitable interval (x ′

1, x
′
2) for which the odd-intersection property holds because the levels

of interest do not change in that interval.
The sweep amounts to computing all intersections of µ ′ with L, sorting them by x-

coordinate, and keeping track of the number of lines from L1 (resp. L2) below µ ′. At
every point of intersection, these counters can be adjusted and the inconsistency can
be tested in constant time. Overall it takes O(|L| log |L|) time. This step dominates the
whole algorithm, noting that all other operations are based on rank-i element selection,
which can be done in linear time [4]. Altogether, we obtain as a recursion for the runtime

T(n) ⩽ cn logn+ T(7n/8).

Solving it gives T(n) = O(n logn).

In the plane, a ham sandwich cut can actually be found in linear time using a so-
phisticated prune and search algorithm by Lo, Matoušek and Steiger [16]. But in higher
dimension, the algorithmic problem gets harder. In fact, already for R3 the complexity
of finding a ham sandwich cut is wide open: The best algorithm known, from the same
paper by Lo et al. [16], has runtime O(n3/2 log2 n/ log∗ n) and no non-trivial lower bound
is known. If the dimension d is not fixed, it is both NP-hard and W[1]-hard3 in d to
decide the following question [15]: Given d ∈ N, finite point sets P1, . . . , Pd ⊂ Rd, and
a point p ∈ ⋃d

i=1 Pi, is there a ham sandwich cut through p?

Exercise 9.24. The goal of this exercise is to develop a data structure for halfspace
range counting.

(a) Given a set P ⊂ R2 of n points in general position, show that it is possible
to partition this set by two lines such that each region contains at most ⌈n

4
⌉

points.

3Essentially this means that it is unlikely to be solvable in time O(f(d)p(n)), for an arbitrary function
f and a polynomial p.
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(b) Design a data structure of size O(n) that can be constructed in time O(n logn)
and allows you, for any halfspace h, to output the number of points |P ∩ h| of
P contained in this halfspace h in time O(nα), for some 0 < α < 1.

9.10 Davenport-Schinzel Sequences (not covered in 2024)

The complexity of a simple arrangement of n lines in R2 is Θ(n2), so every algorithm
that uses the whole arrangement explicitly needs Ω(n2) time. However, there are many
scenarios where we only need a local part of the arrangement. For instance, if we only
care about the cells touching a specific line, then the zone theorem ensures a linear
complexity overall. As another example, to construct a ham sandwich cut for two sets
in R2 we only need the median levels of their dual line arrangements. As mentioned in
the previous section, the relevant information can actually be obtained in linear time.

Hence it can be rewarding to study the “local” complexity of arrangements. Here
we pursue one such direction: to analyze the complexity—the number of vertices and
edges—of a single cell in an arrangement of n simple curves in R2.

If the curves are lines then this is of little interest: Every line can appear at most once
on the boundary of each cell; and it is possible that all lines appear on the boundary of
one cell simultaneously.

But if the curves are line segments rather than lines, the situation changes in a
surprising way. Certainly a single segment can appear several times along the boundary
of a cell, see the example in Figure 9.13. Make a guess: What is the maximal complexity
of a cell in an arrangement of n line segments in R2? You will find out the correct answer
soon, although we only prove part of it. But my guess would be that it is rather unlikely
that your guess is correct, unless, of course, you knew the answer already. :-)

Figure 9.13: A single cell in an arrangement of line segments.

To start our program, we will focus on one particular cell in the curve arrangement:
its lower envelope, or intuitively everything that can be seen vertically from below. To
analyze the lower envelopes we will describe them combinatorially using sequences with
forbidden substructures. These sequences, named after Davenport and Schinzel, are of
independent interest as they appear in a number of combinatorial problems [2] and in
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the analyses of data structures [19]. The techniques apply not only to lower envelopes
but also to arbitrary cells of curve arrangements.

Definition 9.25. Let n, s ∈ N. An (n, s)-Davenport-Schinzel sequence is a sequence over
an alphabet of n symbols, such that

• no adjacent slots have the same symbol, and

• no subsequence of length s+ 2 alternates between two different symbols.4

Let λs(n) be the length of a longest (n, s)-Davenport-Schinzel sequence.

So, for instance, an (n, 2)-Davenport-Schinzel sequence forbids alternations of the
form . . . a . . . b . . . a . . . b . . . . As another example, consider the sequence abcbacb. It
is a (3, 4)-Davenport-Schinzel sequence but not a (3, 3)-Davenport-Schinzel sequence,
because it contains a subsequence bcbcb of length 5 that alternates between b and c.

Note that the Davenport-Schinzel property is invariant of the alphabet in the fol-
lowing sense. If a sequence σ1, . . . , σℓ over alphabet A is (n, s)-Davenport-Schinzel and
φ : A → B is a bijection, then the sequence φ(σ1), . . . , φ(σℓ) over alphabet B is again
(n, s)-Davenport-Schinzel. In other words, we can change the alphabet whenever it is
convenient.

Exercise 9.26. Show that λ1(n) = n and λ2(n) = 2n− 1.

Exercise 9.27. Prove that λs(n) is finite for all n, s ∈ N. Can you give explicit upper
and lower bounds?

Proposition 9.28. λs(m) + λs(n) ⩽ λs(m+ n).

Proof. Consider any (m, s)-Davenport-Schinzel sequence of length ℓ and (n, s)-Davenport-
Schinzel sequence of length ℓ ′. Assume without loss of generality that their alphabets
are disjoint, so concatenating them yields a sequence of length ℓ+ ℓ ′ over an alphabet of
m+n symbols. It is straightforward to check that the sequence is (m+n, s)-Davenport-
Schinzel.

Let us now see how Davenport-Schinzel sequences are connected to lower envelopes.
Consider a set F = {f1, . . . , fn} of real-valued continuous functions that are defined on a
common closed interval I ⊂ R. The lower envelope LF of F is defined as the pointwise
minimum of the functions. Formally, LF(x) := min{fj(x) : 1 ⩽ j ⩽ n} for x ∈ I.

Suppose that the graphs of any two functions in F intersect at finitely many points.
Then each function can appear on the lower envelope LF only finitely many times.
Imagine scanning the lower envelope from left to right, then the indices of functions that
appear on it form the lower envelope sequence ϕ(F); see Figure 9.14 for an illustration.

Each intersection between the graphs of fj and fk can lead to at most one alternation
between j and k in ϕ(F). Hence we have the following:

4Note that a subsequence need not be contiguous. For example, geo is a subsequence of congestion.
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I

f1

f2

f3

f4
4 2 3 4 2

Figure 9.14: The lower envelope sequence (4, 2, 3, 4, 2) of a set of functions.

Observation 9.29. If the graphs of any two functions in F intersect at most s times,
then ϕ(F) is an (n, s)-Davenport-Schinzel sequence.

But in order to deal with line segments (understood as linear functions over interval
domains), the above machinery needs slight extension because the segments may have
different domains. So let us allow each function in F having an individual closed interval
as its domain. The lower envelope LF, now defined over the real line, is given by
LF(x) := inf{fj(x) : 1 ⩽ j ⩽ n and x is in the domain of fj}. In the case where no fj is
defined at x, we have LF(x) = ∞.

Again assuming that the graphs of any two functions intersect at finitely many points,
the lower envelope sequence ϕ(F) records the indices of the functions that appear on
LF as we scan from left to right. By convention we use index 0 for intervals where
LF(x) = ∞; see Figure 9.15 for an illustration.

f1

f2

f3 f4

0 2 1 3 1 3 0 04

Figure 9.15: The lower envelope sequence of a set of segments.

In Figure 9.15 we already see that two segments fj, fk, despite crossing only once,
may lead to a lower envelope subsequence jkjk of length 4 (instead of 2 as it would be if
they were defined over a common interval). Generally we have:

Proposition 9.30. Let F be a collection of n real-valued continuous functions, each
defined on some closed interval, and the graphs of any two functions intersect at
most s times. Then ϕ(F) is an (n+ 1, s+ 2)-Davenport-Schinzel sequence.

Proof. We first show that there is no subsequence of length s+4 that alternates between
two symbols j, k ∈ {1, . . . , n}. For this, we consider the at most s points at which fj, fk are
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equal, plus the at most 4 domain endpoints of fj and fk. These together subdivide the
real line into at most s+5 intervals. Within each of the at most s+3 inner intervals, fj is
either always above or always below fk by continuity; only the lower one may appear on
LF (possibly zero or multiple times). Hence in ϕ(F), the symbols j, k cannot alternate
within this interval. It follows that any j-k alternating subsequence in ϕ(F) has length
most s+ 3.

Finally, we observe that ϕ(F) cannot contain subsequence j0j for j ∈ {1, . . . , n}, since
the domain of fj is an interval. Hence in particular there is no subsequence 0j0j or j0j0;
that is, no subsequence of length 4 that alternates between symbols 0 and j ∈ {1, . . . , n}.
The statement then follows.

So let us now focus on obtaining upper bounds for λs(n). You have seen linear bounds
for s = 1, 2 in Exercise 9.26. But the situation for s = 3 is more complicated.

Lemma 9.31. λ3(n) ⩽ 2n(1+ logn).

Proof. For n = 1 we have λ3(1) = 1 ⩽ 2. For n > 1 consider any (n, 3)-Davenport-
Schinzel sequence σ of length λ3(n). Let a be a symbol that appears least frequently
in σ; so it appears at most 1

n
λ3(n) times. Delete all appearances of a from σ to obtain a

sequence σ ′ of length at least (1− 1
n
)λ3(n) over n−1 symbols. But σ ′ is not necessarily a

Davenport-Schinzel sequence because it might contain consecutive bb for some symbol b;
this happens when σ = . . . bab . . ..

We claim that there are at most two places where such situation may arise. In fact,
the only two possible places are around the first and last appearances of a. Indeed, if
any intermediate appearance of a had resulted in consecutive bb after deletion, then
σ = . . . a . . . bab . . . a . . .. So σ would contain the subsequence ababa, in contradiction
to it being an (n, 3)-Davenport-Schinzel sequence.

Given the claim, one can repair σ ′ by deleting at most two characters from it. This
produces an (n− 1, 3)-Davenport-Schinzel sequence of length at least (1− 1

n
)λ3(n) − 2,

which by definition cannot exceed λ3(n− 1). So via rearranging we have the recursion

λ3(n)

n
⩽

λ3(n− 1)

n− 1
+

2

n− 1
.

Denoting λ3(n) :=
λ3(n)

n
, this means

λ3(n) ⩽ λ3(n− 1) +
2

n− 1
⩽ · · · ⩽ λ3(1) +

n∑
i=2

2

i− 1
= 1+ 2Hn−1

where Hn−1 is the (n − 1)-st harmonic number. Together with 2Hn−1 < 1 + 2 logn we
obtain λ3(n) ⩽ 2n(1+ logn).
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Bounds for higher-order Davenport-Schinzel sequences. As we have seen, λ1(n) (no aba)
and λ2(n) (no abab) are both linear in n. It turns out that for s ⩾ 3, λs(n) is slightly
superlinear in n (with s fixed). The bounds are known almost exactly, and they involve
the inverse Ackermann function α(n), which grows extremely slowly.

To define the inverse Ackermann function, we first define a hierarchy of functions
α1(n), α2(n), α3(n), . . . where αk(n) grows much more slowly than αk−1(n) for every
fixed k.

We let α1(n) = ⌈n/2⌉. Then, for each k ⩾ 2, we define αk(n) as the number of
repeating applications of αk−1 on n until the value becomes no larger than 1. In other
words, αk(n) is defined recursively by:

αk(n) =

{
0, if n ⩽ 1;
1+ αk(αk−1(n)), otherwise.

Thus α2(n) = ⌈log2 n⌉, and α3(n) = log∗ n.
Now fix n and consider the sequence α1(n), α2(n), α3(n), . . .. The sequence decreases

rapidly until it drops below 3. We define the inverse Ackermann function α(n) by

α(n) = min {k : αk(n) ⩽ 3}.

Exercise 9.32.
(a) Show that for every fixed k ⩾ 2 we have αk(n) = o(αk−1(n)); in fact, for

every fixed k and t we have αk(n) = o(αk−1(αk−1(· · ·αk−1(n) · · · ))), with t

applications of αk−1.

(b) Show that for every fixed k we have α(n) = o(αk(n)).

Coming back to the bounds for Davenport-Schinzel sequences, for λ3(n) it is known
that λ3(n) = Θ(nα(n)) [10]. In fact we even know λ3(n) = 2nα(n)±O(n

√
α(n)) [14, 18].

For λ4(n) we have λ4(n) = Θ(n · 2α(n)) [3].
For higher-order sequences the known upper and lower bounds are almost tight, and

they are of the form λs(n) = n · 2poly(α(n)), where the degree of the polynomial in the
exponent is roughly s/2 [3, 18].

Realizing Davenport-Schinzel sequences as lower envelopes. There exists a construction of a
set of n segments in the plane whose lower-envelope sequence has length Ω(nα(n)). (In
fact, the lower-envelope sequence has length nα(n) −O(n), with a leading coefficient of
1; it is an open problem to get a leading coefficient of 2, or prove that this is impossible.)

It is an open problem to construct a set of n parabolic arcs in the plane whose
lower-envelope sequence has length Ω(n · 2α(n)).

Exercise 9.33. Show that every (n, s)-Davenport-Schinzel sequence can be realized as
the lower envelope of n continuous functions from R to R, every pair of which
intersect at most s times.

Exercise 9.34. Show that every (n, 2)-Davenport-Schinzel sequence can be realized as
the lower envelope of n parabolas.
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Generalizations of Davenport-Schinzel sequences. Generalized Davenport-Schinzel sequences
have also been studied, for instance, where arbitrary subsequences (not necessarily an
alternating pattern) are forbidden. For a pattern π and n ∈ N define Ex(π, n) to be
the maximum length of a sequence over {1, . . . , n} that does not contain a subsequence
of the form π. For example, Ex(ababa, n) = λ3(n). If π contains two meta-symbols
only, say a and b, then Ex(π, n) is super-linear if and only if π contains ababa as a
subsequence [1]. This highlights that the alternating forbidden pattern is of particular
interest.

9.11 Constructing Lower Envelopes (not covered in 2024)

Theorem 9.35. Let F be a collection of n real-valued continuous functions defined
on a common closed interval. Assume that any two functions intersect at most s

times, and that each intersection point can be constructed in constant time. Then
the lower envelope LF can be constructed in O(λs(n) logn) time.

Proof. Divide and conquer. For simplicity, assume that n is a power of two. Split F

into two subsets F1 and F2 of n/2 functions each. Construct their lower envelopes LF1

and LF2
recursively. After they return, we merge them by a scan from left to right. At

coordinate x, the defining function of LF can change only when (1) the defining function
of LF1

changes; (2) the defining function of LF2
changes; or (3) LF1

and LF2
intersect.

So the scan concerns with discrete events only.
There are at most λs(n/2) events of type (1); and the same holds for type (2). (Note,

however, that they do not necessarily guarantee a change for LF.) Events of type (3)
are different: every occurrence does contribute to a change for LF, thus we can upper
bound the number of occurrences by the complexity of LF, namely λs(n). So the total
number of events is at most 2λs(n/2) + λs(n) ⩽ 2λs(n) where we used Proposition 9.28.

Now that the scan costs time linear in λs(n), we obtain a recursion for the runtime
T(n) of the algorithm: T(n) ⩽ 2T(n/2)+ cλs(n) for some constant c. Therefore, T(n) ⩽
c
∑logn

i=1 2iλs(n/2
i) ⩽ c

∑logn
i=1 λs(n) = O(λs(n) logn) where the second inequality is by

Proposition 9.28.

9.12 Complexity of a Single Cell (not covered in 2024)

With all tools gathered, we can now go back to the initial question: What is the com-
plexity of a single cell in an arrangement of n simple curves?

Theorem 9.36. Let Γ = {γ1, . . . , γn} be a collection of simple curves in R2 such that
each pair intersects at most s times. Then the combinatorial complexity of any
single cell in the arrangement A(Γ) is O(λs+2(n)).

Proof. Consider a cell f of A(Γ). In general, ∂f might consist of multiple connected
components. But as every γi can appear in at most one component, we may deal with
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each component separately and sum up their complexity by Proposition 9.28. Hence it
is no loss of generality to assume that ∂f is connected.

