
Little progress would be made in the world
if we were always afraid of possible negative consequences.

Georg Christoph Lichtenberg

Chapter 3

Infinity Is Not Equal to Infinity,
or Why Infinity Is Infinitely
Important in Computer Science

3.1 Why Do We Need Infinity?

The known universe is finite, and most physical theories consider
the world to be finite. Everything we see and each object we touch
is finite. Whatever we do in reality, we get in contact with finite
things only.

Why then deal with infinity? Is infinity not something arti-
ficial, simply a toy of mathematics?

In spite of possible doubts that may appear when we meet the
concept of infinity for the first time, we claim that infinity is an
unavoidable instrument for the successful investigation of our finite
world. We touch infinity for the first time in elementary school,
where we meet the set

N = {0, 1, 2, 3, . . .}
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of natural numbers (nonnegative integers). The concept of this set
can be formulated as follows:

For each natural number i, there is a larger natural number
i + 1.

In other words, there does not exist any number that is larger than
all other numbers (i.e., there exists no largest number), because
for each number x there are numbers larger than x. What is the
consequence of this concept? We are unable to write down the
list of all natural numbers. It does not matter how many of them
we have written already, there are still many missing. Hence, our
writing is a never-ending story, and because of this we speak about
potential infinity or about an unbounded number of natural
numbers. We have a similar situation with the idea (the notion)
of a line in geometry. Any line is potentially infinite, and so its
length is unbounded (infinitely large). One can walk along a line
for an arbitrarily long time and one never reaches the end; it does
not matter which point (position) of the line you have reached,
you can always continue to walk further in the same direction.

The main trouble with understanding the concept of infinity is
that we are not capable of imagining any infinite object at once.
We simply cannot see actual infinity. We realize that we have
infinitely (unboundedly) many natural numbers, but we are not
able to see all natural numbers at once. Similarly we are unable
to see a whole infinite line at once. We are only able to see a finite
fraction (part) of an infinite object. The way out we use is to denote
infinite objects by symbols and then to work with these symbols
as finite representations of the corresponding infinite objects.

To omit infinity, one can propose exchanging unbounded sizes with
a huge finite bound. For instance, one can take the number1 of
all protons in Universe as the largest number and forbid all larger
numbers. For most calculations and considerations one can be suc-
cessful with this strategy. But not if you try to compute the whole
energy of Universe or if you want to investigate all possible rela-
tions between particles of Universe. It does not matter what huge

1This number consists of 79 decimal digits.



3.1 Why Do We Need Infinity? 77

number one chooses as the largest number allowed, there appear
reasonable situations, whose investigation requires us to perform
calculations with numbers larger than the upper bound proposed.
Moreover, for every number x, we are not only aware of the ex-
istence of a number larger than x, we are even able to write this
larger number down and see it as a concrete object. Why should
we forbid something we can imagine (and thus has a concrete rep-
resentation in our mind) and that we may even need?

To convince the reader of the usefulness of the concept of infinity,
we need to provide more arguments than presenting the natu-
ral existence of potential infinity. We claim that by means of the
concept of infinity we are able to investigate the world more suc-
cessfully than without, and so that infinity contributes to a better
understanding of the finite world around. Infinity does more than
enable us to deal with infinitely large sizes; we can also consider
infinitely small sizes.

What is the smallest positive rational number, i.e., what is
the smallest positive fraction larger than 0?

Consider the fraction 1/1000. We can halve it and get the frac-
tion 1/2000, which is smaller than 1/1000. Now we can halve the
resulting fraction again and get 1/4000 . . . . It does matter which
small positive fraction

1

x

one takes, by halving it one gets the positive fraction

1

2x
.

This fraction 1/2x is smaller than 1/x and surely still larger than 0.
We see that this procedure of creating smaller and smaller numbers
does not have any end too. For each positive number, there exists
a smaller positive number, etc.

David Hilbert (1862–1943), one of the most famous mathemati-
cians, said:
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“In some sense, the mathematical analysis is nothing else
than a symphony about the topic of infinity.”

We add to this quotation that current physics as we know it would
not exist without the notion of infinity. The key concepts and no-
tions of mathematics such as derivation, limit, integral and differ-
ential equations would not exist without infinity. How can physics
model the world without these notions? It is unimaginable. One
would already get troubles by building fundamental notions of
physics. How can one define acceleration without these mathemat-
ical concepts? Many of the notions and concepts of mathematics
were created because physics had a strong need to introduce and
to use them.

The conclusion is that large parts of mathematics would disap-
pear if infinity were forbidden. Since mathematics is the formal
language of science, and we often measure a degree of “maturity”
of scientific disciplines with respect of using this language, the
exclusion of the notion of infinity would set science back several
hundred years.

We have the same situation in computer science where we have to
distinguish between programs, which allow infinite computations,
and algorithms, which guarantee a finite computation on each in-
put. There are infinitely many programs and infinitely many algo-
rithmic tasks. A typical computing problem consists of infinitely
many problem instances. Infinity is everywhere in computer sci-
ence, and so computer scientists cannot live without this concept.

The goal of this chapter is not only to show that the concept of
infinity is a research instrument of computer science. Our effort
will be strange because we do not satisfy ourselves with troubles
that appear when we are dealing with potential infinity and actual
infinity (which no one has ever seen). We will still continue to pose
the following strange question:

Does there exist only one infinity or do there exist several
differently large infinities?
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Dealing with this question, that seems to be stupid and too ab-
stract at first, was and is of enormous usefulness for science. Here
we follow some of the most important discoveries about infinity
in order to show that there exist at least two differently sized in-
finities. What is the gain of this? We can use this knowledge to
show that the number of algorithmic problems (computing tasks)
is larger than the number of all programs. In this way we obtain
the first fundamental discovery of computer science.

One cannot automate everything. There are tasks for which
no algorithm exists and so which cannot be automatically
solved by any computer or robot.

As a result of this discovery we are able to present in the next chap-
ter concrete problems from practice that are not algorithmically
(automatically) solvable. This is a wonderful example showing how
the concept of an object that does not exist in the real world can
help to achieve results and discoveries that are of practical im-
portance. Remember, using hypothetical and abstract objects in
research is rather typical than exceptional. And the most impor-
tant thing is whether the research goal was achieved. The success
is the measure of usefulness of new concepts.

3.2 Cantor’s Concept for Comparing the Sizes
of Infinite Sets

Comparing finite numbers is simple. All numbers lay on the real
axis in increasing order from left to right. The smaller of two num-
bers is always to the left of the other one (Fig. 3.1).

2 7

... ...

Fig. 3.1
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Hence, 2 is smaller than 7 because it is to the left of 7 on the
axis. But this is not a concept for comparing numbers because the
numbers are a priori positioned on the axes in such a way that they
increase from left to right and decrease from right to left. Though
the axis is infinite in both directions, only finite numbers lay on
it. It does not matter which position (which point) we consider,
the number sitting there is always a concrete finite number. This
is the concept of potential infinity. One can move along the axis
arbitrarily far to the right or to the left, and each position reached
on this trip contains a concrete finite number. There are no infinite
numbers on the axis. To denote infinity in mathematics we use the
symbol

∞
called a “laying eight”. Originally this symbol came from the letter
aleph of the Hebraic alphabet. But if one represents infinity by just
one symbol ∞, there does not exist any possibility of comparing
different infinities.

What do we need to overcome this?