Replace each γi by two opposite directed curves γ+
i and γ−

i that together form a
closed curve that is infinitesimally close to γi. Denote by S the circular order that
these directed curves appear along a clockwise traversal of ∂f. See Figure 9.16 for an
illustration.

+ +

-

+

-

- +

-

+

Figure 9.16: An arrangement of two simple curves γ1, γ2. The arrows indicate the
positive curves γ+

1 , γ
+
2 , and their reversals are the negative curves γ−

1 , γ
−
2 .

Traversing the boundary of the shaded cell clockwise from the top-left
corner, we encounter S = (γ+

1 , γ
−
2 , γ

+
2 , γ

+
1 , γ

+
2 , γ

+
1 , γ

−
2 , γ

−
1 , γ

−
2 ).

Consistency Lemma. Fix i ∈ {1, . . . , n}, and let ξ be one of the directed curves
γ+
i or γ−

i . The order of portions of ξ that appear in S is consistent with their
order along ξ. Hence we can break the circular order S into a linear sequence
S(ξ) that, as we scan it from left to right, the portions of ξ appear in their
order along ξ.

Consider two portions ξ1 and ξ2 of ξ that appear consecutively in S (that is, there is
no other portion of ξ in between). Choose points x1 ∈ ξ1 and x2 ∈ ξ2 and connect them
via two curves: a curve α following ∂f clockwise, and a curve β sandwiched between γ+

i

and γ−
i . Then α and β do not intersect internally and they are both contained in R2 \f◦.

In other words, α ∪ β forms a closed Jordan curve and f lies either in its interior or in
its exterior (Figure 9.17). In either case, the part of ξ between ξ1 and ξ2 is shielded
away from f by α∪β and, therefore, no point from this part can appear anywhere along
∂f. In other words, the boundary portions ξ1 and ξ2 are also consecutive along ξ, which
proves the lemma.

Let us break the circular order S into a linear sequence S ′ = (s1, . . . , st) arbitrarily.
Now we traverse a directed curve ξ, paying attention to its portions that appear in ∂f. By
the Consistency Lemma, these portions correspond to (si1 , . . . , siℓ , siℓ+1

, . . . , sir), where
1 ⩽ iℓ+1 < · · · < ir < i1 < · · · < iℓ ⩽ t. This “wrap-around” issue is caused by our
breaking the circular S into a linear S ′. As a precaution, we replace all occurrences of ξ
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ξ1
ξ2x1

x2

β

αf

(a) f lies in the exterior of α ∪ β.

f

ξ1
ξ2x1

x2

β

α

(b) f lies in the interior of α ∪ β.

Figure 9.17: Two cases in the proof of Consistency Lemma.

in S ′ after index iℓ by a brand new symbol ξ ′. Doing so for all directed curves results
in a sequence S∗ over 4n symbols. With this trick, any subsequence ξξ . . . ξ (as well as
ξ ′ξ ′ . . . ξ ′) of S∗ will agree with the traversal order of directed curve ξ.

Claim. S∗ is a (4n, s+ 2)-Davenport-Schinzel sequence.

Clearly no two adjacent symbols in S∗ are the same. Suppose S∗ contains a subse-
quence σ of length s+ 4 that alternates between ξ and η. For any occurrence of ξ in σ,
choose a point from the corresponding part of ∂f. This gives a sequence x1, . . . , x⌈(s+4)/2⌉
of points on ∂f. Connect them in this order by a curve C(ξ) sandwiched between ξ and
its counterpart. (This is possible thanks to our precaution.) Similarly we may choose
points y1, . . . , y⌊(s+4)/2⌋ on ∂f that correspond to the occurrences of η in σ, and connect
them in this order by a curve C(η) sandwiched between η and its counterpart.

Now consider any quadruple xi, yi, xi+1, yi+1. (The case yi, xi, yi+1, xi+1 is symmet-
ric.) They must be appearing in this order along ∂f. In addition, the pair xi xi+1 is
connected by part of C(ξ), and similarly the pair yi yi+1 is connected by part of C(η);
both curves, except for their endpoints, lie in the exterior of f. Finally, we can place a
point u at the interior of f, and connect it to xi, yi, xi+1 and yi+1 via internally disjoint
curves inside the interior of f (Figure 9.18). By construction, no two of these curves
cross, except possibly for the curves xi xi+1 and yi yi+1 in the exterior of f. In fact,
these two curves must intersect, because otherwise we are facing a plane embedding of
K5 which does not exist.

In other words, any quadruple of consecutive elements from the subsequence σ induces
an intersection between C(ξ) and C(η). Clearly these intersections are distinct for all
quadruples, which altogether provide s + 4 − 3 = s + 1 intersections between C(ξ) and
C(η), in contradiction to the fact that these curves can intersect at most s times.

Corollary 9.37. The combinatorial complexity of a single cell in an arrangement of n
line segments in R2 is O(λ3(n)) = O(nα(n)).

When counting the number of Davenport-Schinzel sequences of a certain type we
want to count essentially distinct sequences only. Therefore we call two sequences over
a common alphabet A equivalent if and only if one can be obtained from the other
by a permutation of A. Then two sequences are distinct if and only if they are not
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xi

xi+1

yi

yi+1

u
∂f

Figure 9.18: Every quadruple xi, yi, xi+1, yi+1 generates an intersection between the
curves ξ and η.

equivalent. A typical way to select a representative from each equivalence class is to
order the alphabet and demand that the first appearance of a symbol in the sequence
follows that order. For example, ordering A = {a, b, c} alphabetically demands that the
first occurrence of a precedes the first occurrence of b, which in turn precedes the first
occurrence of c.

Exercise 9.38. Let P be a convex polygon with n+1 vertices. Find a bijection between
the triangulations of P and the set of pairwise distinct (n, 2)-Davenport-Schinzel
sequences of maximum length (2n − 1). It follows that the number of distinct
maximum (n, 2)-Davenport-Schinzel sequences is exactly Cn−1 = 1

n

(
2n−2
n−1

)
, which is

the (n− 1)-st Catalan number.

Questions

40. How can one construct an arrangement of lines in R2? Describe the incre-
mental algorithm and prove that its time complexity is quadratic in the number of
lines (incl. statement and proof of the Zone Theorem).

41. How can one test whether there are three collinear points in a set of n given
points in R2? Describe an O(n2) time algorithm.

42. How can one compute the minimum area triangle spanned by three out of n

given points in R2? Describe an O(n2) time algorithm.

43. What is a ham sandwich cut? Does it always exist? How to compute it?
State and prove the theorem about the existence of a ham sandwich cut in R2 and
describe an O(n2) algorithm to compute it.

44. What is the endpoint visibility graph for a set of disjoint line segments in
the plane and how can it be constructed? Give the definition and explain the

158



Geometry: C&A 2024 9.12. Complexity of a Single Cell (not covered in 2024)

relation to shortest paths. Describe the O(n2) algorithm by Welzl, including a
proof of Theorem 9.14.

45. Is there a subquadratic algorithm for General Position? Explain the term
3-Sum hard and its implications and give the reduction from 3-Sum to General
Position.

46. Which problems are known to be 3-Sum-hard? List at least three problems
(other than 3-Sum) and briefly sketch the corresponding reductions.

47. (This topic was not covered in HS24 and therefore the question will not be asked in the
exam.)What is an (n, s) Davenport-Schinzel sequence and how does it relate
to the lower envelope of real-valued continuous functions? Give the precise
definitions and some examples. Explain in particular how to apply the machinery
to line segments.

48. (This topic was not covered in HS24 and therefore the question will not be asked in the
exam.)What is the value of λs(n), for 1 ⩽ s ⩽ 3? Derive the precise value
for s ∈ {1, 2} and prove an O(n logn) upper bound for λ3(n).

49. (This topic was not covered in HS24 and therefore the question will not be asked in the
exam.)What is the combinatorial complexity of the lower envelope of a set of
n lines/parabolas/line segments?

50. (This topic was not covered in HS24 and therefore the question will not be asked in the
exam.)What is the combinatorial complexity of a single cell in an arrangement
of n line segments? State the result and sketch the proof (Theorem 9.36).
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Chapter 10

Convex Polytopes

Recall from Definition 5.8 that a convex polytope is the convex hull of a finite point set P ⊂
Rd. In this chapter, we take a closer look at their structures and reveal their links to high-
dimensional Delaunay triangulations and Voronoi diagrams. For convenience, we shall
omit the attribute convex and refer to them simply as polytopes. In the sequel we will
be borrowing a lot of material from Ziegler’s classical book Lectures on Polytopes [9],
sometimes without proofs as they would take us too far from geometry.

We are already familiar with polytopes in dimension d = 2, which are just convex
polygons; see Figure 10.1. These are boring in the combinatorial sense: the vertex-edge
graph is always a cycle.

Figure 10.1: In R2, convex polytopes are convex polygons.

Polytopes in dimension d = 3 are more interesting, as they own a richer combinatorial
structure. The most popular examples are the five platonic solids; see Figure 10.2.

(a) tetrahedron (b) cube (c) octahedron (d) dodecahedron (e) icosahedron

Figure 10.2: The five platonic solids. (Images from Wikipedia [3, 2, 8, 1, 4])

161



Chapter 10. Convex Polytopes Geometry: C&A 2024

Despite this diversity, the vertex-edge graphs of 3-dimensional polytopes are well-
understood, due to the following classical result. (See Lecture 4 in Ziegler’s book [9] for
a thorough treatment.)

Theorem 10.1 (Steinitz). A graph G is the vertex-edge graph of a 3-dimensional poly-
tope if and only if G is planar and 3-connected.

We have already encountered 3-connected planar graphs in Chapter 2. Recall that
Whitney’s Theorem 2.26 states that every such graph has a unique combinatorial em-
bedding in the plane. Here, Steinitz’s theorem says that it also admits a geometric
embedding as the skeleton of some polytope in R3. One can easily verify the theorem
on the five platonic solids; for example, Figure 10.3 shows the vertex-edge graph of the
octahedron, which is clearly planar and 3-connected.

Figure 10.3: The vertex-edge graph of the octahedron

The theorem implies that a polytope in R3 with n vertices has at most 3n− 6 edges
and 2n − 4 faces, by Corollary 2.5. What happens in higher dimensions? In particular,
we want to understand how complicated a polytope in Rd can be. For example, how
many edges can a 4-dimensional polytope with n vertices have? Is it still O(n) as for
d = 2, 3? To discuss this, we first have to define “vertices” and “edges” formally—our
intuition unfortunately stops in R3. In fact, it is useful to define the more general notion
of faces which subsumes vertices and edges.

10.1 Faces of a Polytope

In studying general dimension d, linear algebra tools are prominent. For a quick refresher
we refer the reader to Chapter 5. Also recall that the dimension of a linear space is the
maximum size of its linear independent subset. The dimension of an affine space is the
maximum size of its affinely independent subset.

Let P = conv(P) be a polytope. Its dimension dim(P) is the dimension of its affine
hull. The polytope is full-dimensional if dim(P) = d. Many results are stated for full-
dimensional polytopes only, but this is not really a restriction: If dim(P) < d then we
can study it in the affine subspace aff(P) ∼= Rdim(P) where P becomes full-dimensional.
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Definition 10.2. Let P ⊂ Rd be a polytope. We call F ⊆ P a face of P if there is a
hyperplane

h =

{
x ∈ Rd :

d∑
i=1

hixi = hd+1

}
such that F = P ∩ h and P ⊂ h+, where

h+ =

{
x ∈ Rd :

d∑
i=1

hixi ⩾ hd+1

}

is the closed positive halfspace bounded by h.1 We say that the h supports face F.

You should think of a face as the intersection of P with a hyperplane “tangent” to P.
Figure 10.4 illustrates this notion. The dimension of a face is the dimension of its affine
hull. A face of dimension k is called a k-face. Conventionally,

• 0-faces are called vertices,

• 1-faces are called edges,

• (dim(P) − 2)-faces are called ridges, and

• (dim(P) − 1)-faces are called facets.

For example, the octahedron in Figure 10.2(c) has 8 facets, 12 edges (which are also
ridges), and 6 vertices. The dodecahedron in Figure 10.2(d) has 12 facets, 30 edges(=ridges),
and 20 vertices.

Figure 10.4: Two faces (an edge and a vertex) with supporting hyperplanes.

Degeneracy occurs if we set h1 = · · · = hd = 0 in the definition.2 If hd+1 = 0 then
h = h+ = Rd, so this hyperplane supports P. If hd+1 < 0 then h = ∅, h+ = Rd, so this
hyperplane supports ∅. These two are called degenerate faces of P; the others are called
proper faces.

1Note that an inequality
∑d

i=1 hixi ⩽ hd+1 is equivalent to
∑d

i=1(−hi)xi ⩾ −hd+1, so sticking to
positive halfspaces in the definition is no loss of generality.

2In Section 1.2 we did not allow such, but here we need it.
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Exercise 10.3. Show that every facet of a full-dimensional polytope has a unique sup-
porting hyperplane: its affine hull.

The definition of a face, in its current form, is cumbersome to work with. In particular,
to verify a supporting hyperplane h, we have to reason about its interaction with the
continuous mass P. Thankfully, the lemma below reduces the verification to a finite set.

Lemma 10.4. Let P = conv(P) ⊂ Rd be a polytope. If a hyperplane h satisfies P ⊂ h+,
then P ⊂ h+ and P ∩ h = conv(P ∩ h).

To get the intuition for the lemma as well as its proof, let us rephrase it: Imagine a
hyperplane h and several points, some sitting on h while others living strictly on one side
of h. Then the convex hull of the points should also dwell in that side and, moreover,
intersect h in the zone that “fills between” the points on h.

Proof. As P ⊂ h+ and h+ is convex, the first claim follows immediately. The intersection
P ∩ h is convex as both P and h are convex, therefore conv(P ∩ h) ⊆ P ∩ h.

It remains to show P ∩ h ⊆ conv(P ∩ h). Assume h = {x ∈ Rd :
∑d

i=1 hixi = hd+1}.
Let p ∈ P ∩ h. Since p ∈ P we can express p =

∑
q∈Q λqq as a convex combination of

some other points Q ⊆ P \ {p}, where λq > 0 for all q ∈ Q. Since p ∈ h we know

hd+1 =

d∑
i=1

hipi =

d∑
i=1

hi

∑
q∈Q

λqqi =
∑
q∈Q

λq

d∑
i=1

hiqi ⩾
∑
q∈Q

λqhd+1 = hd+1.

where the “⩾” uses the fact that P ⊂ h+. As the two ends are equal, the inequality is in
fact an equality. But recall λq > 0 for all q ∈ Q, so we must have

∑d
i=1 hiqi = hd+1 for

all q ∈ Q. In other words, Q ⊆ P ∩ h. Therefore, p ∈ conv(Q) ⊆ conv(P ∩ h).

As an immediate consequence, every face of conv(P) is a convex hull of some points
in P. In particular, there can be at most 2|P| faces—a finite number as one would expect,
but not at all obvious from the definition!

Lemma 10.4 is central to many proofs in this chapter; let us see an application right
away. You might have speculated that the extreme points of a set P (cf. Definition 5.8)
coincide with the vertices of polytope conv(P). Indeed this is true, up to the formal
subtlety that a vertex is a singleton set rather than a point (we will later ignore this
nuance, but it is good to have talked about it once).

Lemma 10.5. Let P = conv(P) ⊂ Rd be a polytope. Then p is an extreme point of P if
and only if {p} is vertex of P.

Proof. If p = (p1, . . . , pd) is an extreme point of P, then the compact convex sets {p} and
conv(P \ {p}) are disjoint. By the Separation Theorem 5.19, there is a hyperplane h that
strictly separates them. In formulas, there exist non-degenerate hyperplane parameters
h1, . . . , hd+1 ∈ R such that

d∑
i=1

hipi < hd+1 and
d∑

i=1

hiqi > hd+1 ∀q ∈ conv(P \ {p}).
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Let us decrease hd+1 until the first inequality becomes tight. At that moment we have
in particular

d∑
i=1

hipi = hd+1 and
d∑

i=1

hiqi > hd+1 ∀q ∈ P \ {p},

meaning that P ⊂ h+ and P ∩ h = {p}. Applying Lemma 10.4 we obtain P ⊆ h+ and
P ∩ h = {p}, so the hyperplane h supports {p}.