We need a new representation of numbers. To get it, we need the
notion of a set. A set is any collection of objects (elements) that are
pairwise distinct. For instance, {2, 3, 7} is a set that contains three
numbers 2, 3, and 7. The set {John, Anna, Peter, Paula} contains
four objects (elements): John, Anna, Peter, and Paula. For any set
A, we use the notation

|A|
for the number of elements in A and call |A| the cardinality
(size) of A. For instance,

|{2, 3, 7}| = 3, and |{John, Anna, Peter, Paula}| = 4 .

Now, we take the sizes of sets as representations of numbers. In this
way the cardinality of the set {2, 3, 7} represents the integer 3, and
the cardinality of the set {John, Anna, Peter, Paula} represents
the number 4. Clearly, every positive integer gets a lot of different
representations in this way. For instance

|{1, 2}| , |{7, 11}| , |{Petra, Paula}| , |{�,©}|
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are all representations of the integer 2. Is this not fussy? What
is the gain of this seemingly too complicated representation of
integers?

Maybe you find this representation to be awkward for the com-
parison of finite numbers.2 But by using this way of representing
numbers we gain the ability to compare infinite sizes. The cardi-
nality

|N|
for N = {0, 1, 2, . . .} is the infinite number that corresponds to the
number of all natural numbers. If Q+ denotes the set of all positive
rational numbers, then the number

|Q+|

represents the infinite number that corresponds to the number of
all positive rational numbers (fractions). And

|R|

is the infinite number that corresponds to the number of all real
numbers, assuming R denotes the set of all real numbers. Now we
see the gain. We are allowed to ask

“Is |N| smaller than |R| ?”
or

“Is |Q+| smaller than |R| ?”
As a result of representing numbers this way we are now able
to pose the question whether an infinity is larger than another
infinity.

We have reduced our problem of comparing (infinite) numbers to
comparing sizes of (infinite) sets. But now the following question
arises:

2With high probability, this is the original representation of natural numbers used
by Stone Age men. Small children use first the representation of numbers by sets in
order to later develop an abstract concept of a “number”.
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How to compare the sizes of two sets?

If the sets are finite, then the comparison is simple. One simply
counts the number of elements in both sets and compares the cor-
responding cardinalities. For sure, we cannot do this for infinite
sets. If one tried to count the elements of infinite sets, then the
counting would never end, and so the proper comparison would
never be performed. Hence, we need a general method for com-
paring sizes of sets that would work for finite as well as infinite
sets and that one could judge as reasonable and trustworthy. This
means that we are again on the deepest axiomatic level of science.
Our fundamental task is to create the notion of infinity and the
definition of “smaller than or equal to” for the comparison of
the cardinalities of two sets.

Now we let a shepherd help us. This is no shame because mathe-
maticians did the same.

Fig. 3.2
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Fig. 3.3

A shepherd has a large flock of sheep with many black and white
sheep. He never went to school and though his wisdom (that does
not allow him to leave the mountains), he can count only to five.
He wants to find out whether he has more black sheep than white
ones or vice versa (Fig. 3.2).

How can he do it without counting? In the following simple and
genius way. He simply takes one black sheep and one white sheep
and creates one pair

(white sheep, black sheep),

and sends them away from the flock. Then he creates another
white-black pair and sends it away too (Fig. 3.3). He continues
in this way until he has sheep of one color only or there are no
remaining sheep at all (i.e., until there is no way to build a white-
black pair of sheep). Now he can reach the following conclusion
:

(i) If no sheep remained, he has as many white sheep as black
ones.

(ii) If one or more white sheep remained in the flock, then he has
more white sheep than black ones (Fig. 3.3).
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(iii) If one or more black sheep remained in the flock, then he has
more black sheep than white ones.

Pairing the sheep and conclusion (i) is used by mathematicians as
the base for comparing the sizes of sets.

Definition 3.1. Let A and B be two sets. A matching of A and
B is a set of pairs (a, b) that satisfies the following rules:

(i) Element a belongs to A (a ∈ A), and element b belongs to B
(b ∈ B).

(ii) Each element of A is the first element of exactly one pair (i.e.,
no element of A is involved in two or more pairs and no element
of A remains unmatched).

(iii) Each element of B is the second element of exactly one pair.

For each pair (a, b), we say that a and b are married. We say
that A and B have the same size or that the size of A equals
to the size of B and write

|A| = |B |

if there exists a matching of A and B. We say that the size of A

is not equal to the size of B and write

|A| 6= |B |

if there does not exist any matching of A and B.

Consider the two sets A = {2, 3, 4, 5} and B = {2, 5, 7, 11} de-
picted in Fig. 3.4. Figure 3.4 depicts the matching

(2, 2), (3, 5), (4, 7), (5, 11) .

Each element of A is involved in exactly one pair of the matching
as the first element. For instance, the element 4 of A is involved
as the first element of the third pair (4, 7). Each element of B is
involved in exactly one pair as the second element. For instance,
the element 5 of B is involved in the second pair. In other words,
each element of A is married to exactly one element of B, each
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2 ◦

3 ◦

4 ◦

5 ◦

◦ 2

◦ 5

◦ 7

◦ 11

A B

Fig. 3.4

element of B is married to exactly one element of A, and so no
element of A or B remains single. Therefore, we can conclude

|{2, 3, 4, 5}| = |{2, 5, 7, 11}| .

You can also find other matchings of A and B. For instance,

(2, 11), (3, 7), (4, 5), (5, 2)

is also a matching of A and B.

Exercise 3.1 (a) Give two other matchings of the sets A = {2, 3, 4, 5} and B =
{2, 5, 7, 11}.

(b) Why is (2, 2), (4, 5), (5, 11), (2, 7) not a matching of A and B?

Following this concept of comparing the sizes of two sets, a set A
of girls and a set B of boys are equally sized, if all the women and
men from A and B can get married in such a way that no single
remains.3

A matching of the sets C = {1, 2, 3} and D = {2, 4, 6, 8} can-
not exist because every attempt to match the elements of D and

3Building same-sex pairs is not allowed here.
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C ends in the situation where one element of D remains single.
Therefore, |D| 6= |C| holds. An unsuccessful attempt to match C
and D is depicted in Fig. 3.5.

1 ◦

2 ◦

3 ◦

◦ 2

◦ 4

◦ 6

◦ 8

C D

Fig. 3.5

1 ◦

2 ◦

3 ◦

◦ 2

◦ 4

◦ 6

◦ 8

C D

Fig. 3.6
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Figure 3.6 shows another attempt to match C and D. Here the
result is not a matching of C and D because element 3 of C is
married to two elements 4 and 8 of D.

But we do not need the concept of matching in order to compare
the sizes of finite sets. We were also able to do it without this
concept. In the previous description, we only checked that our
matching concept works in the finite world.4 In what follows we
try to apply this concept to infinite sets. Consider the two sets

Neven = {0, 2, 4, 6, 8, . . .}

of all even natural numbers and

Nodd = {1, 3, 5, 7, 9, . . .}

of all odd natural numbers. At the first glance, these sets look to
be of the same size, and we try to verify it by the means of our
concept. We match each even number 2i to the odd number 2i+1.

Following Fig. 3.7, we see that we get an infinite sequence of pairs

(0, 1), (2, 3), (4, 5), (6, 7), . . . , (2i, 2i + 1), . . .

in this way. This sequence of pairs is a correct matching of A and
B. No element from Neven or of Nodd is involved in two or more
pairs (is married to more than one element). On the other hand
no element remains single (unmarried). For each even number 2k
from Neven, we have the pair (2k, 2k + 1). For each odd number
2m+1 from Nodd, we have the pair (2m, 2m+1). Hence, we verified
that the equality |Neven| = |Nodd| holds.

Exercise 3.2 Prove that
∣
∣Z+

∣
∣ =

∣
∣Z−∣∣, where Z+ = {1, 2, 3, 4, . . .} and Z− =

{−1,−2,−3,−4, . . .}. Draw a figure depicting your matching as we did for Neven

and Nodd in Fig. 3.7.

Up to this point everything looks tidy, understandable, and ac-
ceptable. Now, we present something which may be difficult to

4If the concept did not work in the finite world, then we would have to reject it.
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0 ◦

2 ◦

◦ 1

◦ 3

◦ 5

◦ 7

Neven Nodd

4 ◦

6 ◦

2i ◦

2i + 2 ◦

◦ 2i + 1

◦ 2i + 3

:
:

:
:

:
:

:
:

Fig. 3.7

come to terms with, at least at the first attempt. Consider the
sets

N = {0, 1, 2, 3, . . .} and Z+ = {1, 2, 3, 4, . . .} .

All elements of Z+ are in N, and so

Z+ ⊆ N ,

i.e., Z+ is a subset of N. Moreover, the element 0 belongs to N

(0 ∈ N), but not to Z+ (0 /∈ Z+). We therefore say that Z+ is a
proper subset of N and write Z+ ⊂ N. The notion “A is a proper
subset of B” means that A is a part of B but not the whole of B.
We can see this situation transparently for the case

Z+ ⊂ N

in Fig. 3.8. We see that Z+ is completely contained in N but Z+

does not cover the whole N because 0 ∈ N and 0 /∈ Z+.
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0 1 2 3 4 ...
◦ ◦ ◦ ◦ ◦

Z+

N

Fig. 3.8

However, we claim that

|N| =
∣
∣Z+

∣
∣

is true, i.e., that the sizes of |N| and |Z+| are equal. We justify this
claim by building the following matching

(0, 1), (1, 2), (2, 3), . . . , (i, i + 1), . . . ,

depicted in Fig. 3.9.

We clearly see that all elements of N and Z+ are correctly married.
No element remains single. The conclusion is that N is not larger
than Z+ though N has one more element than Z+. But this fact
may not be too surprising or even worrying. It only says that

∞+ 1 =∞ ,

and so that increasing infinity by 1 does not lead to a larger infin-
ity. This does not look surprising. What is 1 in comparison with
infinity? It is nothing and can be neglected. This at first glance
surprising combination of the facts

Z+ ⊂ N (Fig. 3.8) and
∣
∣Z+

∣
∣ = |N| (Fig. 3.9)

provides the fundamentals used for creating the mathematical def-
inition of infinity. Mathematicians took thousands of years to find
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0 ◦

1 ◦

◦ 1

◦ 2

◦ 3

◦ 4

N Z+

2 ◦

3 ◦

4 ◦

i ◦

◦ 5

◦ i + 1

:
:

:
:

:
:

:
:

Fig. 3.9

this definition and then one generation exchange in research was
needed to be able to accept it and fully imagine its meaning. It was
not so easy for them to see that this definition provides what they
strived for, namely a formal criterion for distinguishing between
finite sets and infinite sets.

Definition 3.2. A set A is infinite if and only if there exists a
proper subset B of A such that

|A| = |B| .

In other words:

An object is infinite if there is a proper part of the object
that is as large as the whole object.
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Now you can say: “Stop! This is too much for me. I cannot accept
something like that. How can a part be of the same size as the
whole? Something like this does not exist.”

It is excellent that you have this opinion. Especially because of
this, this definition is good. In the real world in which everything is
finite, no part can be as large as the whole. This is exactly what we
can agree on. No finite (real) object can have this strange property.
And in this way, Definition 3.2 says correctly that all such objects
are finite (i.e., not infinite). But in the artificial world of infinity,
it is not only possible to have this property, but also necessary.
And so this property is exactly what we where searching for, since
a thing that has this property is infinite and one that does not
have this property is finite. In this way, Definition 3.2 provides a
criterion for classifying objects into finite and infinite and this is
exactly what one expects from such a definition.

To get a deeper understanding of this at the first glance strange
property of infinite objects, we present two examples.

Example 3.1 Hotel Hilbert

Let us consider a hotel with infinitely many single rooms that is
known as the Hotel Hilbert. The rooms are enumerated as follows:

Z(0), Z(1), Z(2), Z(3), . . . , Z(i), . . . .

All rooms are occupied, i.e., there is exactly one guest in each
room. Now, a new guest enters the hotel and asks the porter: “Do
you have a free room for me?” “No problem”, answers the porter
and accommodates the new guest by the following strategy. He
asks every guest in the hotel to move to the next room with the
number that is 1 higher than the room number of the room used
up till now. Following this request, the guest in room Z(0) moves
to the room Z(1), the guest in Z(1) moves to Z(2), etc. In general,
the guest in Z(i) moves to the room Z(i+1). In this way, the room
Z(0) becomes free, and so Z(0) can be assigned to the newcomer
(Fig. 3.10).

We observe that, after the move, every guest has her or his own
room and room Z(0) becomes free for the newcomer. Mathemati-
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Z(0) Z(1) Z(2) Z(3) Z(i) Z(i + 1) Z(i + 2)
...

...

...
...

...
...

the incoming guest

Fig. 3.10

cians argue for the truthfulness of this observation as follows.
Clearly room Z(0) is free after the move. The task is to show
that every guest has his or her own room after the move. Let G be
an arbitrary guest. This person G lives alone in a concrete room
before the move. Let Z(n) be the number of this room. Follow-
ing the instructions of the porter, guest G moves from Z(n) to
Z(n + 1). He can do this because Z(n + 1) becomes free because
the guest in this room moved to room Z(n + 2). Hence, after the
moves guest G lives alone in room Z(n + 1). Since our argument
is valid for every guest of the hotel, all guests have a single room
accommodation after the move.

The solution above shows why the actual infinity was considered
as a paradox5 of mathematics for a long time. Hotel Hilbert is an
actual infinity. Something like this can only be outlined by drawing
a finite part of it and adding · · · . But nobody can see it at once.
Hence, it is not possible to observe the whole move of infinitely
many guests at once. On the other hand, observing each particular
guest separately, one can verify that the move works successfully.

Only when one was able to realize that infinity differs from finite-
ness by having proper subparts of the same size as the whole, was
this paradox solved6. We observe that the move corresponds to

5a seemingly contradictory fact or an inexplicable situation
6and so it is not a paradox anymore
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matching the elements of the set N (the set of guests) with the set
Z+ (the set of rooms up to the room Z(1)). 2

Exercise 3.3 (a) Three newcomers enter Hotel Hilbert. As usual, the hotel is com-
pletely booked. Play the role of the porter and accommodate the three new
guests in such a way that no former guest has to leave the hotel and after the
move, each new guest and each former guest possess their own room. If possible,
arrange the accommodation using one move of each guest instead of organizing
3 moves one after each other.

(b) A newcomer enters Hotel Hilbert and asks for his favored room, Z(7). How can
the porter satisfy this request?

We take the next example from physics. Physicists discovered it
as a remedy for depressions caused by imagining that our Earth
and mankind are tiny in the comparison with the huge universe7.