For the other direction, let p be a vertex supported by some hyperplane h. Consider
the set P ′ := P \ {p}. Clearly P ′ ⊂ h+ and P ′ ∩ h = ∅. Applying Lemma 10.4 on P ′, we
derive conv(P ′) ∩ h = ∅. But p ∈ h, so p ̸∈ conv(P ′), namely p is an extreme point.

By V(P) we denote the set of vertices of a polytope P. Then Proposition 5.10 with
Lemma 10.5 imply the following:

Corollary 10.6. P = conv(V(P)); moreover, V(P) =
⋂

P:conv(P)=P P.

In words, V(P) is the minimal description of a polytope P as a convex hull of points.
With little extra work we can relate vertices with arbitrary faces.

Lemma 10.7. Every face F of a polytope P is a polytope itself with V(F) = V(P) ∩ F.

Proof. Let F be a face supported by some hyperplane h. By Lemma 10.4, F = P ∩ h =
conv(V(P)∩ h) = conv(V(P)∩ F). So F is a polytope. Moreover, V(F) ⊆ V(P)∩ F due to
Corollary 10.6. The converse inclusion is clear, as any hyperplane supporting a vertex
v ∈ V(P) ∩ F in the polytope P is also supporting v in the face F.

Let us consider some concrete examples. Each facet of the octahedron is a triangle
(which is a polytope); its three vertices are exactly the vertices of the octahedron that
lie on the triangle. Similarly, each edge is a line segment (which is a polytope as well);
its two vertices are those of the octahedron that lie on the segment.

In view of Corollary 10.6 and Lemma 10.7, every face F can be encoded by V(P) ∩ F

and later restored by taking convex hull. Namely, F 7→ V(P)∩F is an injection from faces
of P to subsets of V(P). In particular, if |V(P)| = n then P has at most 2n faces.

Exercise 10.8. Let P be a polytope with n vertices. Show that P has at most
(

n
k+1

)
many k-faces, for every 0 ⩽ k < dim(P).

Specializing for k = 2, a polytope with n vertices can have at most
(
n
2

)
edges which

doesn’t surprise us: the vertex-edge graph cannot be more than complete. For d = 2, 3

this is a gross overestimate as we know there can be only O(n) many edges; nevertheless,
we can use Exercise 10.8 to upper bound the total number of proper faces by

dim(P)−1∑
k=0

(
n

k+ 1

)
= O

(
ndim(P)

)
,

which substantially improves the previous bound 2n (for n→∞ and constant d).
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Lemma 10.9. Let F,G be two faces of a polytope P. Then F∩G is also a face of P. It
has vertex set V(F ∩G) = V(F) ∩ V(G).

Proof Sketch. Assume that F and G are supported by hyperplanes
∑d

i=1 aixi = ad+1

and
∑d

i=1 bixi = bd+1, respectively. Consider their “mixture”

h :=

{
x ∈ Rd :

d∑
i=1

(ai + bi)xi = ad+1 + bd+1

}
.

It is not hard to check that

• every point p ∈ F ∩G is lying on h;

• every point p ∈ V(P) \ (V(F) ∩ V(G)) is strictly contained in h+.

It follows from Lemma 10.4 that P ⊂ h+ and P∩h = conv(F∩G) = F∩G. So F∩G is a face
supported by h. By Lemma 10.7, its vertex set is exactly P∩ (F∩G) = V(F)∩V(G).

Exercise 10.10. Show that every ridge is incident to exactly two facets.

For polytopes in R3, Euler’s formula gives us a relation between the number of
vertices, edges and facets. In higher dimension this is generalized by the Euler-Poincaré
formula. Let us denote by fk the number of k-faces of a polytope P.

Theorem 10.11 (Euler-Poincaré formula). For every d-dimensional polytope we have

d−1∑
k=0

(−1)kfk = 1− (−1)d.

When specializing to d = 3 we recover the familiar f0 − f1 + f2 = 2. We will see
an elegant proof of the formula later in Chapter 11; but now let us explore one of its
consequences:

Exercise 10.12. Let P ⊂ R4 be a finite set of points in general position and let P be
the polytope defined by the convex hull of P. Show that f3 ⩾ f0.

10.2 The Main Theorem

We already know from Theorem 5.22 that a polytope can be written as the intersection
of infinitely many halfspaces. But it seems that most of them are redundant; at least in
dimension d ⩽ 3 finitely many halfspaces suffice. Is it true for higher dimensions? This
motivates the following definition.

Definition 10.13. A polyhedron is the intersection of finitely many halfspaces in Rd.
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Figure 10.5: An (unbounded) polyhedron in R2 (intersection of four halfspaces)

Unlike polytopes, polyhedra may be unbounded. For example, the whole space Rd is
a polyhedron (the intersection of no halfspaces), and every halfspace is also a polyhedron
(the intersection of one halfspace). Figure 10.5 gives another example in R2.

The faces of a polyhedron P can be defined in the same way as for polytopes: F is a
face if there exists a hyperplane h such that F = P ∩ h and P ⊂ h+. For example, the
polyhedron in Figure 10.5 has 3 vertices and 4 edges (= facets), two of which unbounded.

By extrapolating from the case d = 2 (which is always a bit dangerous, but let’s try
anyway), it seems that the only thing that can stop a polyhedron from being a polytope
is its unboundedness. Conversely, it seems that a polytope is always a (bounded) poly-
hedron. These are indeed true in any dimension! So polytopes and bounded polyhedra
is the same object. This is arguably the most fundamental result in polytope theory,
and for this reason, Ziegler calls it the Main Theorem [9, Theorem 1.1].

Theorem 10.14 (Main Theorem). A subset P ⊂ Rd is the convex hull of a finite set of
points if and only if P is a bounded intersection of finitely many halfspaces.

People usually use the attributes V-polytope and H-polytope to mean a polytope
represented as a convex hull of points or an intersection of hyperspaces, respectively.

Exercise 10.15. Let P =
⋂m

i=1 h
+
i be a full-dimensional polytope, represented as the

intersection of m halfspaces h+
1 , . . . , h

+
m. Prove that each facet of P is supported by

one of the m hyperplanes hi. (As a hyperplane can by definition support only one
facet, P has at most m facets.)

It can also be shown [9, Theorem 2.15 (7)] that hyperplanes not supporting a facet are
redundant, meaning that we can always write a full-dimensional polytope with m facets
in the form P =

⋂m
i=1 h

+
i , where each hi supports one of the facets. Hence, in the same

way that non-extreme points are redundant in representing a V-polytope, hyperplanes
not supporting facets are redundant in representing an H-polytope.

Corollary 10.16. Let P be a full-dimensional polytope. Then every point p ∈ ∂P is
contained in some facet.

Proof. Represent P =
⋂m

i=1 h
+
i as an intersection of facet-supporting hyperplanes. If

p ∈ P is not contained in any facet, then it is not contained in any of the hyperplanes.
So a sufficiently small ball around p would still be in P, meaning that p ̸∈ ∂P.
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10.3 Two Examples

Let’s look at two families of higher-dimensional polytopes, called hypercubes and sim-
plices, that naturally generalize the cube and the tetrahedron, respectively. The standard
d-dimensional hypercube is the set{

x ∈ Rd : −1 ⩽ xi ⩽ 1 ∀i ∈ {1, . . . , d}
}
.

Formally this is a polyhedron, described as the intersection of 2d halfspaces. But as the
boundedness is clear, the Main Theorem guarantees that it is a polytope. It has at most
2d facets by Exercise 10.15; but one can easily show that the number is precisely 2d (try
to make the argument!). The next exercise is about its vertices.

Exercise 10.17. Prove that the standard d-dimensional hypercube has 2d vertices.
What are they?

A d-dimensional simplex, or simply d-simplex, is the convex hull of d + 1 affinely
independent points.

Exercise 10.18. Prove that any d-simplex has 2d+1 faces. Specifically, for every subset
Q of its defining points, show that there is a face F with V(F) = Q. (This count is
maximum possible for polytopes with d+ 1 vertices, by Lemma 10.7.)

10.4 Polytope Structure

In this section, we will summarize some more advanced properties of polytopes. All of
these classical material can be found in full detail in Ziegler’s book [9].

10.4.1 The Graph of a Polytope

For any d-dimensional polytope P, its vertices and edges form a graph G(P), sometimes
also called the 1-skeleton of P. As we discussed in the beginning of this chapter, these
graphs are just cycles for dimension d = 2, and triconnected planar graphs for dimension
d = 3 (Steinitz’s Theorem 10.1). It turns out that for higher dimensions d, the graphs
are also d-connected, as we will soon show.

Why do we care about these graphs? From a computational viewpoint they are very
relevant to linear programming, a cornerstone in optimization theory. We will briefly
explain the connection here without going into details. In a linear program we want to
maximize a linear function c⊤x where the variable x is subject to a system of linear
inequalities Ax ⩽ b. Each row in Ax ⩽ b specifies a halfspace, so all the rows together
define a polyhedron P. Let us assume for simplicity that it is non-empty and bounded,
hence a polytope by the Main Theorem. Let ζmax := maxx∈P c⊤x be the optimal value
of the linear program. Then c⊤x = ζmax is a hyperplane whose intersection with P is the
set of optimal solutions. In particular, the set of optimal solutions is a face of P. Let us
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orient every edge {v,w} of G(P) so that v → w if and only if c⊤v < c⊤w. Clearly the
oriented graph is acyclic. Further, Proposition 10.19 below implies that every sink is an
optimal solution. Thus one way to find an optimal solution is to start from any vertex
and follow the directed edges, until we reach a sink. This is the main idea of an entire
family of algorithms for linear programming, called the simplex method.

Proposition 10.19 (see [9]). Let P be a polytope. Orient the graph G(P) as above,
according to the linear function c⊤x. Show that if vertex v ∈ V(P) is suboptimal,
that is if c⊤v < maxx∈P c⊤x, then there is an edge going out of v.

In order for the simplex method to work efficiently, the graph G(P) needs to have
small diameter. Warren M. Hirsch made the following conjecture in 1957, known as the
Hirsch conjecture : For any d-dimensional polytope P with m facets, the diameter of
graph G(P) is at most m− d.

This conjecture was disproven in 2010 by Francisco Santos [6], who constructed a 43-
dimensional polytope with 86 facets whose graph has diameter larger than 43. However,
the weaker polynomial Hirsch conjecture, which states that the graph of a polytope
with m facets has diameter polynomial in m, is still open.

We conclude this section with Balinski’s theorem about the connectivity of G(P).

Theorem 10.20 (Balinski). For any d-dimensional polytope P, its graph G(P) is d-
connected.

Proof. Let P = conv(V) ⊆ Rd where V is the vertex set of P, with |V | ⩾ d+ 1. We want
to show that deleting any subset S ∈

(
V

d−1

)
does not disconnect G(P).

Let us fix a vertex v0 ∈ V \S and a hyperplane h : c⊤x = ζ that goes through S∪ {v0}.
Such a plane must exist because any d points in Rd is contained in some hyperplane.
Let ζmin and ζmax be the minimum and maximum values that the linear function c⊤x
can attain on P, respectively; note that ζmin ⩽ ζ ⩽ ζmax.

Let Fmin and Fmax be the faces supported by the hyperplanes c⊤x = ζmin and c⊤x =
ζmax, respectively. Now consider an arbitrary vertex v ∈ V \ S.

• If c⊤v ⩾ ζ, then by Proposition 10.19, either v ∈ V(Fmax) or there is a path from
v to V(Fmax) such that the function value c⊤x strictly increases in each hop. In
particular, the path avoids the set S because c⊤x = ζ for all x ∈ S.

• If c⊤v ⩽ ζ, then by a symmetric argument, either v ∈ Fmin or there is a path from
v to V(Fmin) that avoids S.

Moreover, since c⊤v0 = ζ we know that v0 connects to both Fmin and Fmax without going
through set S.

Finally, observe that Fmin and Fmax are lower dimensional polytopes, so by induction
both G(Fmin) and G(Fmax) are connected. Therefore we may conclude that all vertices in
V \ S are connected without going through S.
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10.4.2 The Face Lattice

The graph of a polytope concerns only the 0-faces (vertices) and 1-faces (edges). More
generally, we can collect all the faces of a polytope P and order them by inclusion. That
is, F ⩽ G if F ⊆ G; and F < G if F ⊂ G. This partially ordered set (or poset) is called
the face lattice of P. Posets are usually drawn as Hasse diagrams where larger elements
appear higher up. Two elements F < G are linked by a line if there is no H : F < H < G.
For example, the face lattice of the 3-dimensional cube is depicted in Figure 10.6.

1 2

3 4

5 6

7 8

1 2 3 4 5 6 7 8

∅

12 34 56 78 15 26 37 4813 24 57 68

1234 5678 1256 3478 1357 2468

[8]

Figure 10.6: The cube (left) and its face lattice (right). Faces are named with the
labels of their vertices.

What makes this poset a lattice is the following property. For any two faces F and
G, there is

• a unique maximal face E such that E ⩽ F,G (called their meet); and

• a unique minimal face H such that F,G ⩾ H (called their join).

Clearly the meet of F and G is exactly F ∩ G (which is indeed a face by Lemma 10.9,
with vertex set V(F) ∩ V(G)). It may be tempting to think that the join of F and G is
conv(V(F)∪V(G)), but that is not a face in general. The join turns out to be something
more intricate. We can already observe this in the face lattice of a cube (Figure 10.6).
The join of the edges 12 and 13, for example, is the face with four vertices 1234. The
following exercise asks you to prove the existence of a join, implicitly.

Exercise 10.21. In general, a poset is a pair (F,⩽). Here ⩽ is a partial order over F,
meaning that it is reflexive (F ⩽ F always holds), antisymmetric (F ⩽ G and G ⩽ F

implies F = G) and transitive (F ⩽ G and G ⩽ H implies F ⩽ H).
An element F ∈ F is maximal if there is no element G > F. Similarly, it is

minimal if there is no element G < F.
An element E is a maximal lower bound of F and G if E ⩽ F,G but no element

E ′ > E has this property. If there is only one such E, then we call it the meet of F

and G. Similarly, an element H is a minimal upper bound of F and G if F,G ⩽ H
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but no element H ′ < H has this property. If there is only one such H then we call
it the join of F and G.

Now for the actual exercise: Let (F,⩽) be a finite poset with a unique maximal
element 1. Further suppose that every two elements F and G have a meet. Prove
that then also every two elements F and G have a join!

For other fine-grained properties of the face lattice, see [9, Theorem 2.7].
The face lattice stores the combinatorial information of a polytope. Two polytopes are

called combinatorially equivalent if they have isomorphic face lattices [9, Section 2.2].
Combinatorially equivalent polytopes may geometrically look different. For example,
all triangles in the plane are combinatorially equivalent, but some are equilateral while
others can be long and skinny.

10.4.3 Polarity

For every polytope P ∋ 0, there is a so-called polar polytope P△ ∋ 0 whose face lattice is
that of P but turned upside down [9, Theorem 2.11]. This means that the vertices of P
correspond to facets of P△, edges of P to ridges of P△, and so on.

If P = conv(P), then its polar polytope can be constructed as

P△ =
⋂
p∈P

h−
p where h−

p :=

{
x ∈ Rd :

d∑
i=1

pixi ⩽ 1

}
.

Geometrically, going to the polar polytope corresponds to replacing a point (part of
the description of the V-polytope P) with a halfspace (part of the description of the
H-polytope P△). This operation is called inversion at the unit sphere ; see Figure 10.7.
It can be shown that P△△ = P.

p

h−
p

radius = 1

0

Figure 10.7: The polar halfspace h−
p has distance 1/∥p∥ from the origin 0 and is

perpendicular to the vector p.
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We can also “polarize” P even if it does not contain the origin: simply choose the
center of inversion at some interior point of P. Depending on which point we choose,
P△ can look different geometrically, but the combinatorial structure (i.e. face lattice) is
nevertheless the same.

We have already seen some pairs of polar polytopes: In fact, each platonic solid is
polar to another one (Figure 10.8). As a sanity check, the dodecahedron has 12 facets
(hence its name), 30 edges and 20 vertices; its polar, the icosahedron, has 20 facets (hence
its name), 30 edges and 12 vertices.