Example 3.2 Let us view our Earth and Universe as infinite sets
of points of size 0 that can lie arbitrarily close each to each other.
To simplify our story we view everything two dimensionally in-
stead of working in three dimensions. The whole Universe can be
viewed as a large sheet of paper, and Earth can be depicted as a
small circle on the sheet (Fig. 3.11). If somebody has doubts about
viewing our small Earth as an infinite set of points, remember that
there are infinitely many points on the finite part of the real axis
between the numbers 0 and 1. Each rational number between 0 and
1 can be viewed as a point on the line between 0 and 1. And there
are infinitely many rational numbers between 0 and 1. We proved
this fact already by generating infinitely many rational numbers
between 0 and 1 in our unsuccessful attempt to find the smallest
positive rational number.

Another justification of this fact is related to the proof of the
following claim.

For any two different rational numbers a and b, a < b, there
are infinitely many rational numbers between a and b.

The first number between a and b we generate is the number c1 =
a+b
2

, i.e., the average value of a and b. The next one is c2 = c1+b
2

,

7In this way, physicists try to ease the negative consequences of their discoveries.
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i.e., the average of c1 and b. In general, the i -th generated number
from [a, b] is

ci =
ci−1 + b

2
,

i.e., the average of ci−1 und b. When a = 0 and b = 1, then one
gets the infinite sequence

1

2
,

3

4
,

7

8
,

15

16
, . . .

of pairwise different rational numbers between 0 and 1.

Now let us finally switch to the fact physicists want to tell us.
All points of our huge universe beyond Earth can be matched
with the points of Earth. This claim has two positive (healing)
interpretations:

(i) The number of points of our Earth is equal to the number of
points of Universe outside Earth.

(ii) Everything what happens in Universe can be reflected on Earth
and so can be imitated in our tiny world.

Hence, our task to search for a matching between the Earth points
and the points outside Earth. In what follows we show how to
assign an Earth point PE to any point PU outside Earth.

First, we connect PU and the Earth center M by a line (Fig. 3.11).
The point PE we are searching for has to lay on this line. Next, we
depict the two tangents t1 and t2 of the circle that goes through
the point PU (Fig. 3.11). Remember that a tangent of a circle is
a line that has exactly one common point with the circle. We call
the point in which t1 touches the circle AP and we denote by BP

the common point8 of the circle and the line t2 (see Fig. 3.11).
Finally, we connect the points BP and AP by a line BP AP (Fig.
3.12). The point in the intersection of the lines BP AP and PUM
is the Earth point PE we assign to PU (Fig. 3.12).

8Mathematicians would say that the point AP is the intersection of the circle and t1
and that BP is the intersection of the circle and t2.
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M PU

AP

BP

t1

t2

Fig. 3.11

M PU

AP

BP

t1

t2

PE

Fig. 3.12

Next, we have to show that this geometric assignment of PE to
PU defines a matching between the Earth’s points and the points
outside Earth. Namely we have to show that one always assigns
two distinct Earth’s points PE and P ′E to two different points PU

and P ′U outside Earth.

To verify this fact, we distinguish two possibilities with respect to
the positions of PU and P ′U according to M .
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(i) The points M,PU , and P ′U do not lie on the same line. This
situation is depicted in Fig. 3.13. We know that PE lies on
the line MPU and that P ′E lies on the line MP ′U . Since the
only common point of the lines MPU and MP ′U is M and M
is different from PE and P ′E, independently of the positions of
PE and P ′E on their lines, the points of PE and P ′E must be
different.

M PU

P ′U

AU

A′U

Fig. 3.13: EU lies on MAU and E
′

U lies on MA
′

U , and therefore EU and E
′

U are
different points.

(ii) All three points M,PU , and P ′U lie on the same line (Fig. 3.14).
Therefore, EU and E ′U lie on this line, too. Then, we perform
our assignment construction for both points PU and P ′U as de-
picted in Fig. 3.12. We immediately see in Fig. 3.14 that EU

and E ′U are different.

We showed that, independently of the fact how many times larger
Universe is than Earth, the number of points in Earth is equal to
the number of points in Universe outside Earth. 2

Exercise 3.4 Complete Fig. 3.13 by estimating the exact positions of points PE

and P ′
E .

Exercise 3.5 Consider the semicircle in Fig. 3.15 and the line AB that is the di-
ameter of the circle. Justify geometrically as well as by calculations that the number
of points of the line AB is the same as the number of points of the curve of the
semicircle.
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M
PU

P ′U
EUE′U

Fig. 3.14

A M B

Fig. 3.15

Exercise 3.6 Consider the curve of the function F in Fig. 3.16 and the line AB.
Why does this curve have as many points as the line AB?

If you still have a stomachache when trying to imagine and to
accept Cantor’s concept of infinity, please, do not worry. Mathe-
maticians needed many years to develop this concept, and after
discovering it, 20 years were needed to get it accepted by broad
mathematical community. Take time for repeated confrontations
with the definition of infinite sets. Only if one iteratively deals with
this topic, can one understand why one takes over this definition
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A B

F

Fig. 3.16

of infinity as an axiom of mathematics and why mathematicians
consider it not only trustworthy, but they even do not see any
alternative to this definition.

In what follows we shortly discuss the most frequent proposal for
the concept of comparing infinite sizes that some listener proposed
after the first confrontation with infinity. If

A ⊂ B

holds (i.e., if A is a proper subset of B), then

|A| < |B| .

Clearly, this attempt to compare infinite sizes reflects in another
way the refusal of our key idea that a part of an infinite object
may be as large as the whole. This proposal for an alternative defi-
nition has two drawbacks. First, one can use it only for comparing
two sets where one is a subset of the other. This definition does
not provide the possibility to compare two different sets such as
Z− = {−1,−2,−3, . . .} and Z+ = {1, 2, 3, . . .}. For a comparison
of these two sets one has to search for another relation between
them. Realizing this drawback, some listeners propose to accept
the matching approach in the following way. One can find a match-
ing between one of the sets and a subset of another one and then
compare using the originally proposed subset principle. We show
that one can get a nonsense in this way. Namely that
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|N| < |N| ,

i.e., that N is smaller than N itself. Using the concept of matching
we proved

|N| = |Z+|. (3.1)

Since Z+ ⊂ N, using the subset principle, one gets

|Z+| < |N|. (3.2)

Combining Equations (3.1) and (3.2) we obtain

|N| = |Z+| < |N|,

and so |N| < |N|.
In this way we proved that the concept of the shepherd (of match-
ing) and the subset principle for comparing the cardinalities of two
sets contradict each other because adopting both at once leads to
an obvious nonsense.

Why do we spend so much time to discuss this axiom of math-
ematics and why do we such a big effort to understand it? As
you may already suspect, this axiom is only the beginning of our
troubles. The concept of infinity is not the only surprise of this
chapter. In some sense we showed ∞ = ∞ + 1 for ∞ = |N| and
also give to understand that ∞ = ∞ + c for any finite number c.
Example 3.2 and the following exercises even intimate

∞ = c · ∞

for an arbitrary finite number (constant) c.

Let us consider N and the set

Neven = {0, 2, 4, 6, . . .} = {2i | i ∈ N}

of all even natural numbers. At the first glance N contains twice
as many elements as Neven. In spite of this view (Fig. 3.17) one
can match the elements of N and of Neven as follows:
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(0, 0), (1, 2), (2, 4), (3, 6), . . . , (i, 2i), . . . .

We see that each element of both sets is married exactly once. The
immediate consequence is

|N| = |Neven| .

0 ◦

1 ◦

◦ 0

◦ 2

◦ 4

◦ 6

2 ◦

3 ◦

4 ◦

i ◦

◦ 8

◦ 2i

:
:

:
:

:
:

:
:

Fig. 3.17

We can explain this somewhat surprising result

2 · ∞ =∞

again by a story about Hotel Hilbert.

Example 3.3 Consider once again Hotel Hilbert with infinitely
many single rooms

Z(0), Z(1), Z(2), . . .
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that are all occupied by guests. Now, an infinite bus arrives. This
bus has infinitely many seats

B(0), B(1), B(2), . . . ,

and all seats are occupied by passengers9. The bus driver asks the
porter whether he can accommodate all passengers. As usual, the
porter answers: “No problem”, and does the following:

He asks each guest in room Z(i) to move to room Z(2i) as de-
picted in the upper part of Fig. 3.18. After the move, each former
guest has her or his own room and all rooms with odd numbers
1, 3, 5, 7, . . . , 2i + 1 . . . are empty. Now, it remains to match the
free rooms with the bus passengers. The porter assigns room Z(1)
to the passenger sitting on seat B(0), room Z(3) to the passenger
sitting on sit B(1), etc. In general, the passenger from B(i) gets
room Z(2i + 1) as depicted in Fig. 3.18. In this way, one gets the
matching

(B(0), Z(1)), (B(1), Z(3)), (B(2), Z(5)), . . . , (B(i), Z(2i + 1)), . . .

between the empty rooms with odd numbers and the seats of the
infinite bus.

2

Exercise 3.7 a) Hotel Hilbert is only partially occupied. All rooms Z(0), Z(2),
Z(4), . . . , Z(2i), . . . with even numbers are occupied and all rooms with odd
numbers are free. Now, two infinite buses B1 and B2 arrive. The seats of the
buses are numbered as follows:

B1(0), B1(1), B1(2), B1(3), . . .

B2(0), B2(1), B2(2), B2(3), . . .

How can the porter act in order to accommodate all guests? Is it possible to ac-
commodate all newcomers without asking somebody to move to another room?

b) Hotel Hilbert is fully occupied. Now, three infinite buses are coming. The seats of
each bus are enumerated by natural numbers. How can the porter accommodate
everybody?

Exercise 3.8 Show by matching Z and N that

|Z| = |N|
holds, where Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} is the set of all integers.

9Each seat is occupied by exactly one passenger.
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Hotel HILBERT

Z(5)

Z(1) Z(2) Z(4)

infinite bus

Z(3)

Z(7)

B(2)

Z(0)

Z(8)

B(3)

Z(6)

B(0) B(1)

...

...

...

...

...

...

Fig. 3.18

Exercise 3.9 (challenge) Let [a, b] be the set of all points (all real numbers) of
the real axis between a and b.

a) Show that
|[0, 1]| = |[1, 10]| .

Try to show this by geometric means as in Example 3.2.
b) Prove

|[0, 1]| = |[1, 100]|
by arithmetic arguments, i.e., find a function f such that the pairs (f(i), i) for
i ∈ [0, 100] build a matching of [0, 1] and [0, 100].

Exercise 3.10 (challenge) Assume that Hotel Hilbert is empty, i.e., there are
no guests accommodated in the hotel. Since all used accommodation strategies were
based on moving former guests from a room to another, there is the risk that to stay
in the hotel may become unpopular. Therefore, the porter needs an accommodation
strategy that does not require any move of an already accommodated guest. This
accommodation strategy has to work even if arbitrarily many finite and infinite
buses arrive in arbitrarily many different moments. Can you help the porter?

We observe that proving

|N| = |A|
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for a set A does mean nothing else than numbering all elements of
set A by natural numbers. A matching between N and A unam-
biguously assigns a natural number from N to each element of A.
And this assigned natural number can be viewed as the order of
the corresponding element of A. For instance, if (3, John) is a pair
of the matching, then John can be viewed as the third element of
set A. Vice versa, each numbering of elements of a set A directly
provides a matching between N and A. The pair of the matching
are simply

order of a, a

for each element a of A. In what follows, the notion of number-
ing10 the elements of A enables us to present transparent argu-
ments for claims |N| = |A| for some sets A, i.e., for showing that
A has as many elements as N.

The matching

(0, 0), (1, 1), (2,−1), (3, 2), (4,−2), (5, 3), (6,−3), . . .

of the sets N and Z assigns the following order to the elements of
Z:

0, 1,−1, 2,−2, 3,−3, . . . .

In this way 0 is the 0-th element, 1 is the first element, −1 is the
second element, 2 is the third element, etc.

Exercise 3.11 Assign to Z an order of elements other than the one presented above
by giving another matching.

Exercise 3.12 Prove that
|N| = |Nquad| ,

where Nquad = {i2 | i ∈ N} = {0, 1, 4, 9, 16, 25, . . .} is the set of all squares of
natural numbers. What order of the elements of Nquad do you get by the matching
you proposed?

Our attempt to answer the next question increases the degree of
difficulty of our considerations. What is the relation between |N|
and |Q+|? Remember that

10In the scientific literature one usually uses the term “enumeration” of the set A.
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Q+ =

{
p

q
| p, q ∈ Z+

}

is the set of all positive rational numbers. We have already ob-
served that by calculating averages repeatedly one can show that
there are infinitely many rational numbers between any two ratio-
nal numbers a and b with a < b. If one partitions the real axes
into infinitely many parts [0, 1], [1, 2], [2, 3], . . . as depicted in Fig.
3.19, then the cardinality of Q+ looks like

∞ ·∞ =∞2

because each of these infinitely many parts (intervals) contains
infinitely many rational numbers.

0 1 2 3 4 5

...

infinitely
many

infinitely
many

infinitely
many

infinitely
many

infinitely
many

Fig. 3.19

At first glance, trying to prove the equality |N| = |Q+| does not
seem very promising. The natural numbers 0, 1, 2, 3, . . . lie very
thinly on the right half of the axes, and between any two consecu-
tive natural numbers i and i+1 there are infinitely many rational
numbers. Additionally, we know that a matching between N and
Q+ would provide a numbering of elements in Q+. What does such
a numbering of positive rational numbers look like? It cannot fol-
low the size of the rational numbers, because, as we know, there
is no smallest positive rational number11.

Though this very clear impression, we show that the equality

11For any small rational number a, one can get the smaller rational number a/2 by
halving a.
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|N| = |Q+|

and so, in some sense that

∞ ·∞ =∞

holds.

Observe first that the set Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} also
does not have any smallest number, and though we can number
their elements as follows:

0,−1, 1,−2, 2,−3, 3, . . . .

The idea for Q+ is to write all positive rational numbers on an infi-
nite sheet as follows (mathematicians among us would say that one
assigns positions of the two-dimensional infinite matrix to positive
rational numbers). Each positive rational number can be written
as

p

q
,

where p and q are positive integers. We partition the infinite sheet
of paper into infinitely many columns and infinitely many rows.
We number the rows by

1, 2, 3, 4, 5, . . .

from top to bottom, and we number the columns from left to right
(Fig. 3.20). We place the fraction

i

j

on the square in which the i-th row intersects the j-th column. In
this way we get the infinite matrix as described in Fig. 3.20.