P

P△

Figure 10.8: Polarities among the platonic solids: the tetrahedron is polar to itself
(first column); cube and octahadreon are polar to each other (second and
third columns); dodecahedron and icosahedron are polar to each other
(fourth and fifth columns).

Three of the platonic solids generalize to polytopes in arbitrary dimension d, and we
have already encountered two of these in Section 10.3: simplices and hypercubes. Exer-
cise 10.22 below asks you to show that simplices are polar to simplices. What polytopes
are polar to hypercubes? These are called cross-polytopes which generalizes the octa-
hedron. The standard d-dimensional cross-polytope is the convex hull of the 2d points
(±1, 0, . . . , 0), . . . , (0, 0, . . . ,±1). Equivalently, we may represent it as the intersection of
2d halfspaces {x ∈ Rd :

∑d
i=1 hixi ⩽ 1} for h ∈ {−1, 1}d.

Exercise 10.22. Argue that the face lattice of a d-simplex is isomorphic to the Boolean
cube ({0, 1}d+1,⩽). Conclude that d-simplex is polar to itself. (Hint: Exercise
10.18.)

Polarity sometimes yields surprisingly short proofs that would otherwise require a
non-trivial argument. Below is an example.

Lemma 10.23. Every proper face is contained in some facet.

Proof. Via polarity, the statement for P translates to “every proper face in P△ contains
one or more vertices”. The latter follows from Lemma 10.7.
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10.5 Simplicial and Simple Polytopes

Let us return to the important question that we asked earlier in this chapter:

How many facets can a d-dimensional polytope with n vertices have?

As we have discussed, the answer is Θ(n) for d = 2, 3. For general d, we have an upper
bound of O(nd) from Exercise 10.8, which is an overestimate for d = 2, 3 already. The
full answer will come later in Chapter 11, but let us make a general observation right
now. To address the question, we can actually restrict our attention to simplicial polytopes.
These are d-dimensional polytopes whose facets are all simplices (or more specifically,
(d − 1)-simplices). For example, the octahedron is simplicial since all its facets are
triangles (2-simplices), whereas the dodecahedron is not since its facets are pentagons.

Fixing dimension d and the number n of vertices, the number of facets can only
be maximized by a simplicial polytope. The reason is that a non-simplicial polytope
can be “made simplicial” by slightly and randomly perturbing its vertices. Intuitively,
each non-simplex facet “breaks apart” and gets replaced by several simplex facets. More
formally, with probability 1, all subsets of d + 1 vertices become affinely independent,
thus forcing every facet to contain exactly d vertices (otherwise its dimension would not
be d − 1). Hence each facet is a (d − 1)-simplex now. One can show that the original
facets injectively maps to the new facets, so the number of facets cannot decrease.3

Let’s illustrate this in the cube [−1, 1]3. Suppose that we push the two vertices
(−1,−1,−1) and (1, 1, 1) “slightly inwards” so that they become (−1 + ε,−1 + ε,−1 +
ε) and (1 − ε, 1 − ε, 1 − ε), respectively, for some small ε > 0, then we obtain the
simplicial polytope in Figure 10.9. Similarly, for the dodecahedron, each pentagon facet
gets replaced by three triangles when we slightly perturb the vertices.

Figure 10.9: Perturbing the cube vertices: by pushing the two diagonal vertices
slightly inwards, each square facet breaks up into two triangles, and
the resulting polytope is simplicial.

3In fact, it will strictly increase. See [9, Lemma 8.24] for a formal statement and reference to a proof.
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Exercise 10.24. What happens if we move the two vertices “slightly outwards” so that
they become (−1− ε,−1− ε,−1− ε) and (1+ ε, 1+ ε, 1+ ε), respectively? Draw the
resulting simplicial polytope!

Simplicial polytopes not only maximizes the number of facets; they are also very nice
structurally. In fact, not only their facets but also all their faces are simplices!

Proposition 10.25. A d-dimensional polytope is simplicial if and only if every k-face
is a k-simplex, for 0 ⩽ k ⩽ d− 1.

Proof. The (⇐) direction is trivial. For the (⇒) direction, Lemma 10.23 states that
every k-face F is contained in some facet F ′, which is a simplex by assumption. In
particular, V(F) ⊆ V(F ′) is a set of affinely independent points. So F is a k-simplex.

We can also define the polar notion of simplicial polytopes. A polytope is simple if
every vertex is incident to d edges. As polarity transform turns the face lattice upside
down, a polytope is simple if and only if its polar polytope is simplicial. Checking
Figure 10.8 again, the tetrahedron is both simple and simplicial, the octahedron as well
as the icosahedron are simplicial, and their polars—the cube and the dodecahedron—are
simple. Via polarity, an alternative way to phrase our initial question is:

How many vertices can a d-dimensional polytope with n facets have?

The count is maximized only by the simple polytopes.

Exercise 10.26. Characterize all polytopes in R3 that are both simple and simplicial.

10.6 High-Dimensional Delaunay Triangulations

In discussing Delaunay triangulations and proving the termination of the Lawson flip
algorithm in Section 6.3, we have argued that every triangulation in the plane gives rise
to a “lifted surface” that can pointwise only decrease in height under a Lawson flip, so
that eventually no Lawson flip is possible any more. In this section we discuss more
systematically what the lifted surface actually is after the algorithm terminates, that
is, when the triangulation has become Delaunay. In fact, we want to generalize this to
arbitrary dimension d.

We will give the big picture upfront, borrowing the very neat Figure 10.10 from Hang
Si [7]. Let us consider a planar point set in general position (no three points on a line,
no four points on a circle), so its Delaunay triangulation is unique by Corollary 6.18.
Imagine lifting the points to the unit paraboloid in R3 and consider the convex hull of
the lifted points—a polytope in R3. Its lower facets (triangles by general position), when
projected back to R2, must satisfy the empty circle property (cf. Lemma 6.12) and thus
yield the Delaunay triangulation. See the lower right part in Figure 10.10.

So the “lifted surface” when the Lawson flip algorithm terminates is exactly the lower
convex hull of the lifted points. This also means that we can reduce the computation
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regular triangulation

farthest point regular triangulation

z = ∞

z = −∞

Pω =

z = ω1

Delaunay triangulation

farthest point Delaunay triangulation

z = −∞

z = x2 + y2

P =

z = ∞

lower faces

upper faces

Figure 10.10: Triangulations in Rd as projections of polytopes in Rd+1

of the Delaunay triangulation to computing a convex hull in R3. We will formally state
and prove this relation for general dimension soon.

Figure 10.10 shows more. In the upper right part, we see what happens when we
project the upper facets back to R2. The result is called the farthest-point Delaunay
triangulation. It is generally not a triangulation of the point set, but only of the ex-
treme points. Each triangle in this triangulation is “anti-Delaunay” in the sense that
its circumcircle contains all other points; see Exercise 10.41 below. The left part of
Figure 10.10 shows what happens if we lift the points not onto the unit paraboloid but
in some arbitrary way. The convex hull of the lifted points is still a polytope, and if
it is simplicial, we can recover two triangulations in the plane by projecting the lower
and upper facets back to R2, respectively. Such triangulations are called regular ; the
(farthest-point) Delaunay triangulation is a specific regular triangulation.

After the pictorial outline, we will now formalize the intuition. In Definition 6.1, we
have introduced triangulations of point sets in the plane. We can generalize it to higher
dimensions in a straightforward way, replacing “triangles” by “d-simplices”. We still call
it a triangulation, for lack of a better name derived from the word “simplex”.

Definition 10.27. A triangulation of a finite point set P ⊂ Rd is a collection T of d-
simplices, such that

(1) conv(P) =
⋃

T∈T T ;
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(2) P =
⋃

T∈T V(T); and

(3) for every distinct pair T, T ′ ∈ T, the intersection T ∩ T ′ is a face of both.4

For d = 2 we recover Definition 6.1. Also for d = 1 the definition makes sense, as a
point set {a1, a2, . . . , an} in R1 (assuming a1 < a2 < · · · < an) has a unique triangulation
T = {[ai, ai+1] : 1 ⩽ i < n}.

However, at the moment it is not clear whether every point set in Rd has a triangu-
lation, for d ⩾ 3. Anyway, we go ahead and define Delaunay triangulations in the same
way as before.

Definition 10.28. A triangulation T of a finite point set P ⊂ Rd is a Delaunay triangula-
tion, if the circumsphere of every d-simplex T ∈ T is empty of points from P.

What is the circumsphere of a d-simplex? This is the unique sphere that contains all
its d + 1 vertices. Before you can even question about its existence and uniqueness, let
us prove it.

Lemma 10.29. Let S ⊂ Rd be a set of d + 1 affinely independent points. Then there
exists a unique sphere containing S.

Proof. Recall that a sphere with center c ∈ Rd and radius r ⩾ 0 is formally defined as
the set {x ∈ Rd : ∥x − c∥ = r}. Squaring the condition, we are looking for a (unique)
point c ∈ Rd and a (unique) number r ⩾ 0 such that

∥q− c∥2 = r2, ∀q ∈ S (10.30)

As usual, we understand a point x ∈ Rd as a column vector. Then x⊤y is the scalar
product

∑d
i=1 xiyi of two points x, y ∈ Rd. With this, the previous system of equations

is equivalent to

∥q∥2 = 2q⊤c+ r2 − ∥c∥2︸ ︷︷ ︸
=:α

, ∀q ∈ S. (10.31)

In still other words,

∥q∥2 = (q⊤, 1)

(
2c

α

)
, ∀q ∈ S.

Stacking the d+ 1 equations row by row, this is a linear system of the form b = B

(
2c

α

)
where b ∈ Rd+1 and B ∈ R(d+1)×(d+1), one row for each q ∈ S. As the points q ∈ S are
affinely independent, the rows of B are lineary independent (Proposition 5.4) and so B

is invertible. So there is a unique c ∈ Rd and a unique α ∈ R satisfying (10.31), which
uniquely determine r2 := α+∥c∥2 and satisfy (10.30). Note that such r2 must be positive
because the left hand side of this satisfied equation (10.30) is always positive.

4Note that this also allows for T ∩ T ′ = ∅, since ∅ is a face of every polytope.
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Next we want to show that there is a unique Delaunay triangulation, assuming suffi-
ciently general position. This means that no d + 1 points lie on a common hyperplane,
and no d+ 2 points lie on a common sphere.

As a preparation, we first define the concept of a Delaunay simplex.

Definition 10.32. Let P ⊂ Rd be a set of points in general position. A simplex conv(S)
where S ∈

(
P

d+1

)
is called a Delaunay simplex for P if the circumsphere of S is empty

of points from P.

Next comes the crucial insight. Generalizing Section 6.3, we show that Delaunay
simplices correspond to “lower” facets of a polytope in one dimension higher, namely the
convex hull of the lifted points. For p = (p1, . . . , pd) ∈ Rd, we define the lifted point

ℓ(p) := (p, ∥p∥2) = (p1, . . . , pd, ∥p∥2) ∈ Rd+1. (10.33)

For d = 2, this is the standard lifting map that raises points in the plane to the unit
paraboloid in R3. The following lemma naturally extends Lemma 6.12.

Lemma 10.34. For any sphere S ⊂ Rd, there is an upward hyperplane5 h ⊂ Rd+1 such
that the following property holds. A point q ∈ Rd is on/outside/inside S if and
only if the lifted point ℓ(q) ∈ Rd+1 is on/above/below h.

Conversely, for any upward hyperplane h ⊂ Rd+1 that intersects the unit paraboloid,
there is a sphere S ⊂ Rd such that the aforementioned property holds.

Proof. We have already done most of the work in the proof of Lemma 10.29. Given a
sphere S ⊂ Rd with center c and radius r, let us denote α := r2 − ∥c∥2. Along the same
lines of deriving (10.31), we have

∥q∥2 = 2q⊤c+ α ⇐⇒ q on S,

∥q∥2 > 2q⊤c+ α ⇐⇒ q outside S, (10.35)
∥q∥2 < 2q⊤c+ α ⇐⇒ q inside S.

Recall that ℓ(q) = (q, ∥q∥2), so the formulas may be rephrased as

(−2c⊤, 1)ℓ(q) = α ⇐⇒ q on S,

(−2c⊤, 1)ℓ(q) > α ⇐⇒ q outside S, (10.36)
(−2c⊤, 1)ℓ(q) < α ⇐⇒ q inside S.

In other words, the lifted point ℓ(q) is on/above/below the upward hyperplane h :={
x ∈ Rd+1 : (−2c⊤, 1)x = α

}
in the respective cases.

Conversely, given an upward hyperplane h ⊂ Rd+1, let h1, . . . , hd, 1, hd+2 be its
parameters. Define ci := −hi/2, α := hd+2 and r2 := α+ ∥c∥2, and consider the formal
sphere S := {x ∈ Rd : ∥x − c∥ = r}. It is not yet clear that r2 ⩾ 0, or S ̸= ∅, but the

5Being upward means that the coefficient for the last coordinate is positive. By scaling the equation
appropriately, we may assume that the coefficient is exactly one. Geometrically, the normal vector of such
hyperplane is pointing upward.
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derivations (10.35) and (10.36) hold anyway, so the desired property definitely hold. We
just need to show S ̸= ∅. To this end, recall from assumption that h intersects the unit
paraboloid, thus the “=” case in (10.36) does happen, which certifies that there is some
point on S.

Corollary 10.37. Let P ⊂ Rd be a finite point set. Denote by ℓ(P) = {ℓ(p) : p ∈ P} the
set of lifted points. Then the polytope P := conv(ℓ(P)) has vertex set ℓ(P).

Proof. By definition V(P) ⊆ ℓ(P), so it remains to show that ℓ(p) is vertex for all p ∈ P.
To this end, apply Lemma 10.34 to the singleton S = {ℓ(p)} (a sphere with center ℓ(p)
and radius 0!) and get a hyperplane h. Every point q ∈ P \ p is outside the sphere S, so
its lifting ℓ(q) is above the hyperplane h. Hence h supports {ℓ(p)} by Lemma 10.4.

Lemma 10.38. Let P ⊂ Rd be a finite point set in general position. Then P =
conv(ℓ(P)) is a simplicial polytope in Rd+1. Moreover, for any subset S ⊆ P, the
following two statements are equivalent.

• conv(S) is a Delaunay simplex for P.

• conv(ℓ(S)) is a lower facet of P, meaning that it is a facet supported by some
upward hyperplane.

Proof. That P is simplicial follows from general position. Indeed, every facet of P is a
d-face, so it contains at least d+1 (affinely independent) vertices. But it cannot contain
more: All the vertices, necessarily in the form ℓ(p), p ∈ P by Corollary 10.37, are lying
on a common hyperplane in Rd+1, so their projections onto Rd are on a common sphere
by Lemma 10.34. General position requires the number to be less than d+ 2.

Now we proceed to the “moreover” part. Let conv(S) be a Delaunay simplex, so S

consists of d+1 affinely independent points whose circumsphere is empty of points from
P. Applying Lemma 10.34 on this sphere, there is an upward hyperplane h such that
ℓ(P)∩h = ℓ(S) and ℓ(P) ⊂ h+. So h supports conv(ℓ(S)) by Lemma 10.4. Note that ℓ(S)
consists of d+ 1 affinely independent points, so the face conv(ℓ(S)) has dimension d and
is a (lower) facet, indeed.

Conversely, assume that conv(ℓ(S)) is a lower facet (a d-simplex since the polytope is
simplicial), supported by some upward hyperplane h. This time we apply Lemma 10.34
on h, and obtain a sphere that goes through S and satisfies the empty property. Finally,
S is indeed a simplex by general position (no d+1 = |S| points on a common hyperplane).

From this correspondence, we may obtain the existence of a unique Delaunay trian-
gulation for a finite point set P ⊂ Rd in general position.

Theorem 10.39. Let P ⊂ Rd be a finite point set in general position. Then the col-
lection T of all Delaunay simplices for P is the unique Delaunay triangulation of
P.
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Proof. Suppose T is a triangulation. Then it would be a Delaunay triangulation by
definition. The uniqueness also follows: Any other Delaunay triangulation consists of
Delaunay simplices, thus a proper subset of T; but then it cannot cover conv(P) in full,
a contradiction.

It remains to prove that T is a triangulation, so let’s look at the three properties
in Definition 10.27. Denote by P = conv(ℓ(P)) the convex hull of the lifted points (a
polytope in Rd+1).