We do not have any doubt that this infinite sheet (this infinite
matrix) contains all positive fractions. If one looks for an arbitrary
fraction p/q, one immediately knows that p/q is placed on the
intersection of the p-th row and the q-th column. But we have
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Fig. 3.20

another problem. Some12 positive rational numbers occur in the
matrix several times, even infinitely many times. For instance, the
number 1 can be represented as a fraction in the following different
ways:

1

1
,

2

2
,

3

3
,

4

4
, . . . .

The rational number 1/2 can be written as

1

2
,

2

4
,

3

6
,

4

8
, . . . .

Exercise 3.13 Which infinitely many representations as a fraction does the rational
number 3

7
have?

But we aim to have each positive rational number appearing ex-
actly once on this sheet. Therefore, we take the fraction p/q that
cannot be reduced13 as a unique representation of the rational
number p/q. In this way 1 uniquely represents 1/1, one half is rep-
resented by 1/2, because all other fractions represented by 1 and

12in fact all
13The greatest common divisor of p and q is 1.
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1/2 can be reduced. Hence, we remove (rub out) all fractions of
the sheet that can be reduced. In this way we get empty positions
(squares) on the intersections of some rows and columns, but this
does not disturb us.

1 2 3 4

...1

2

3

4

...

...

...

...

...

...

...

...

...

... ...

...

5 6

5
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1
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1
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1
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1
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2
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3
1

3
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3
4

3
5

4
1

4
3

4
5

...5
1

5
2

5
3

5
4

5
6

6
1

6
5 ...

Fig. 3.21

Now we want to number the fractions in Fig. 3.21 as the first, the
second, the third, etc. Clearly, we cannot do it in the way in which
first the elements (fractions) of the first row are numbered, then
the elements of the second row, etc., since the number of elements
in the first row is infinite. We would fail in such an attempt because
we could never start to number the elements of the second row. The
first row would simply consume all numbers of N. Analogously, it
is impossible to number the elements of the infinite sheet column
by column. What can we do then? We number the elements of the
sheet in Fig. 3.21 diagonal by diagonal. The k-th diagonal of
the sheet contains all positions (Fig. 3.22) for which the sum of
its row number i and its column number j is k + 1 (i + j = k + 1).

In this way the first diagonal contains only one element, 1
1
. The

second diagonal contains two elements, 2
1

and 1
2
. And, for instance,
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1 2 3 4

1

2

3

4

...

...

...

5 6

5

6

the 6th

diagonal

Fig. 3.22

the fourth diagonal contains the four elements 4
1
, 3

2
, 2

3
, and 1

4
. In

general, for each positive integer k, the k-th diagonal contains
exactly k positions, and so at most k fractions.

Now, we order (number) the positions of the infinite sheet, and in
this way we order the fractions laying there as shown in Fig. 3.23.

We order the diagonals according to their numbers, and we order
the elements of any diagonal from the left to the right. Following
this strategy and the placement of the fractions in Fig. 3.21, we
obtain the following numbering of all positive rational numbers:

1

1
,
2

1
,
1

2
,
3

1
,
1

3
,
4

1
,
3

2
,
2

3
,
1

4
,
5

1
,
1

5
,
6

1
,
5

2
,
4

3
,
3

4
,
2

5
,
1

6
, . . . .

Following our numbering convention, 1/1 is the 0-th rational num-
ber, 2/1 is the first positive rational number, etc. For instance, 3/1
is the third rational number, and 5/2 is the 12-th one.

Exercise 3.14 Extend the matrix in Fig. 3.21 by two more rows and columns
and place the corresponding fractions in their visible positions. Use this extended
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1 2 3 4

1
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3

4

...

...

...

5 6

5

6

Fig. 3.23

matrix to write the sequence of fractions that got the orders 17, 18, 19, . . . , 26, 27 by
our numbering.

The most important observation for seeing the correctness of our
numbering strategy is that each positive rational number (frac-
tion) is assigned a natural number as its order. The argument is
straightforward. Let p/q be an arbitrary positive fraction. The ra-
tional number p/q is placed on the intersection of the p-th row
and the q-th column, and so it lies on the diagonal (p+ q−1). Be-
cause each diagonal contains finitely many positions (frac-
tions), the numbering of elements of the forthcoming diagonals
1, 2, 3, . . . , p + q− 2 is completed in a finite time, and so the num-
bering of the elements of the diagonal p + q − 1 is performed too.
In this way, p/q as an element of the diagonal p + q − 1 is also
given an order. Since the i-th diagonal contains at most i rational
numbers, the order of p/q is at most

1 + 2 + 3 + 4 + . . . + (p + q − 1) .

In this way, one can conclude that

|Q+| = |N|
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holds.

Exercise 3.15 Figure 3.24 shows another strategy for numbering of positive ratio-
nal numbers that is also based on the consecutive numbering of diagonals. Write
the first 20 positive rational numbers with respect to this numbering. What order is
assigned to the fraction 7/3? What order does the number 7/3 have in our original
numbering following the numbering strategy depicted in Fig. 3.23?

1 2 3 4

1

2

3

4

...

...

5 6

5

6

Fig. 3.24

Exercise 3.16 Hotel Hilbert is completely empty; that is no guest is staying there.
At once (as it sometimes happens in real life), infinitely many infinite buses arrive.
The buses are numbered as

B0, B1, B2, B3, . . . ,

i.e., there are as many buses as |N|. For each i ∈ N, bus Bi contains infinitely many
seats

Bi(0), Bi(1), Bi(2), B1(3), . . . .

Each seat is occupied by exactly one passenger. How can the hotel porter accom-
modate all the passengers?

Exercise 3.17 (challenge) Prove that |Q| = |N|.

Exercise 3.18 (challenge) We define

N
3 = {(i, j, k) | i, j, k ∈ N}

as the set of all triples (i, j, k) of natural numbers. One can place any natural number
on each of the three positions of a triple. Hence, one could say that |N3| = |N| · |N| ·
|N| =∞ ·∞ ·∞ =∞3. Show that |N3| = |N|, and so that ∞ =∞3 holds.
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3.3 There are Different Infinite Sizes, or Why
There Are More Real Numbers Than Natural
Ones

In Section 3.2 we learned Cantor’s concept for comparing the car-
dinalities of sets. Surprisingly, we discovered that the property dis-
tinguishing infinite objects from finite ones is that infinite objects
contain proper parts that are as large as the whole. We were un-
successful in searching for an infinity that is larger than |N| =∞.
Even the unexpected equality |Q+| = |N| holds. This is true even
though the rational numbers are infinitely more densely placed on
the real axis than the natural ones. This means that ∞ ·∞ =∞.
For each positive integer i, one can even prove that the infinite
number

|N| · |N| · . . . · |N|
︸ ︷︷ ︸

k times

=∞ ·∞ · . . . · ∞
︸ ︷︷ ︸

k times

=∞k

is again the same as |N| =∞.

We are not far from believing that all infinite sets are of the same
size. The next surprise is that the contrary is true. In what follows
we show that

|R+| > |N| .

Before reading Section 3.2 one would probably believe that the
number of real numbers is greater than the number of natural
numbers. But now we know that |Q+| = |N| holds. And the real
numbers have similar properties to those of the rational numbers.
There is no smallest positive real number, and there are infinitely
many real numbers on the real axis between any two different
real numbers. Since |N| = |Q+|, the inequality |R+| > |N| would
directly imply

|R+| > |Q+| .
Is this not surprising? Later in Chapter 4, we will get a deeper
understanding of the difference between the sets R and Q that
is also responsible for the truthfulness of |R| > |Q|. For now, we
reveal only the idea that, in contrast to real numbers, all rational
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numbers have a finite representation as fractions. Most of the real
numbers do not posses any finite description. In order to prove
|R+| > |N|, we prove a stronger result. Let [0, 1] be the set of all
real numbers between 0 and 1, the numbers 0 and 1 included. We
show

|[0, 1]| 6= |N| .
How can one prove inequality between the cardinalities (sizes) of
two infinite sets? For proving equality, one has to find a matching
between the two sets considered. This can be complicated, but
in some sense it is easy because this is constructive. You find a
matching and the work is done. To prove |A| 6= |B| you have
to prove that there does not exist any matching between
A and B.The problem is that there may exist infinitely many
strategies for constructing a matching between A and B. How can
you exclude the success of any of theses strategies? You cannot
check all these infinitely many approaches one after another. When
one has to show that something does not exist, then we speak
about proofs of nonexistence.

To prove the nonexistence of an object or the impossibility
of an event is the hardest task one can pose to a researcher
in natural sciences.

The word “impossible” is almost forbidden in this context and if
one uses it, then we have to be careful of its exact interpretation.
A known physician told me that it is possible to reconstruct the
original egg from an egg fried in the pan. All is based on the re-
versibility of physical processes14 and he was even able to calculate
the probability of success for the attempt of creating the original
egg. The probability was so small that one could consider the suc-
cess as a real miracle, but it was greater than 0. There are many
things considered to be impossible, though they are possible.

In mathematics we work in an artificial world; because of that
we are able to create many proofs of nonexistence of mathemati-
cal objects. What remains is the fact that proofs of nonexistence
belong to the hardest argumentations in mathematics.

14as formulated by quantum mechanics
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Let us try to prove that it is impossible to number all real numbers
from the interval [0, 1], and so that |[0, 1]| 6= |N|. As already men-
tioned, we do it by indirect argumentation. We assume that there
is a numbering of real numbers from [0, 1], and then we show that
this assumption leads to a contradiction, i.e., that a consequence
of this assumption is an evident nonsense15.

If there is a numbering of real numbers in [0, 1] (i.e., if there is
a matching between [0, 1] and N), then one can make a list of all
real numbers from [0, 1] in a table as shown in Fig. 3.25.
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Fig. 3.25

This means that the first number in the list is

0.a11a12a13a14 . . . .

15Here, we recommend revisiting the schema of indirect proofs presented in Chapter
1. If a consequence of an assertion Z is nonsense or contradicts something known,
then the indirect proof schema says that Z does not hold, i.e., that the contrary of
Z holds. The contrary of the existence of a matching between [0, 1] and N is the
nonexistence of any matching between [0, 1] and N.
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The symbols a11, a12, a13, . . . are digits. In this representation, a11

is the first digit to the right of the decimal point, a12 is the second
digit, a13 is the third one, etc. In general

0.ai1ai2ai3ai4 . . .

is the i-th real number from [0, 1] in our list (numbering). Our
table is infinite in both directions. The number of rows is |N| and
the number of columns is also |N|, where the j-th column contains
j-th digits behind the decimal points of all numbered real numbers
in the list. The number of columns must be infinite, because most
real numbers cannot be represented exactly by a bounded number
of decimal positions behind the decimal point. For instance, the
representation of the fraction

1

3
= 0.3 = 0.33333 . . .

requires infinitely many digits to the right of the decimal point.
On the other hand, this real number is nice because it is periodic.
Numbers such as

√
2/2 and π/4 are not periodic and require in-

finitely many positions behind the decimal point for their decimal
representation.

To be more transparent, we depict a concrete fraction of a hypo-
thetical list of all real numbers from [0, 1] in Fig. 3.26 by exchang-
ing the abstract symbols aij for concrete digits.

In this hypothetical list the number 0.732110 . . . is the first real
number, 0.000000 . . . is the second real number, etc.

In what follows, we apply the so-called diagonalization method
in order to show that there is a real number from [0, 1] missing
in the list (Fig. 3.25). This contradicts our assumption that one
has a numbering of the elements of [0, 1] (i.e., each number from
[0, 1] has to occur in the list exactly once). Hence, our hypothetical
numbering is not a numbering, and we are allowed to conclude that
there does not exist any numbering of the elements from [0, 1].

Next, we construct a number c from [0, 1] that is not represented
by any row of the table (list), i.e., that differs from all numbers of
the list. We create c digit by digit. We write c as
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Fig. 3.26

c = 0.c1c2c3c4 . . . ci . . . ,

i.e., ci is the i-th digit of c behind the decimal point. We choose
c1 = a11 − 1 if a11 6= 0, and we set c1 = 1 if a11 = 0. For the
hypothetical numbering in Fig. 3.26 this means that c1 = 6 be-
cause a11 = 7. Now we know with certainty that c is different from
the number written in the first row of our list in Fig. 3.25 (Fig.
3.26). The second digit c2 of c is again chosen in such a way that it
differs from a22. We take c2 = a22− 1 if a22 6= 0, and we set c2 = 1
if a22 = 0. Hence, c differs from the number in the second row
of the list, and so c is not the second number of the hypothetical
numbering. Next, one chooses c3 in such a way that c3 6= a33 in
order to assure that c is not represented by the third row of the
list.

In general, one chooses ci = aii−1 for aii 6= 0, and ci = 1 for a11 =
0. In this way c differs from the i-th number of our hypothetical
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numbering. After six construction steps for the table in Fig. 3.26
one gets

0.617106 . . . .

We immediately see that c differs from the numbers in the first 6
rows of the table in Fig. 3.26.

We observe that c differs from each number of the list in at least
one decimal digit, and so c is not in the list. Therefore, the table in
Fig. 3.26 is not a numbering of [0, 1]. A numbering of [0, 1] has to
list all real numbers from [0, 1], and c is clearly in [0, 1]. Hence, our
assumption that one has a numbering of [0, 1] (that there exists a
numbering of [0, 1]) is false. We are allowed to conclude

There does not exist any numbering of [0, 1], and so there
is no matching between N and [0, 1]

Exercise 3.19 Draw a table (as we did in Fig. 3.26) of a hypothetical numbering
of [0, 1] that starts with the numbers 1/4, 1/8,

√
2/2, 0, 1, π/4, 3/7. Use this table to

determine the digits c1, c2, . . . , c7 of the number c in such a way that c differs from
the numbers in the first seven rows of your table.

Exercise 3.20 Consider a hypothetical numbering of [0, 1], such that the 100-th
number is 2/3. Which digit of c is determined by this information?

Exercise 3.21 Determine the first seven digits of c behind the decimal point of a
hypothetical numbering of [0, 1] presented in Fig. 3.27.

What exactly did we show and what was our argumentation? As-
sume somebody says, “I have a numbering of [0, 1].” We discovered
a method, called diagonalization, that enables us to reject any pro-
posal of a numbering of [0, 1] as incomplete because at least one
number from [0, 1] is missing there. Since we can do it for each
hypothetical numbering of the elements of [0, 1], there does not
exist any (complete) numbering of [0, 1].