(1) conv(P) =
⋃

T∈T T . Let q ∈ conv(P), and our goal is to find a simplex T ∈ T

that contains q. Consider a vertical6 line in Rd+1 from (q,−∞) to (q,∞). Since
q ∈ conv(P), the line must intersect conv(ℓ(P)) = P in a non-empty closed interval
(it is an interval since P is convex and compact). So let us choose the minimum
height t ∈ R such that (q, t) ∈ P. Then (q, t) is on the boundary of P and
hence contained in one or more facets by Corollary 10.16; one of these must be
a lower facet conv(ℓ(S)) by Exercise 10.40 below. So q ∈ conv(S). But we know
conv(S) ∈ T by Lemma 10.38, and this is the simplex we are looking for.

We have shown conv(P) ⊆ ⋃
T∈T conv(T). The reverse inclusion follows from

conv(S) ⊆ conv(P) for all S ∈
(

P
d+1

)
.

(2) P =
⋃

T∈T V(T). The inclusion ⊇ is trivial. Now for the other inclusion, let p ∈ P.
We claim that ℓ(p) is the vertex of some lower facet of P. Via Lemma 10.38 this
implies that p is the vertex of some T ∈ T.

Here is the key observation: min{t ∈ R : (p, t) ∈ P} = ∥p∥2. Indeed, for t = ∥p∥2
we have (p, t) = ℓ(p) ∈ P. But if t < ∥p∥2 then (p, t) is outside the convex “bowl”
U = {x ∈ Rd+1 : xd+1 ⩾

∑d
i=1 x

2
i }, whereas P = conv(ℓ(P)) ⊂ U.

By the argument for (1), vertex ℓ(p) is hence contained in some lower facet conv(ℓ(S))
of P and is then also a vertex of this facet. So the claim is proved.

(3) The intersection of any two simplices T, T ′ ∈ T is a face of both. This follows from the gen-
eral structure of polytopes. Let F and F ′ be the lower facets of P corresponding
to the Delaunay simplices T and T ′. By Lemma 10.9, the intersection F ∩ F ′ is
a face of P with vertex set ℓ(V(T)) ∩ ℓ(V(T ′)) = ℓ(V(T) ∩ V(T ′)), hence F ∩ F ′ =
conv(ℓ(V(T)∩V(T ′))). Projecting back onto Rd we see T∩T ′ = conv(V(T)∩V(T ′)).
This is a face of both simplices T and T ′, since every subset of vertices of a simplex
defines a face (Exercise 10.18).

Exercise 10.40. Let P ⊂ Rd+1 be a polytope and (q, t) ∈ Rd+1 such that (q, t) ∈ P but
(q, t ′) /∈ P for t ′ < t. Prove that (q, t) is contained in some lower facet of P.

Exercise 10.41. Let P ⊂ Rd be a finite set of points in convex position (every point is
extreme), and in general position (no d + 1 points on a hyperplane, no d + 2 on a

6In high dimension, the word “vertical” should read “along the last axis”. Similarly, the word “height”
should read “the last coordinate”.
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sphere). A farthest-point Delaunay triangulation of P is a triangulation T of P with
the property that the circumsphere of every d-simplex T in T contains all points
P \ V(T):

Prove that P has a unique farthest-point Delaunay triangulation; Figure 10.10
provides the intuition. The name comes from the fact that in the plane, the farthest-
point Delaunay triangulation is dual to the farthest-point Voronoi diagram, the sub-
division of the plane into regions with the same farthest point.

10.7 Complexity of 4-Dimensional Polytopes

The complexity of a polytope is defined as the number of faces. Indeed, if we talk about
computing a polytope, we typically mean that we want to compute its face lattice. In
dimensions d = 2, 3, each polytope with n vertices has complexity Θ(n). We have also
seen that for d = 4, the complexity is bounded by O(n4) (Exercise 10.8). But can we
actually have superlinear complexity for d = 4, or does the linear behavior in dimensions
d = 2, 3 continue?

Using the previously derived connection to 3-dimensional Delaunay triangulations,
we can answer this question.

Theorem 10.42. For every even natural number n ⩾ 4, there exists a 4-dimensional
simplicial polytope with n vertices and at least (n

2
− 1)2 = Θ(n2) facets.

Moreover, this polytope also has Θ(n2) edges which is asymptotically maximal since
Exercise 10.8 implies that there are O(n2) edges. In particular, vertex-edge graphs
of 4-dimensional polytopes can be dense and highly non-planar. They can even be
complete [9, Corollary 0.8]. This may be somewhat counter-intuitve, as it seems to
require the edges “cutting through” the polytope which they obviously cannot. On the
other hand, 4 dimensions are counterintuitive per se, so let’s not worry to much about
intuition here.

Proof. We construct a point set P ⊂ R3 in general position, |P| = n, for which there
are at least (n

2
− 1)2 Delaunay simplices. By Lemma 10.38, the convex hull of the lifted

point set ℓ(P) is a 4-dimensional simplicial polytope with at least (n
2
−1)2 (lower) facets.
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Let ℓ1, ℓ2 be two skew (non-parallel, non-intersecting) lines in R3. We choose a set
P1 of n/2 points on ℓ1, and another set P2 of n/2 points on ℓ2. Then we set P = P1∪P2,
after slightly perturbing all points to ensure general position.

The claim is that for any points p, q ∈ P1 consecutive along ℓ1, and points r, s ∈ P2

consecutive along ℓ2, their convex hull conv{p, q, r, s} is a Delaunay simplex. (See the
cartoonish Figure 10.11.) As there are (n

2
− 1)2 ways to choose such p, q, r, s, there are

at least this many Delaunay simplices.

p
q

r s

Figure 10.11: Proof of Theorem 10.42

It remains to prove the claim. The points p, q, r, s are affinely independent (by general
position) and hence have a unique circumsphere. The line ℓ1 intersects this sphere in
exactly the line segment pq; but p, q are consecutive along ℓ1, so no point of P1 lies
inside the sphere. For the same reason, no point of P2 lies inside. As the sphere is
empty, conv{p, q, r, s} is a Delaunay simplex.

It is actually the case that a 4-dimensional polytope with n vertices has O(n2) facets,
so the lower bound provided by Theorem 10.42 is asymptotically best possible. We will
postpone the full account to the later Chapter 11, where we give a tight upper bound
on the number of facets that a d-dimensional polytope with n vertices can have.

10.8 High Dimensional Voronoi Diagrams

Using lifting map, we can also relate the Voronoi diagram of a finite point set P ⊂ Rd

with the facets of some polyhedron in Rd+1. In fact this is what Theorem 8.16 did for
d = 2, without explicitly mentioning polyhedra. Here we simply reprove this theorem
for general d. No new idea appear, so the reader is invited to consider it as a repetition
of Section 8.4, but formulated in the more abstract language of polyhedra and replacing
“2” by “d”.

Let us start by generalizing Voronoi cells to higher-dimensions which is a straightfor-
ward adaptation of Definition 8.3.

Definition 10.43. Let P ⊂ Rd be a finite point set. The Voronoi cell of point p ∈ P is
defined as

VP(p) :=
{
q ∈ R2 : ||q− p|| ⩽ ||q− p ′|| for all p ′ ∈ P

}
.
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In words, VP(p) is the set of points in Rd for which p is a (not necessarily unique)
closest point among all points in P.

Theorem 10.44. Let P ⊂ Rd be a finite point set. For each p ∈ P, we define a
hyperplane

hp =

{
x ∈ Rd+1 : xd+1 −

d∑
i=1

2pixi = −∥p∥2
}
.

Consider the polyhedron P :=
⋂

p∈P h
+
p in Rd+1. Then every hp supports a lower

facet of P. Moreover, for all q ∈ Rd, the following two statements are equivalent.

(i) q ∈ VP(p).

(ii) (q, t) ∈ hp, where t ∈ R is the minimum value such that (q, t) ∈ P.

Pictorially, condition (ii) means that the vertical ray emanating up from (q,−∞) hits
the polytope at the lower facet P ∩ hp. Hence the theorem says that the Voronoi cell
VP(p) is simply the vertical projection of the facet P ∩ hp back to Rd. If we project all
the facets of P to Rd, we obtain the Voronoi diagram of P. Figure 10.12, borrowed from
the book by Joswig and Theobald [5, Page 87], visualizes this for d = 3.

Figure 10.12: A part of the polyhedron P ⊂ R3 in Theorem 10.44, and the Voronoi
diagram as the projections of its facets to R2.
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Proof. We first show that all hp are actually facet-supporting hyperplanes. For this,
it suffices to show that none of the halfspaces h+

p is redundant; see the remark above
Corollary 10.16.

The mysterious-looking hyperplanes hp are actually our old friends! They appeared
implicitly in the proof of Corollary 10.37. The hyperplane hp is obtained exactly by
applying Lemma 10.34 on the singleton sphere {ℓ(p)}, where ℓ denotes the lifting map.
Hence ℓ(p) is on hp and strictly above other hq. So it is in the interior of the polyhedron⋂

q∈P\{p} h
+
q but on the boundary of

⋂
q∈P h

+
q , thus the hyperplane hp is not redundant.

Next we claim that the vertical distance from ℓ(q) to hp is precisely ∥q − p∥2 (cf.
Lemma 8.14 and Figure 8.7). Indeed, ℓ(q) = (q, ∥q∥2) has height ∥q∥2, and its vertical
projection onto hp has height

xd+1 =

d∑
i=1

2piqi − ∥p∥2 = 2p⊤q− ∥p∥2.

So the vertical distance is ∥q∥2 − 2p⊤q+ ∥p∥2 = ∥q− p∥2.
Now we can show the equivalence of (i) and (ii). Given any point q ∈ Rd, ℓ(q) is on

or above the hyperplanes hp. So by the claim we have the following chain of equivalence:

• q ∈ VP(p).

• The vertically closest hyperplane to ℓ(q) is hp.

• Projecting ℓ(q) vertically onto the hyperplanes, the highest point is on hp.

• Raising (q,−∞) vertically until we hit P, the hitting point is on hp.

• (q, t) ∈ hp.

Questions

51. What is a polytope? Give a definition and provide a few examples.

52. What is a face of a polytope? What is a vertex, an edge, a ridge, a facet?
Give precise definitions!

53. Can you characterize vertex-edge graphs of 3-dimensional polytopes? Explain
Steinitz’ Theorem.

54. What is a hypercube? What is a simplex? Define these polytope and explain
what their faces are.

55. How many k-faces can a d-dimensional polytope with n vertices have? Prove
a nontrivial upper bound.

56. (This topic was not covered in HS24 and therefore the question will not be asked in the
exam.)What is the face lattice of a polytope? Give a precise definition, explain
what the lattice property is, and why it holds for the face lattice of a polytope.
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57. What is the polar of a given polytope? Explain the polarity transform and how
face lattices of the original polytope and its polar relate to each other. Show a
pair of mutually polar polytopes and interpret the aforementioned relation in the
example.

58. What are simple and simplicial polytopes? Explain why they are relevant with
respect to counting the maximal number of facets (or vertices) that a d-dimensional
polytope with n vertices (or facets) can have.

59. How connected is the graph of a polytope? State and prove Balinski’s theorem.

60. What is a d-dimensional (Delaunay) triangulation? Give a precise definition.

61. Does every point set P ⊆ Rd have a Delaunay triangulation? Explain why the
answer is yes under general position, why the Delaunay triangulation is unique in
this case, and how you can obtain it from a polytope in one dimension higher.

62. How many facets can a 4-dimensional polytope with n vertices have? Prove a
lower bound of Ω(n2).

63. (This topic was not covered in HS24 and therefore the question will not be asked in the
exam.)What is a d-dimensional Voronoi diagram? Give a definition and explain
how the Voronoi diagram relates to a polyhedron in one dimension higher!
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Chapter 11

Counting

We consider the problems of counting (i) simplices spanned by d + 1 out of n points
in Rd that contain a query point; and (ii) facets of the convex hull of n points in Rd.
These two problems are closely related by yet another duality called Gale Duality.

Counting refers to extremal counting (given only the parameters, what is the maxi-
mum/minimum possible number of the considered object), and to algorithmic counting
(given a concrete input, compute the number of the considered object). Sometimes we
are also interested in enumeration (given a concrete input, produce all objects under
consideration).

Here are a few notational conventions: 0 := (0, 0, . . . , 0) is the origin in the considered
ambient space Rd. N is the set of positive integers, N0 := N∪ {0}, and [n] := {1, 2, . . . , n}.(
S
k

)
denotes the set of all k-element subsets of a given set S. Finally, Checkpoints are usu-

ally simple quizzes to check your understanding of definitions or notions, to be answered
perhaps in a minute or two if you truly absorbed the material.

It will be useful to remember

n−1∑
i=0

(
i

k− 1

)
=

(
n

k

)
=

(
n− 1

k− 1

)
+

(
n− 1

k

)
.

It does not hurt to recapitulate the combinatorial interpretation of these identities. Recall
that

(
n
k

)
=
∣∣([n]

k

)∣∣ is the number of k-element subsets of [n]. Every subset A ∈
(
[n]
k

)
has

a unique maximum element, and we charge A to that element.1 Conversely, if j ∈ [n] is
charged by A =

(
[n]
k

)
, then the set A has to consist of j together with a (k− 1)-element

subset of [j− 1]. In other words, j is charged exactly
(
j−1
k−1

)
times. Therefore,(

n

k

)
=

n∑
j=1

(
j− 1

k− 1

)
,

1At the end of the day, "charging" here means nothing but the mapping A 7→ max(A). We also say
that max(A) is “charged by” or “witnesses” A. These are established counting jargon. Often, an object is
charged multiple times.
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which proves the first identity. For the second identity, we discriminate sets A ∈
(
[n]
k

)
by

whether n is selected or not. (Rephrasing in our counting jargon, we charge A to “true”
if n ∈ A, and to “false” otherwise.) There are

(
n−1
k−1

)
sets where n is selected, and

(
n−1
k

)
sets where it is not. This shows(

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k− 1

)
.

11.1 Introduction

Consider a set P ⊆ Rd and a point q ∈ Rd. We call a set A ∈
(

P
d+1

)
a q-embracing simplex

if q ∈ conv(A). The simplicial depth of point q is the number of q-embracing simplices;
that is

sdq(P) :=

∣∣∣∣{A ∈ ( P

d+ 1

)
: q ∈ conv(A)

}∣∣∣∣ .
Note that when specialized to R1, a median of P is exactly a point of maximum simplicial
depth. So this notion, among others, is a possible response to the search for a higher-
dimensional counterpart of medians. We will investigate questions like:

• How large can the simplicial depth of q be, in any set of n points in general
position?

• How efficiently can we compute the simplicial depth of a point?

For these questions, we may assume without loss of generality that q = 0, as we could
translate all the points rigidly with q while preserving the embracing property.

A second direction we want to explore is the complexity of polytopes in general
dimension d:

• How many facets can a polytope defined by n points have? How few?

• Given n points, how efficiently can we compute the number of facets of its
convex hull? Can we do that asymptotically faster than enumerating these
facets (which is a hard enough problem per se)?

A small reminder as has been reiterated in Chapter 10: The number of facets are linear
in n for d = 2, 3, and can be quadratic in n for d = 4. For general dimension the
superlinear growth continues, and we will see what the right bounds are.

These two directions about simplicial depth and number of facets of a polytope are
very closely related; in a sense that we will make very explicit later (via the so-called
Gale Duality), it is the same question. But for the moment, let us focus on the simplicial
depth view.
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11.2 Embracing Sets in the Plane

In this section we investigate simplicial depth in the plane R2. As we mentioned, we
may assume q = 0. First we generalize embracing simplices (which are triangles in R2)
to embracing sets, relaxing the constraint on cardinality. This is not only a natural step
to take, but also integral to the argument even if we were interested in simplicial depth
only.

Consider a set P of n points in R2, with 0 ̸∈ P and P ∪̇ {0} in general position (no
three collinear points). This setting will be implicitly assumed throughout the section.
For k ∈ N0, we define

ek = ek(P) :=

∣∣∣∣{A ∈
(
P

k

)
: 0 ∈ conv(A)

}∣∣∣∣ .
We call a set A ∈

(
P
k

)
with 0 ∈ conv(A) an embracing k-set. When |A| = 3, it is called an

embracing triangle.