Another point of view is that of indirect argumentation introduced
in Chapter 1. Our aim was to prove the claim Z that there does
not exist any numbering of [0, 1]. We start with the opposite claim
Z and show that a consequence of Z is a nonsense. In this mo-
ment we reached our goal. The assertion Z as the opposite of Z is
the claim that there exists a numbering of the elements of [0, 1].
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Fig. 3.27

Starting from Z we show that in any such numbering of [0, 1] one
number from [0, 1] is missing. This is nonsense because no number
is allowed to be missing in a numbering. Therefore, Z does not
hold, and so there does not exist any numbering of [0, 1].

Since we cannot number the elements of [0, 1] (there is no match-
ing between N and [0, 1]), we cannot number the elements of R+,
either.

Exercise 3.22 Explain why the nonexistence of a numbering of the elements of
[0, 1] implies the nonexistence of a numbering of the elements of R+.

Hint: You can try to explain how to transform each numbering of R+ into a num-
bering of [0, 1]. Why is this a correct argument?

Since N ⊂ R+ and there is no matching between N and R+, we
can conclude that

|N| < |R+|
holds. Hence, there are at least two infinite sets of different sizes,
namely N and R+. One can even show that there are unboundedly
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many (infinitely many) different infinite sizes. We omit to deal with
the technical proof of this result here because we do not need it for
reaching our main goal. We are ready to show in the next chapter
that the number of computing tasks is larger than the number of
algorithms, and so that there exist problems that cannot be solved
algorithmically (automatically by the means of computers).

Exercise 3.23 Let us change the diagonalization method presented in Fig. 3.25 a
little bit. For each i ∈ N, we choose ci = ai,2i−1 for ai,2i 6= 0 and ci = 1 for ai,2i = 0.

a) Are we allowed again to say that the number 0.c1c2c3c4 . . . is not included in
the list? Argue for your answer!

b) Frame the digits ai,2i of the table in Fig. 3.25.
c) Which values are assigned to c1, c2, and c3 for the hypothetic list in Fig. 3.27

in this way? Explain why the created number c = 0.c1c2c3 . . . is not among the
first three numbers of the table.

3.4 The Most Important Ideas Once Again

Two infinite sizes can be compared. One has to represent them
by the cardinalities of the two sets. Using this as a basis, Cantor
introduced the concept for comparing infinite sizes (cardinalities)
of two sets by the shepherd’s principle. Two sets are equally sized
if one can match their elements. A set A has the same cardinality
as N if one can number all elements of A by natural numbers.
Clearly, each numbering of A corresponds to a matching between
A and N. Surprisingly, one can match N and Z, though N is a
proper part of Z. In this way we recognized that the property

having a proper part that is as large as the whole

is exactly the characteristic that enables us to distinguish finite
objects from infinite ones. No finite object may have this prop-
erty. For infinite objects, this is a must. Though there are infinitely
many rational numbers between any two consecutive natural num-
bers i and i + 1, we found a clever enumeration16 of all positive
rational numbers, and so we showed that |N| = |Q+|. After that,

16not according to their sizes
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we applied the schema of indirect proofs in order to show that
there is no numbering of all positive real numbers, and so that
there is no matching between N and R+.

In Chapter 4, it remains to show that the number of programs is
equal to |N|, and that the number of algorithmic tasks is at least
|R+|.
In Chapter 3, we did not present any miracle of computer science.
But we did investigate the nature of infinity and the concept of
comparing infinite sizes, and in this way we learned miracles of
mathematics that are real jewels of the fundamentals of science.
Jewels are not found lying on the street, and one usually has to
do something to obtain them. Therefore, we are also required to
sweat a bit in order to grasp infinity. And so, one may not be
surprised that taking our path to the computer science miracles
can be strenuous. But tenacity is a good property and the aim is
worth the effort. Let us stay this course in the next two chapters,
and then we will witness one miracle after the other. We will ex-
perience unexpected and elegant solutions to hopeless situations
that increase the pulse of each friend of science. Only by patience
and hard work, can one attain knowledge that is really valuable.

Solutions to Some Exercises

Exercise 3.1 For the sets A = {2, 3, 4, 5} and B = {2, 5, 7, 11} there are 4! = 24
different matchings. For instance,

(2, 11), (3, 2), (4, 5), (5, 7)

or
(2, 11), (3, 7), (4, 5), (5, 2) .

The sequence of pairs (2, 2), (4, 5), (5, 11), (2, 7) is not a matching between A and B
because element 2 of A occurs in two pairs, (2, 2) and (2, 7), and element 3 of A
does not occur in any pair.

Exercise 3.8 A matching between N and Z can be found in such a way that one
orders the elements of Z in the following sequence

0, 1,−1, 2,−2, 3,−3, 4,−4, . . . , i,−i, . . .

and then creates a matching by assigning to each element of Z its order in this
sequence. In this way we get the matching
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(0, 0), (1, 1), (2,−1), (3, 2), (4,−2), (5, 3), (6,−3), . . . .

In general we build the pairs

(0, 0), (2i,−i) and (2i− 1, i)

for all positive integers i.

Exercise 3.10 (challenge) First, the porter partitions all rooms into infinitely
many groups, each of an infinite size. Always when a group of guests arrives (it does
not matter whether the group is finite or infinite), the porter accommodates the
guest in the next (still unused) group of rooms.

As usual for the staff of Hotel Hilbert, the porter is well educated in mathematics,
and so he knows that there are infinitely many primes

2, 3, 5, 7, 11, 13, 17, 19, . . . .

Let pi be the i-th prime of this sequence. The porter uses pi to determine the i-th
infinite group of natural numbers as follows:

group(i) = {pi, p
2
i , p

3
i , p

4
i , . . . , (pi)

j , . . .} .

For instance, group(2)= {3, 9, 27, 81, . . .}. Due to his knowledge of the fundamental
theorem of arithmetics, the porter knows that no natural number belongs to more
than one group. Using this partition of rooms into the groups with respect to their
room numbers, the porter can assign the rooms to the guests without any more
rooms even when infinitely many groups of guests arrive one after each other. It
does not matter, whether the i-th group of guest is finite or infinite, the porter
books the whole room group group(i) for the i-th guest group. If the guests of the
i-th group are denoted as

Gi,1, Gi,2, Gi,3, . . . , Gi,j , . . .

then guest Gi,1 gets the room Z(pi), guest Gi,2 gets room Z(p2
i ), etc.

Exercise 3.12 The sequence of pairs

(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), . . . , (i, i2), . . .

is a matching between N and Nquad. We see that each number from N appears exactly
once as the first element in a pair, and analogously each integer from Nquad can be
found exactly once as the second element of a pair.

Exercise 3.20 The decimal representation of the fraction 2/3 is

0.6 = 0.666666 . . . .

Hence, the 100-th position behind the decimal point is also 6. Therefore, one sets
c100 = 6− 1 = 5.

Exercise 3.21 For the hypothetical numbering of real numbers from interval [0, 1]
in Fig. 3.27, one gets

c = 0.1631783 . . . .
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Exercise 3.22 We perform an indirect proof by following the schema of the indirect
argumentation from Chapter 1. We know that there is no numbering of [0, 1]. The
aim is to show that there does not exist any numbering of R+. Assume the contrary
of our aim, i.e., that there is a numbering of R+. We consider this numbering of R+

as a list and erase those numbers of this list that are not from [0, 1]. What remains
is the list of numbers from [0, 1] that is (without any doubts) a numbering of [0, 1].
But we know that there does not exist any numbering of [0, 1], and so the contrary
of our assumption must hold. The contrary of our assumption is our aim, i.e., that
there does not exist any numbering of R+.