Checkpoint 11.1. e0 = e1 = e2 = 0 by general position. e3 = sd0(P) is the simplicial
depth of 0 in P. And en ∈ {0, 1} indicates whether 0 ∈ conv(P).

We start a general investigation of the vector e⃗ = (e0, e1, . . . , en) ∈ Nn+1
0 . Bounds

and algorithms will follow easily, but you need to be patient, until it becomes apparent
how everything fits together nicely—reward will come. As a preparation consider real
vectors x⃗0..n−3 = (x0, x1, . . . , xn−3), y⃗0..n−2 and z⃗0..n−1 satisfying

ek =

n−3∑
i=0

(
i

k− 3

)
xi for all k ⩾ 3, (11.2)

ek =

n−2∑
i=0

(
i

k− 2

)
yi for all k ⩾ 2, (11.3)

ek =

n−1∑
i=0

(
i

k− 1

)
zi for all k ⩾ 1. (11.4)

Observe that x⃗0..n−3 exists and is uniquely determined by e⃗3..n, since

en =
(
n−3
n−3

)
xn−3 =⇒ xn−3 = en

en−1 =
(
n−4
n−4

)
xn−4 +

(
n−3
n−4

)
xn−3 =⇒ xn−4 = en−1 − (n− 3) xn−3︸ ︷︷ ︸

en...
...

Similarly, this works for y⃗0..n−2 and z⃗0..n−1. Thus we have

e⃗3..n
determine←−−−−→
each other

x⃗0..n−3, e⃗2..n
determine←−−−−→
each other

y⃗0..n−2, e⃗1..n
determine←−−−−→
each other

z⃗0..n−1 .

Note that these facts hold for any vector e⃗, as we have not used any property of the
specific e⃗ we are interested in. They simply describe some possible transformations for
any given vector, although it is by no means clear how they should help...
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11.2.1 Adding a Dimension

Another step that comes across unmotivated: Lift the point set P vertically to a set P ′

in space, arbitrarily, with the only requirement being general position (no four points
from P ′ on a common plane). For example, we may choose the parabolic lifting map
(x, y) 7→ (x, y, x2 + y2); but stay flexible! Let us denote the lifting by

P ∋ q = (x, y) 7→ q ′ = (x, y, z(q)) ∈ P ′.

For an embracing triangle ∆ = {p, q, r} in the plane, let β∆ be the number of lifted
points in P ′ strictly below the plane containing ∆ ′ = {p ′, q ′, r ′}. (Just to avoid confusion:
β∆ clearly depends on the choice of the lifting.) Let

hi := the number of embracing triangles ∆ with β∆ = i.

Checkpoint 11.5.
∑n−3

i=0 hi = e3.

Let us recall here that we are assuming general position for P ∪̇ {0}.

Lemma 11.6. 0 ∈ conv(P) ⇐⇒ h0 = hn−3 = 1.

Proof. (⇐) That’s obvious, since h0 = 1 says that there exists an embracing triangle,
and in particular 0 is in the convex hull of P.

(⇒) If 0 ∈ conv(P) then the z-axis (i.e. the vertical line through 0 in R3) intersects
conv(P ′). Due to general position, it intersects exactly two facets, both of which are
triangles. The bottom one ∆ ′

0 has no point in P ′ below its supporting plane, thus
β∆0

= 0. The top one ∆ ′
1 has no point in P ′ above its supporting plane, hence all but

the three points defining ∆ ′
1 are below, that is β∆1

= n− 3. Clearly both ∆0 and ∆1 are
embracing, so h0, hn−3 ⩾ 1.

On the other hand, any embracing triangle ∆ ∈
(
P
3

)
counted by h0 (respectively hn−3)

has all other points in P ′ above (respectively below) ∆ ′, hence ∆ ′ must give rise to a
facet. In addition it must be hit by the z-axis by the embracing property. But ∆ ′

0 and
∆ ′

1 are the only candidates, so h0 = hn−3 = 1.

Consider an embracing k-set A ∈
(
P
k

)
and its lifting A ′. As observed before, the

z-axis intersects the boundary of conv(A ′) in two facets. Consider the top facet—it is
given by the lifting of some embracing triangle ∆ ∈

(
P
3

)
. We say that this ∆ witnesses

(the embracing property of) A. How many embracing k-sets does ∆ witness?
For ∆ to witness an embracing k-set B, we must have ∆ ⊆ B and the remaining k− 3

points in B \ ∆ are chosen so that B ′ \ ∆ ′ is below the plane spanned by ∆ ′. Hence ∆

witnesses exactly
(

β∆

k−3

)
embracing k-sets. It follows that

ek =
∑

∆∈(P3) embracing

(
β∆

k− 3

)
=

n−3∑
i=0

(
i

k− 3

)
hi. (11.7)
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Note that this is exactly the relation (11.2) (with hi replacing xi). We thus have

e⃗3..n
determine←−−−−→
each other

h⃗0..n−3 := (h0, h1, . . . , hn−3)

and therefore the vector h⃗0..n−3 is independent of the lifting we chose, i.e. hi = hi(P).

A few properties emerge. First, note that h⃗ (consisting of nonnegative integers no
larger than

(
n
3

)
= O(n3), or O(logn) bits) is a compact way of representing e⃗ (consisting

of integers potentially exponential in n, or Ω(n) bits). Also, since it is easy to compute
the vector h⃗ in O(n4) time2, we can compute each entry of ek in O(n4) time.

Second, the independence of the vector h⃗ from the chosen lifting allows quite simple
proofs of properties of h⃗: You can choose the lifting! If you can make a property of h⃗
hold for a chosen lifting, then it will be true for all liftings. Keep this in mind when
solving the following exercise.

Exercise 11.8. Show that

h0 = 1 ⇐⇒ 0 ∈ conv(P) ⇐⇒ hi ⩾ 1 for 0 ⩽ i ⩽ n− 3.

Now, don’t hesitate to use the assertion of this exercise and relation (11.7) for the
following exercise.

Exercise 11.9. Assume 0 ∈ conv(P). What is the minimal possible value of e3 in terms
of n := |P|? (Note that this is a quantified version of Carathéodory’s Theorem for
R3.) Generally, what is the minimal possible value of ek, 3 ⩽ k ⩽ n?

Exercise 11.10. Let P ⊂ R2 be a set of n points in general position (with the origin).
What does

∑n−3
i=0 2ihi count?

Exercise 11.11. Let P ⊂ R2 be a set of n points in general position (with the origin)
and assume 0 ∈ conv(P). Recall that ek denotes the number of embracing k-sets.
Show that

∑n
k=3(−1)kek = −1. (Hint: Plug in the relation ek =

∑n−3
i=0

(
i

k−3

)
hi in

this sum and simplify.)

In a next step we show that the vector h⃗ is symmetric.

Lemma 11.12. hi = hn−3−i.

Proof. Define ĥi in the same way as hi, except that you count the points above (instead
of below) the plane through the lifting of an embracing triangle. Note that ĥi = hn−3−i

by definition. On the other hand, with the same witness argument as before we derive

ek =

n−3∑
i=0

(
i

k− 3

)
ĥi,

and therefore hi = ĥi = hn−3−i.

2With some tricks from computational geometry, in O(n3) time.
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Hence the vector h⃗0..n−3 is determined by its first half h0, h1, . . . , h⌊(n−3)/2⌋.

Exercise 11.13. Let P ⊂ R2 be a set of n points in general position (with the origin).
Show that e3 (the number of embracing triangles) and e4 (the number of embracing
4-sets) are related by (n− 3)e3 = 2e4.

Exercise 11.14. Show that if |P| = 6, then e3 determines e3..6. How?

Exercise 11.15. Show that if |P| is even then e3 is even.

11.2.2 The Upper Bound

We have seen in one of the exercises how the relation between e⃗ and h⃗ can be useful
in proving lower bounds on the ek’s. We need two lemmas towards a proof of upper
bounds. The first lemma states that removing a point from P cannot increase hj.

Lemma 11.16. For all j ∈ N0 and all q ∈ P, we have hj(P \ {q}) ⩽ hj(P).

Proof. What changes happen to hj as we remove a point q from P?

• We lose those embracing triangles ∆ with β∆ = j (before removal) such that q ′ is
in or below ∆ ′.

• We keep those embracing triangles ∆ with β∆ = j such that q ′ is above ∆ ′.

• We gain those embracing triangles ∆ with β∆ = j+ 1 such that q ′ is below ∆ ′.

Now lift q ′ vertically above all planes defined by three points in P ′ \ {q ′}. It does not
change the values hi as h⃗ is independent of the lifting, but eliminates the “gain” case.
This gives the lemma.

Lemma 11.17. For all j ∈ N0 we have∑
q∈P

hj(P \ {q}) = (n− j− 3)hj(P) + (j+ 1)hj+1(P).

Proof. Fix an arbitrary lifting. A contribution to
∑

q∈P hj(P \ {q}) can come only from
triangles ∆ with β∆ = j or β∆ = j+ 1 (relative to the complete point set P).

• If β∆ = j, then ∆ ′ remains a triangle with j points below after removing q iff q is
one of the (n− 3− j) points above.

• If β∆ = j+ 1, then ∆ ′ turns into a triangle with j points below after removing q iff
q is one of the (j+ 1) points below.

Hence the lemma.
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Now we apply the previous Lemma 11.16 to bound∑
q∈P

hj(P \ {q}) ⩽ n · hj(P) =: n · hj,

and with Lemma 11.17 we can derive

(n− j− 3)hj + (j+ 1)hj+1 ⩽ n · hj

(j+ 1)hj+1 ⩽ (j+ 3)hj

hj+1 ⩽
j+ 3

j+ 1
hj .

This bound can be iterated until we reach h0:

hj+1 ⩽
j+ 3

j+ 1
hj ⩽

j+ 3

j+ 1

j+ 2

j
hj−1 ⩽ · · · ⩽ j+ 3

j+ 1

j+ 2

j
· · · 3

1︸ ︷︷ ︸
=(j+3

2 )

h0︸︷︷︸
⩽1

⩽

(
j+ 3

2

)
.

Theorem 11.18. Let P be a set of n points in general position. Then for 0 ⩽ j ⩽ n−3 we
have hj = hn−3−j and hj ⩽

(
j+2
2

)
. Consequently hj ⩽ min

{(
j+2
2

)
,
(
n−1−j

2

)}
. Moreover,

e3 ⩽

{
2
(
n/2+1

3

)
= n(n2−4)

24
for n even,

2
(
(n+1)/2

3

)
+
(
(n+1)/2

2

)
= n(n2−1)

24
for n odd.

Proof. The first part is just a summary of what we have derived so far. For the “more-
over” part, we simply plug them into relation (11.7). Suppose first that n is even. Then

(h0, h1, . . . , hn/2−2) = (hn−3, hn−4, . . . , hn/2−1)

and, therefore,

e3 =

n−3∑
i=0

hi = 2

n/2−2∑
i=0

hi ⩽ 2

n/2−2∑
i=0

(
i+ 2

2

)
= 2

(
n/2+ 1

3

)
.

Second, if n is odd then

(h0, h1, . . . , h(n−3)/2) = (hn−3, hn−2, . . . , h(n−3)/2)

with h(n−3)/2 appearing on both sides. So

e3 =

n−3∑
i=0

hi = 2

(n−3)/2−1∑
i=0

hi + h(n−3)/2

⩽ 2

(n−3)/2−1∑
i=0

(
i+ 2

2

)
+

(
(n+ 1)/2

2

)
= 2

(
(n+ 1)/2

3

)
+

(
(n+ 1)/2

2

)
.
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There are sets where all these bounds are tight, simultaneously. We find it more
convenient to substantiate this claim after further considerations.

Exercise 11.19. Show e3 ⩽ 1
4

(
n
3

)
+O(n2). (That is, asymptotically, at most 1/4 of all

triangles embrace the origin.)

Exercise 11.20. Try to understand the independence of h⃗ of the actual lifting by ob-
serving what happens as you move a single point vertically.

We have obtained lower and upper bounds in the plane. Before proceeding to better
methods for computing the ek’s, we generalize to arbitrary dimension d.

11.3 Embracing Sets in Higher Dimension

It has been announced that our methods easily carry over to higher dimensions. So
let us do a quick tour of deriving the bounds analogous to Theorem 11.18. The reader
should make sure that indeed all arguments can be generalized. It is a good exercise to
recapitulate the proofs.

Let us now assume that P ⊂ Rd is a set of n points in general position with the
origin, that is, 0 ̸∈ P and no d+1 points in P∪ {0} lie on a common hyperplane. There is
no change in the notion of an embracing k-set and of the vector e⃗, but let us still repeat:

For k ∈ N0, we define ek = ek(P) :=
∣∣{A ∈ (P

k

)
: 0 ∈ conv(A)

}∣∣. We call a set A ∈
(
P
k

)
with 0 ∈ conv(A) an embracing k-set. When |A| = d+ 1, it is called an embracing simplex.
We will still use symbol ∆ for embracing simplices. Observe that e0 = e1 = · · · = ed = 0

by general position, and that ed+1 = sd0(P).
We consider a generic vertical lifting from P to Rd+1, denoted by p 7→ p ′. “Vertical”

means we lift along the new dimension; “generic” means that no d+ 2 points in P ′ lie in
a common hyperplane.

If ∆ ∈
(

P
d+1

)
is an embracing simplex, then its lifting ∆ ′ affinely spans a hyperplane.

We use β∆ for the number of P ′ strictly below this hyperplane. We emphasize that β∆

depends on the lifting chosen.
As before, we define the vector h⃗ with

hi := the number of embracing simplices ∆ with β∆ = i.

with the only difference that we now consider embracing simplices rather than triangles.

Checkpoint 11.21.
∑n−(d+1)

i=0 hi = ed+1.

In the plane, our next lemma was 0 ∈ P ⇐⇒ h0 = hn−3 = 1, where hn−3 counted
all embracing triangles ∆ with all other points below (in the lifting). This number is
now n− (d+ 1), so we get

Lemma 11.22. 0 ∈ P ⇐⇒ h0 = hn−(d+1) = 1
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We can take over the proof we have seen for Lemma 11.6. Essential ingredients were
that the xd+1-axis intersects the convex polytope conv(P ′) in a non-empty interval. Each
of its endpoints is on a facet of the polytope. The supporting hyperplane of one facet
has no point in P ′ below, and the supporting hyperplane of the other facet has no point
above (here we use the fact that the intersecting line, the xd+1-axis, is vertical). Hence,
these facets are liftings of embracing simplices ∆0 and ∆1, respectively, with β∆0

= 0

and β∆1
= n − (d + 1). Via the notion of a witness embracing simplex ∆ ⊆ A of an

embracing k-set A, the counterpart of (11.7) reads now

ek =
∑

∆∈( P
d+1) embracing

(
β∆

k− (d+ 1)

)
=

n−(d+1)∑
i=0

(
i

k− (d+ 1)

)
hi , (11.23)

and thus

e⃗d+1..n
determine←−−−−→
each other

h⃗0..n−(d+1).

Hence, hi is independent of the lifting chosen and we can write hi = hi(P). Symmetry of
h⃗ follows readily, as before, by looking at points above instead of below a lifted embracing
simplex.

Lemma 11.24. hi = hn−(d+1)−i.

The two lemmas towards the upper bound carry over, with the first identical to what
we have seen before, and the second with the constants adapted to the dimension.

Lemma 11.25. For all j ∈ N0 and all q ∈ P, we have hj(P \ {q}) ⩽ hj(P).

Lemma 11.26. For all j ∈ N0 we have∑
q∈P

hj(P \ {q}) =
(
n− j− (d+ 1)

)
hj(P) + (j+ 1)hj+1(P).

Proof. Fix an arbitrary generic lifting. A contribution to
∑

q∈P hj(P \ {q}) can come
only from simplices ∆ with β∆ = j or β∆ = j+ 1 (relative to the complete set P).

• If β∆ = j, then ∆ ′ remains a simplex with j points below after removing q, iff q is
one of the (n− (d+ 1) − j) points above.

• If β∆ = j + 1, then ∆ ′ turns into a simplex with j points below after removing q,
iff q is one of the (j+ 1) points below.

Again, for the upper bound on the hi’s, just like in the plane, we start with∑
q∈P

hj(P \ {q}) ⩽ n · hj(P)
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by Lemma 11.25, and then continue

(n− j− (d+ 1))hj + (j+ 1)hj+1 ⩽ n · hj

(j+ 1)hj+1 ⩽ (j+ d+ 1)hj

hj+1 ⩽
j+ d+ 1

j+ 1
hj

by Lemma 11.26. Then we iterate this until we reach h0:

hj+1 ⩽
j+ d+ 1

j+ 1
hj ⩽ · · · ⩽

j+ d+ 1

j+ 1

j+ d

j
· · · d+ 1

1︸ ︷︷ ︸
=(j+d+1

d )

h0︸︷︷︸
⩽1

⩽

(
j+ d+ 1

d

)
.

Theorem 11.27. Let P ⊂ Rd be a set of n points in general position. Then for 0 ⩽
j ⩽ n − (d + 1) we have hj = hn−(d+1)−j and hj ⩽

(
j+d
d

)
. Consequently hj ⩽

min
{(

j+d
d

)
,
(
n−1−j

d

)}
. Moreover,

ed+1 ⩽

{
2
(
(n+d)/2

d+1

)
for n− d even,

2
(
(n+d−1)/2

d+1

)
+
(
(n+d−1)/2

d

)
for n− d odd.

Proof. The first part is just a summary of what we have derived so far. For the “more-
over” part, we simply plug them into relation (11.23). For n− d even we have

(h0, h1, . . . , h(n−d)/2−1) = (hn−d−1, hn−d−2, . . . , h(n−d)/2)

and, therefore,

ed+1 =

n−(d+1)∑
i=0

hi = 2

(n−d)/2−1∑
i=0

hi ⩽ 2

(n−d)/2−1∑
i=0

(
i+ d

d

)
= 2

(
(n+ d)/2

d+ 1

)
.

If n− d is odd then

(h0, h1, . . . , h(n−(d+1))/2) = (hn−3, hn−2, . . . , h(n−(d+1))/2)

with h(n−(d+1))/2 appearing on both sides. So

ed+1 =

n−(d+1)∑
i=0

hi = 2

(n−(d+1))/2−1∑
i=0

hi + h(n−(d+1))/2

⩽ 2

(n−(d+1))/2−1∑
i=0

(
i+ d

d

)
+

(
(n+ d− 1)/2

2

)
= 2

(
(n+ d− 1)/2

d+ 1

)
+

(
(n+ d− 1)/2

d

)
.
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11.4 Embracing Sets vs. Faces of Polytopes

This section exhibits a duality between points sets of size n. It is very different from
polarity and projective duality that you have learnt in previous chapters. Roughly
speaking, if P ⊂ Rd is dual to Q ⊂ Rn−d−1, then the faces of conv(P) one-one correspond
to the embracing sets of Q.

In order to describe this duality, and then to handle it, we need some handy linear
algebra terminology as well as the algebraic rephrasing of our target notions “embracing”
and “supporting hyperplane” (for polytope faces). We will approach this smoothly, and
I apologize to those who have these matters on top of their head anyway.3

11.4.1 Warm-up

Point sequences and matrices. For integers d, n ∈ N0, consider a matrix A ∈ Rn×d. The
sequence SA = (p1, p2, . . . , pn) of row vectors of A can be interpreted as a sequence
of points in Rd (or strictly speaking R1×d, if we want to emphasize that they are row
vectors). Vice versa, every sequence of n points in Rd can be thought of as a matrix
A ∈ Rn×d. Let us say right away that we abandon the general position assumption, at
least for the time being. In particular, we allow repetitions in a sequence of points.

We write 1⃗ and 0⃗ for the vector of all 1’s and all 0’s, respectively. Their dimensions
and their being a row or a column will be clear from the context. Hence 0⃗ also represents
the origin in the ambient space. Given a vector u = (u1, . . . , um) ∈ Rm (row or column),
we write u ⩾ 0⃗ if ui ⩾ 0 for all i = 1, . . . ,m.

Linear and convex combinations. A linear combination λ1p1 + · · · + λnpn of the rows of
A ∈ Rn×d with coefficients λ = (λ1, . . . , λn) ∈ R1×n can be compactly written as matrix
multiplication λ ·A ∈ R1×d. Here are a few simple observations.

(1) 1
n

(⃗
1 ·A

)
is the centroid4 of SA.

(2) 1⃗ ·A = 0⃗ iff 0⃗ is the centroid of SA. Another way of interpreting 1⃗ ·A = 0⃗ is that 1⃗
is orthogonal to all column vectors of A.

(3) λ ·A, with λ ⩾ 0⃗ and 1⃗ · λ = 1, is a convex combination of SA.

(4) If λ · A = 0⃗ with 0⃗ ̸= λ ⩾ 0⃗, then 0⃗ ∈ conv(SA). The reason is that we can scale
such λ to convex coefficients λ ′ := 1

1⃗·λλ which also satisfies λ ′ ·A = 0⃗.

Just like the left product λ · A denotes a linear combination of the rows of A, the
right product A · µ, for µ ∈ Rd, denotes a linear combination of the columns of A.

3Think of it as a warm-up of your linear-algebra-muscles.
4Center of gravity, or the average of the points.
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Hyperplanes. An oriented hyperplane in Rd is represented by a column vector v ∈ Rd+1:

Hv :=

{
x ∈ Rd : (x,−1) · v =

d∑
i=1

vixi − vd+1 = 0

}
for v =

 v1
...

vd+1

 ̸= 0⃗.

Here (x,−1) is the row vector x extended by an extra dimension with coordinate −1. De-
note by H+

v the closed positive halfspace bounded by Hv. Recall that Hv is a supporting
hyperplane of some face of P if P ⊆ H+

v .

(1) The vector σ := (A,−1⃗) · v ∈ Rn indicates the relations between the points pi and
the hyperplane Hv:

σi = 0 ⇐⇒ pi ∈ Hv,

σi ⩾ 0 ⇐⇒ pi ∈ H+
v .

Here (A,−1⃗) denotes the matrix in Rn×(d+1) obtained from A by extending it by
an extra column −1⃗.

(2) (A,−1⃗) · v = 0⃗ iff Hv contains all points from SA.

(3) (A,−1⃗) · v ⩾ 0⃗ iff Hv is a supporting hyperplane of some face of conv(SA).

We recall that matrix A ∈ Rn×d has full rank d iff its columns are independent; that
is, there is no µ ̸= 0⃗ with A ·µ = 0⃗. Rephrased geometrically, rank(A) = d iff there is no
hyperplane H(µ,0) through the origin that contains all points from SA.

11.4.2 Gale Duality

Assume 0 ⩽ d < n. We are now ready to describe a duality between sequences of n

points in Rd and Rn−d−1.
We call a matrix A ∈ Rn×d legal if 1⃗·A = 0⃗ and rank(A) = d. What is the geometric

interpretation of legality? The first condition says that the origin is the centroid of SA. In
particular, conv(SA) contains the origin. Hence conv(SA) is a full dimensional polytope
by the second condition: otherwise conv(SA) is entirely contained in some hyperplane
(which has to go through the origin), contradicting rank(A) = d.

Vice versa, if SA has centroid 0⃗ and conv(SA) is full-dimensional, then A is legal.
Hence legality is a much weaker assumption than general position!

Given legal matrices A ∈ Rn×d and B ∈ Rn×(n−d−1), we call B an orthogonal dual of A,
in symbols A ⊥ B, if A⊤B = 0d×(n−d−1). In other words, all columns of A are orthogonal
to all columns of B; as a result, the columns of A span a linear space of dimension d

orthogonal to the linear space of dimension n− d− 1 spanned by the columns of B, and
both spaces are orthogonal to 1⃗ (by the legality condition). Hence for any legal matrix A,
we may always find an orthogonal dual B, and it is unique up to linear transformations.
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Clearly, A ⊥ B ⇐⇒ B ⊥ A.5 See Figures 11.1 and 11.2 for examples of orthogonal
duals and their point sequences.

p2

p1

p3

p5

p4 p∗
2 = p∗

3 = p∗
4 p∗

1 = p∗
5

SA ⊂ R3

SB ⊂ R1

B =


1

−2/3
−2/3
−2/3
1



A =


0 0 1
1 0 0
0 1 0

−1 −1 0
0 0 −1



Figure 11.1: Point sequences SA and SB from orthogonal duals R5×3 ∋ A ⊥ B ∈ R5×1.

p1

p5

p3

p6

p4

p2

p∗
5 = p∗

6

p∗
1 = p∗

2

p∗
3 = p∗

4

SA ⊂ R3

SB ⊂ R2

B =


1 0
1 0

−1 −1
−1 −1
0 1
0 1



A =


1 0 0

−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1



Figure 11.2: Point sequences SA and SB from orthogonal duals R6×3 ∋ A ⊥ B ∈ R6×2.

Lemma 11.28 (Gale Duality). Let Rn×d ∋ A ⊥ B ∈ Rn×(n−d−1) be legal matrices
that are orthogonal duals to each other, and denote SA = (p1, . . . , pn) and SB =
(p∗

1, . . . , p
∗
n). For any given I ⊆ [n], consider F := {pi : i ∈ I} and F∗ := {p∗

i : i ̸∈ I}.
Then F is contained in a supporting hyperplane of conv(SA) if and only if 0⃗ ∈
conv(F∗).

Proof. Let F lie in a supporting hyperplane. That is, there is a vector v ∈ Rd+1, v1..d ̸= 0⃗,
such that σ := (A,−1⃗) · v ⩾ 0⃗ and σi = 0 for all i ∈ I. Note also σ ̸= 0⃗ since A has full
rank. Moreover,

σ⊤ · B = v⊤ · (A,−1⃗)⊤ · B︸ ︷︷ ︸
0(d+1)×(n−d−1)

= 0⃗

which implies that 0⃗ can be written as a convex combination of points in SB. Since only
those points in F∗ contribute positively, we conclude that 0⃗ ∈ conv(F∗).

5This convenient symmetry, enforced by the condition 1⃗ ·A⊤ = 0⃗, is the only difference to the standard
Gale transform—apart from expository details.
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For the reverse direction, let vector λ ∈ Rn certify the fact that 0⃗ ∈ conv(F∗). That
is, λ⊤ · B = 0⃗ with 0⃗ ̸= λ ⩾ 0⃗ and λi = 0 for i ∈ I. Since λ is orthogonal to the columns
of B (that’s what λ⊤ · B = 0⃗ says), it is in the linear space spanned by the columns of
(A,−1⃗), and so there is a vector v ∈ Rd+1 with (A,−1⃗) · v = λ. Hence, v represents a
supporting hyperplane of conv(SA) that passes through {pi : λi = 0} ⊇ F.

Faces in simplicial polytopes. At this point recall (and you probably already did) the
discussion about simplicial polytopes. We have seen that they maximize the number
of facets for a given number n of vertices. In such a polytope, every k-face where
0 ⩽ k ⩽ d − 1 is a k-simplex and hence has exactly k + 1 vertices. The convex hull of
any subset of these vertices produces a face of the polytope. Therefore, F is the vertex
set of an i-face iff |F| = i+ 1 and F is contained in some supporting hyperplane.6

Given a d-dimensional polytope P, define the f-vector of P by

f⃗ = f⃗(P) = (f−1, f0, f1, . . . , fd−1) ∈ Nd+1
0

where fi is the number of i-faces. (Recall that there is the empty face, which we agree
to be −1-dimensional; but we ignore the d-dimensional face, the whole polytope itself).
Hence f−1 = 1, f0 is the number of vertices of P, and fd−1 is the number of facets of P.

Observation 11.29. If P is a d-dimensional simplicial polytope with vertex set V(P),
then fi counts the number of (i + 1)-element subsets of V(P) that are contained in
a supporting hyperplane of P.

We are ready to employ Gale Duality.

Lemma 11.30. Let A ∈ Rn×d be a legal matrix, whose rows SA encode n points in
Rd in general position, so that conv(SA) is a d-dimensional simplicial polytope with
f-vector (f−1, f0, . . . , fd−1). Suppose that the legal matrix B ∈ Rn×(n−d−1) is an
orthogonal dual of A, whose rows SB encode n points in Rn−d−1 in general position
with the origin. Then

fi−1 = en−i(SB)

for all 0 ⩽ i ⩽ d. In particular, f−1 = en = 1, the number of vertices is f0 = en−1,
and the number of facets is fd−1 = en−d = sd0(SB).

Proof. Denote SA = (p1, . . . , pn) and SB = (p∗
1, . . . , p

∗
n). Since conv(SA) is simplicial,

fi−1 counts the number of I ∈
(
[n]
i

)
such that the points {pi : i ∈ I} are contained in a

supporting hyperplane (Observation 11.29). By Gale duality Lemma 11.28, this happens
iff 0⃗ ∈ conv{p∗

i : i ̸∈ I}, namely {p∗
i : i ̸∈ I} is an embracing (n− i)-set of SB.

6For all of this it is important that the polytope is simplicial. Think of a 3-dimensional cube: The
facets, which are 2-faces, have vertex sets of size 4, and 3-element subsets of these 4-element sets are not
vertex sets of any face.
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In order to carry the upper bounds for e⃗ over f⃗, it remains to ensure that for every
simplicial polytope, the conditions of the lemma can be achieved effectively. To this end,
we start with a simplicial polytope, translate its vertices rigidly so that 0⃗ becomes the
centroid, and then perturb the vertices into general position with 0⃗, without changing
the face lattice and, in particular, the f-vector. That this is possible needs a not too
difficult careful argument, which we sweep under the rug here. In fact, under these
assumptions, an orthogonal dual of the vertices is also a set in general position with the
origin (see Exercise 11.34).

Finally, it comes the bound on the number of faces, first shown by McMullen in 1970.

Theorem 11.31 (Upper Bound Theorem). Let P be a simplicial d-dimensional poly-
tope with n vertices and f-vector (f−1, f0, . . . , fd−1). Then there is a vector h⃗ =
(h0, h1, . . . , hd) ∈ Nd+1

0 such that

fi−1 =

d∑
j=0

(
d− j

i− j

)
hj with hj = hd−j ⩽

(
j+ n− d− 1

j

)
for all j.

In particular,

fd−1 ⩽

{
2
(
n−(d+1)/2
(d−1)/2

)
for d odd

2
(
n−d/2−1
d/2−1

)
+
(
n−d/2−1

d/2

)
for d even

}
= O

(
n⌊d/2⌋)

The proof of the theorem is just a transformation of Theorem 11.27 via Lemma 11.30.
Let us first check the bounds for fd−1 for the values we are familiar with: For d = 2 we
get f1 ⩽ 2

(
n−2
0

)
+
(
n−2
1

)
= 2 + n − 2 = n, and for d = 3 we get f2 ⩽ 2

(
n−2
1

)
= 2n − 4,

which are both the values to be expected. For d = 4, we see that the upper bound
f3 ⩽ 2

(
n−3
1

)
+
(
n−3
2

)
= n(n−3)

2
grows quadratically, which confirms that the lower bound

in Section 10.7 is asymptotically tight.

Proof. With the translation and perturbation mentioned earlier, we may assume that
V(P) has centroid 0⃗ and is in general position with 0⃗. Let A ⊥ B with SA an ordering of
V(P). Denote d∗ := n− d− 1. Applying the theory of embracing sets on SB in the dual
space Rd∗, we know there is a vector h⃗ = (h0, h1, . . . , hn−(d∗+1)) such that

ek(SB) =

n−(d∗+1)∑
j=0

(
j

k− (d∗ + 1)

)
hj and hj = hn−(d∗+1)−j = hd−j.

and hj ⩽
(
j+d∗

d∗
)
=
(
j+n−d−1
n−d−1

)
=
(
j+n−d−1

j

)
. Hence via Lemma 11.30,

fi−1 = en−i =

n−(d∗+1)∑
j=0

(
j

n− i− (d∗ + 1)

)
hj

=

d∑
j=0

(
j

d− i

)
hj =

d∑
j=0

(
j

d− i

)
hd−j =

d∑
j=0

(
d− j

d− i

)
hj =

d∑
j=0

(
d− j

i− j

)
hj.
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In particular, with the bound in Theorem 11.27, we obtain

fd−1 = en−d = ed∗+1 ⩽

{
2
(
(n+d∗)/2

d∗+1

)
for n− d∗ even

2
(
(n+d∗−1)/2

d∗+1

)
+
(
(n+d∗−1)/2

d∗
)

for n− d∗ odd

}

=

{
2
(
n−(d+1)/2
(d−1)/2

)
for d odd

2
(
n−d/2−1
d/2−1

)
+
(
n−d/2−1

d/2

)
for d even

}
= O

(
n⌊d/2⌋)

Tightness. The bounds in the Upper Bound Theorem are tight, for the whole f-vector. A
family of polytopes that attain this bound are quite easy to describe: the so-called cyclic
polytope is the convex hull of {(t, t2, . . . , td) ∈ Rd : t = 1, 2, . . . , n}. These polytopes
have the property that for all i ⩽ ⌊d

2
⌋, every i-element subset of the vertices form an

(i− 1)-face. For example, when d = 4, all pairs of its vertices are connected by an edge.
But we skip the proof that such polytopes have the prescribed number of faces in various
dimensions.

The beauty of the theorem goes much beyond supplying an upper bound. Many facts
known about polytopes follow now quite naturally.

Dehn-Sommerville relations. The symmetry hj = hd−j for 0 ⩽ j ⩽ d is also called Dehn-
Sommerville relations. Originally they are formulated in terms of the f-vector, but
Sommerville later restated them in the current compact form in terms of the h-vector.

To recover the original form, we recall from the Upper Bound Theorem that fi−1 =∑d
j=0

(
d−j
i−j

)
hj. It is not hard to derive an inversion formula hj =

∑j
i=0(−1)j−i

(
d−i
d−j

)
fi−1

just like what we did in Exercise 11.11. The original Dehn-Sommerville relations simply
replace both sides of hj = hd−j by the f-expressions.

Let us discuss an important consequences. Specializing with j := d we get

1 = hd =

d∑
i=0

(−1)d−ifi−1

= fd−1 − fd−2 + fd−3 − · · ·+ (−1)d−1f0 + (−1)d,

which is exactly the Euler-Poincaré Formula that we saw in Chapter 10.
More formulas of the type are 2fd−2 = dfd−1, which can be easily obtained directly

by double-counting.

The usual proof. The “usual proof” of the Upper Bound Theorem does not take the
detour to the Gale dual. Instead, the h-vector is defined directly for a simplicial polytope
P ⊂ Rd. The ingredients of the proof are similar, actually the same as we saw translated
to the Gale Dual. Apart from the original paper by McMullen, see for example the book
by Ziegler [1] for this version of the proof.
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Exercise 11.32. Let A ∈ Rn×d and B ∈ Rn×(n−d−1) be legal matrices with A ⊥ B, such
that SA and SB are in general position with the origin (in particular, all points are
distinct).

(i) Suppose that all elements in SA are extreme, i.e. vertices of conv(SA). What
does this translate to for the embracing sets of SB?

(ii) Suppose fi−1(conv(SA)) =
(
n
i

)
. What does this translate to for the embracing

sets of SB?

Exercise 11.33. Show that a simplicial d-dimensional polytope P with d + 2 vertices
has always k(d+ 2− k) facets, for some 2 ⩽ k ⩽ d.

Exercise 11.34. Let A ∈ Rn×d and B ∈ Rn×(n−d−1) be legal matrices with A ⊥ B.
Suppose SA = (p1, . . . , pn), SB = (p∗

1, . . . , p
∗
n) and let I ⊆ [n]. Note that we do not

assume general position beyond the legality of A and B; in particular, SA and SB

may contain repeated points.

(i) Suppose |I| = d+ 1, and points {pi}i∈I lie in a common hyperplane. What does
this translate to for SB?

(ii) Suppose |I| = d, and points {pi}i∈I lie in a common hyperplane with the origin
0⃗ ∈ Rd. What does this translate to for SB?

(iii) Show that SA is generic iff SB is generic. Here we call a sequence (pi)
n
i=1 of

points in Rd generic if it does not contain 0⃗ and no d+ 1 points in {pi}
n
i=1 ∪ {⃗0}

lie in a common hyperplane.

Exercise 11.35. Let A ∈ Rn×d and B ∈ Rn×(n−d−1) be legal matrices with A ⊥ B, such
that SA and SB are in general position with the origin (in particular, all points are
distinct). Suppose n is even.

We call a vector λ ∈ Rn balanced, if no entry of λ is 0, and there is the same
number of positive and negative entries in λ. We call (Q+, Q−) a feasible equipar-
tition of SA = (p1, . . . , pn) if there is a balanced vector λ such that λ · A = 0⃗ and
Q+ = {pi : λi > 0} and Q− = {pi : λi < 0}. What do these feasible equipartitions
translate to for the points of SB?

11.5 Faster Counting in the Plane (not covered in 2024)

For q ∈ P, call the directed segment
−→
0q an i-edge if there are i points from P lying to

its left. Let ℓi = ℓi(P) be the number of i-edges of P.

Checkpoint 11.36.
∑

i ℓi = n. What is the vector ℓ⃗ = (ℓ0, ℓ1, . . . , ℓn−1) for the case
0 ̸∈ conv(P)?

For every nonempty subset A ⊆ P with 0 ̸∈ conv(A), there is a left tangent and a
right tangent to conv(A) from 0. We charge A to that right tangent point q ∈ A. How
many sets A ∈

(
P
k

)
with 0 ̸∈ conv(A) charges to this particular point q?
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Checkpoint 11.37. The answer is
(

i
k−1

)
if
−→
0q is an i-edge.

Hence, for 1 ⩽ k ⩽ n we have

ek =

(
n

k

)
︸ ︷︷ ︸

all k-sets

−

n−1∑
i=0

(
i

k− 1

)
ℓi︸ ︷︷ ︸

non-embracing k-sets

=

n−1∑
i=0

(
i

k− 1

)
(1− ℓi) . (11.38)

As a remark, this fits in the relation (11.4) with zi = 1− ℓi, so the numbers ℓi satisfying
(11.38) are unique.

Exercise 11.39. Show that ℓi = ℓn−1−i. (Hint: Wonder why “left” and not “right”.)

Theorem 11.40. In the plane, the simplicial depth sdq(P) can be computed in O(n logn)
time, provided P ∪̇ {q} is in general position.

Proof. By translating the points appropriately, we may assume q = 0. Then we compute
the vector ℓ⃗ in O(n logn) time. For that we rotate a directed line around 0, starting
with the horizontal line, say. We always maintain the number of points left of this line,
and update this number whenever we sweep over a point q ∈ P. The q may lie ahead of
0 or behind it; depending on this the number increases or decreases by one, respectively.
After a rotation by 180 degrees, we have collected the “number of points to the left”
for every q ∈ P. The rotation can be implemented in discrete events; all we need is
to sort the points by angle around 0, which takes O(n logn) time. The initialization
of the “number to the left” costs O(n) time, and each update costs O(1) time. This
gives O(n logn) altogether. Finally, from the vector ℓ⃗, we recover the simplicial depth
sdq(P) = e3 via equation (11.38).

Similarly, all entries ek, 1 ⩽ k ⩽ n, can be computed based on the vector ℓ⃗ using
(11.38). However, keep in mind that the binomial coefficients involved in the sum can
be large (up to Θ(n)-bit).

Given (11.38), showing that the upper bound in Theorem 11.18 is tight is actually
easy. Consider the set of vertices P of a regular n-gon (n odd) centered at 0, then
ℓ(n−1)/2 = n and all other ℓi’s vanish. Therefore,

e3 =

(
n

3

)
−

(
(n− 1)/2

2

)
n =

n(n2 − 1)

24
,

thus the case of n odd is tight in Theorem 11.18.
For n even, consider the vertices of a regular n-gon centered at 0, and let P be

a slightly perturbed set of the vertices so that P ∪ {0} is in general position. For every
q ∈ P, the directed segment

−→
0q is either an (n/2−1)-edge or an (n/2)-edge. Interestingly,

because of the symmetry of the ℓ⃗, we immediately know that ℓn/2−1 = ℓn/2 = n/2 and
all other ℓi’s vanish, independent of our perturbation. Now

e3 =

(
n

3

)
−

((
n/2− 1

2

)
+

(
n/2

2

))
n

2
=

n(n2 − 4)

24
,

and the tightness of Theorem 11.18 is proved also for n even.
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11.6 Characterizing ℓ-Vectors (not covered in 2024)

A next step is to understand what possible ℓ-vectors for n points are, and to characterize
and eventually count all possibilities for ℓ⃗ and thus for e⃗. We start with two observations
about ℓ⃗.

Exercise 11.41. Show that ℓ⌊(n−1)/2⌋ ⩾ 1. That is, there is always a bisecting edge.

Exercise 11.42. Show that if ℓi ⩾ 1 for some i ⩽ ⌊(n − 1)/2⌋, then ℓj ⩾ 1 for all j,
i ⩽ j ⩽ ⌊(n− 1)/2⌋.

We summarize our knowledge about ℓ⃗.

Theorem 11.43. For n ∈ N, the vector ℓ⃗ = (ℓ0, . . . , ℓn−1) of an n-point set satisfies the
following conditions.

• All entries are nonnegative integers.

•
∑n−1

i=0 ℓi = n.

• ℓi = ℓn−1−i, namely the entries are symmetric.

• If ℓi ⩾ 1 for some i ⩽ ⌊(n− 1)/2⌋, then ℓj ⩾ 1 for i ⩽ j ⩽ ⌊(n− 1)/2⌋. That is,
starting from the first positive entry, the subsequent entries remain positive
towards the middle.

Let us call a vector of length n a legal n-vector if the conditions of Theorem 11.43
are satisfied. Then the only legal 1-vector is (1), the only legal 2-vector is (1, 1), and
the only legal 3-vectors are (0, 3, 0) and (1, 1, 1). The following scheme displays how we
derive legal 6-vectors from legal 5-vectors, and how we can derive legal 7-vectors from
legal 5- or 6-vectors.

n=5︷ ︸︸ ︷
0 0 5 0 0

0 1 3 1 0

0 2 1 2 0

1 1 1 1 1

add 1 to the middle and split−−−−−−−−−−−−−−−−−−−→

n=6︷ ︸︸ ︷
0 0 3 3 0 0

0 1 2 2 1 0

0 2 1 1 2 0

1 1 1 1 1 1

add 2 to the middle
↓

insert 1 in the middle
↓

0 0 0 7 0 0 0

0 0 1 5 1 0 0

0 0 2 3 2 0 0

0 1 1 3 1 1 0︸ ︷︷ ︸
n=7, middle>1

0 0 3 1 3 0 0

0 1 2 1 2 1 0

0 2 1 1 1 2 0

1 1 1 1 1 1 1︸ ︷︷ ︸
n=7, middle=1
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Exercise 11.44. Show that the scheme is complete when applied to odd n. That is,
starting with all legal n-vectors, n odd, we can generate all legal (n+1)-vectors and
all legal (n+ 2)-vectors this way.

Exercise 11.45. Show that the number of legal n-vectors is exactly 2⌊(n−1)/2⌋.

Exercise 11.46. Show that every legal n-vector is the ℓ-vector of some set of n points
in general position.

With these exercises settled, we have given a complete characterization of all possible
ℓ-vectors, thus of all possible e-vectors.

Theorem 11.47. The number of different e-vectors (or ℓ-vectors) for n points is exactly
2⌊(n−1)/2⌋.

Exercise 11.48. Show that
∑j

i=0 ℓi ⩽ j+1 for all 0 ⩽ j ⩽ ⌊(n−1)/2⌋. (Hint: Otherwise,
we get into conflict with the “remains positive towards the middle” property).

11.7 More Vector Identities (not covered in 2024)

We conclude the chapter with some additional identities that relate different vectors,
many of which reveal illumimating combinatorial interpretations. The arguments are
left as exercises. It is a good place for you to apply the mindset and methods from
previous sections.

The first exercise gives an interpretation of the yi’s in relations (11.3).

Exercise 11.49. For a set P of n points in general position, define a vector (b0, . . . , bn−2)
via the relations

ek =

(
n

k

)
−

n−2∑
i=0

(
i

k− 2

)
bi =

n−2∑
i=0

(
i

k− 2

)
(n− i− 1− bi) ,

for 2 ⩽ k ⩽ n. Give a combinatorial interpretation of these numbers bi.

Next let us investigate how the vectors x⃗, y⃗, and z⃗ from relations (11.2), (11.3), and
(11.4) connect to each other. Clearly, with e1 and e2 given, they determine each other.
But how? This will allow us to relate the vectors h⃗ and ℓ⃗.

Exercise 11.50. Consider the relations (11.2)–(11.4) on x⃗0..n−3, y⃗0..n−2, z⃗0..n−1, and
e⃗1..n (using e1 = e2 = 0). Prove that the yi’s are the forward differences of the xi’s,
and the zi’s are the forward differences of the yi’s. More concretely, show that

yi =


−x0 i = 0

xi−1 − xi 1 ⩽ i ⩽ n− 3

xn−3 i = n− 2

or equivalently, yi = xi−1 − xi for all 0 ⩽ i ⩽ n − 2, where x−1 := xn−2 := 0. Show
that this entails xi = −

∑i
j=0 yj for 0 ⩽ i ⩽ n− 3.
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Exercise 11.51. Prove for vectors a⃗0..m and b⃗0..m,

ak =

m∑
i=0

(
i

k

)
bi for all 0 ⩽ k ⩽ m

⇐⇒ bi =

m∑
k=0

(−1)i+k

(
k

i

)
ak for all 0 ⩽ i ⩽ m.

Exercise 11.52. Employing the previous exercise, what does h0 = 1 say about e⃗3..n?

The following facts can now be readily derived.

Theorem 11.53.

hi =

(
i+ 2

2

)
−

i∑
j=0

(i+ 1− j)ℓj

Exercise 11.54. Prove Theorem 11.53.

Note that this implies the upper bounds we proved for the hi’s in Theorem 11.18,
since

∑i
j=0(i + 1 − j)ℓj is always nonnegative. Moreover, a combinatorial interpretation

of the slack becomes evident.

Theorem 11.55.

ek =

n∑
i=0

(
i

k

)
(ℓi − ℓi−1) with ℓ−1 = ℓn = 1

Exercise 11.56. Prove Theorem 11.55.

Let us point out some other counting problems that can be solved efficiently with the
insights developed.

Exercise 11.57. Given a ray r emanating from point q, and a point set P = {p1, . . . , pn}

in the plane, design an efficient algorithm that counts the number of segments pipj

intersecting r. You may assume that P ∪ {q} is in general position and that r is
disjoint from P.

Exercise 11.58. Let w be a line minus an interval on it (an infinite wall with a
window). Given n points P in the plane, design an efficient algorithm that counts
the number of pairs of points that can see each other, either because they are both
on the same side of w or because they see each other through the window. You may
assume general position.

Exercise 11.59. Recall that a point c ∈ R2 is a centerpoint of P ⊂ R2 if every halfplane
containing c contains at least |P|/3 points from P. Identify the properties of e⃗, h⃗

and ℓ⃗ which can certify that 0 is a centerpoint of P.

Exercise 11.60. Show that yi = −yn−2−i and yi ⩽ 0 for all 0 ⩽ i ⩽ ⌊n−2
2
⌋. We refer

here to the yi’s as defined by (11.3). (Hint: You may wish to use Exercises 11.48
and 11.50.)

Exercise 11.61. Show that hi ⩾ hi−1 for all 0 ⩽ ⌊n−3
2
⌋.
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Questions

64. Explain how the h-vector of a planar point set is defined via a lifting. Give the
relation between the e-vector (number of embracing k-sets) and the h-vector.

65. Argue why the h-vector is independent of the lifting.

66. Argue why the h-vector is symmetric.

67. Argue why for a given generic lifting P ′ ⊂ R3 of a point set P ⊂ R2 in general
position, removing a point cannot increase hj, namely hj(P \ {p}) ⩽ hj(P) for all
j ∈ N0 and all p ∈ P.

68. Show how the ℓ-vector can be computed in O(n logn) time.

69. Argue why the ℓ-vector is symmetric (ℓi = ℓn−1−i for all 0 ⩽ i ⩽ n− 1).

70. Explain orthogonal duals (Gale Duality). How do embracing sets and faces of
polytopes relate to each other?
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