
Discuss, commit errors, make mistakes,
but for God’s sake think –
even if you should be wrong –
but think your own thoughts.

Gotthold Ephraim Lessing

Chapter 4

Limits of Computability or Why
Do There Exist Tasks That
Cannot be Solved Automatically
by Computers

4.1 Aim

In Chapter 3 we discovered that there exist different infinite sizes.
For instance, the number of real numbers is a larger infinity than
the number of natural numbers. An infinite set is exactly as large
as N if one can number the elements of A as the first one, the
second one, the third one, etc. Here we aim to show that comput-
ing tasks exist that cannot be solved by any algorithm. The idea
of our argument is simple. We show that the number of different
tasks (computing problems) is a larger infinity than the number
of all programs. Hence, there exist problems that cannot be algo-

124 CHAPTER 4

rithmically solved, and so their solution cannot be automatically
found by means of computers. But it is not satisfactory to prove
the existence of algorithmically unsolvable problems. One could
think that all algorithmically unsolvable problems are so artificial
that none of them is really interesting for us. Therefore, we strive
to show that there are concrete problems of serious interest in
practice that cannot be algorithmically solved.

This chapter is the hardest one of this book, and so do not worry
or be frustrated when you do not get a complete understanding
of all details. Many of the graduate students at universities do
not master this topic in detail. It is already valuable if one is
able to understand and correctly interpret the computer science
discoveries presented in what follows. To gain full understanding
of the way in which these results were discovered usually requires
multiple reading and discussions of the proof ideas. How many
confrontations with this hard topic you perform is up to you.

It is important to know that one can successfully study the top-
ics of all following chapters even in the case when one does not
understand all the arguments of Chapter 4.

4.2 How Many Programs Exist?

How many programs do we have? The first simple answer is “In-
finitely many.” Clearly, for each program A, there is another pro-
gram B that is longer by a row (by an instruction) than A. Hence,
there are infinitely many program lengths and so infinitely many
programs must exist. Our main question is whether the number
of programs is equal to |N| or not. First we aim to show that
the number of different programs is the same infinite size as the
number of natural numbers. We show it by giving a numbering of
programs.

Let us start by thinking about the number of texts that can be
written by a computer or a typewriter. Each text can be viewed as
a sequence of symbols of the keyboard used. We have to take into

4.2 How Many Programs Exist? 125

account all uppercase and lowercase letters of the latin alphabet.
Additionally, one is allowed to use symbols such as

?, !, ·, $, /, +, *, etc.

Moreover, every keyboard contains a key for the character blank.
For instance, we use a blank to separate two words or two sen-
tences. We often use the symbol to indicate the occurrence of
the character blank. Since blank has its meaning in texts, we con-
sider it as a symbol (letter). From this point of view, texts are not
only words such as

“computer” or “mother”

and not only sentences such as

“Computer science is full of magic”,

but also sequences of keyboard characters without any meaning
such as

xyz*-+?!abe/ .

This means that we do not expect any meaning of a text. Semantics
does not play any role in our definition of the notion of a text. A
text is simply a sequence of symbols that does not need to have
any interpretation. In computer science the set of symbols used is
called an alphabet, and we speak about texts over an alphabet
if all texts considered consist of symbols of this alphabet only.

Because blank is considered as a symbol, the content of any book
may be viewed as a text. Hence, we can fix the following:

Every text is finite, but there is no upper bound on the length
of a text. Therefore, there are infinitely many texts.

Let us observe the similarity to natural numbers. Each natural
number has a finite decimal representation as a sequence of digits
(symbols) 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The length of the decimal
representation grows with the number represented, and so there

126 CHAPTER 4

is no bound on the representation length of natural numbers.1.
Hence, natural numbers can be viewed as texts over the alpha-
bet of decimal digits and so the number of texts over the alpha-
bet {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is equal to |N|. If one uses the binary
alphabet {0, 1} to represent natural numbers, one sees that the
number of texts over the binary alphabet is also equal to |N|
It appears that the size of the alphabet does not matter, and so
that one can conjecture that

“The number of all texts over the characters of a keyboard
is equal to |N|.”

This is true, and we prove it by enumerating the texts. It is suf-
ficient to show that one can order all texts in an infinite list. The
ordering works in a similar way to creating a dictionary, but not
exactly in the same way. Following the sorting rules of the dic-
tionary, we have to take first the texts a, aa, aaa, aaaa, etc., and
we will never order texts containing a symbol different from a,
because there are infinitely many texts consisting of the letter a
only. Therefore, we have to change the sorting approach a little
bit. To order all texts in a list, we first apply the following rule:

Shorter texts are always before longer texts.

This means that our infinite list of all texts starts with all texts of
the length 1, then the texts of the length 2 follow, after that the
texts of the length 3, etc. What still remains is to fix the order of
the texts of the same length for any length. If one uses the letters
of the Latin alphabet only, then one can do it in the same way as
is used in dictionaries. This means to start with texts that begin
with the letter a, etc. Since we also have a lot of special symbols
on our keyboard such as ?, !, *, +, etc., we have to order the
symbols of our keyboard alphabet first. Which order of symbols
we use is our choice, and for our claim about the cardinality of
the set of all texts over the keyboard alphabet it does not matter.

1This means that one cannot restrict the representation length by a concrete number.
For instance, if one upperbounds the representation length by n, then one would have
at most 10n different representations available, and this is not enough to represent
all infinitely many natural numbers.

4.2 How Many Programs Exist? 127

Fig. 4.1 depicts a possible ordering of the symbols of the keyboard
alphabet. Having an order of the alphabet symbols,

One sorts the texts of the same length in the same way as
in dictionaries2.

1 2 3 . . . 25 26 27 28 . . . 51 52 53 54 . . . 61 62

a b c . . . y z A B . . . Y Z l 2 . . . 9 0

63 64 65 66 67 68 69 70 71 72 73 74 75 . . . 167

+ ” * ç & ! . : , ; ? $ £ . . .

Fig. 4.1

This means that for the same text length, we start with texts
beginning with the first symbol of our alphabet ordering. For in-
stance, taking the order of symbols depicted in Fig. 4.1, the num-
bering of texts starts with

1 a
2 b
3 c
...
167
...

Then, the texts of length 5 are ordered as follows:

aaaaa
aaaab
aaaac
...
aaaa
aaaba
aaabb
aaabc

2Usually, we speak about the lexicographical order.

128 CHAPTER 4

...

Why did we take the time to show that the number of texts is
equal to |N|? Because

Each program is a text over the keyboard alphabet.

Programs are nothing more than special texts that are understand-
able for computers. Therefore, the number of all programs is not
larger than the number of all texts over the keyboard alphabet,
and so we can claim

The number of programs is equal to |N|.
What we really have showed is that the number of programs is
infinite and not larger than |N|. The equality between |N|, and the
number of programs is the consequence of the fact that |N| is the
smallest infinite size. But we did not prove this fact. Hence, if we
want to convince the reader and provide a full argumentation of
this fact, then we have to find a matching between N and programs.
As we already know, any numbering provides a matching. And

One gets a numbering of all programs by erasing all texts
that do not represent any program from our infinite list of
all texts over the keyboard alphabet.

It is important to observe that the deletion of texts without an
interpretation as programs can even be done automatically. One
can write programs, called compilers, that get texts as inputs
and decide whether a given text is a program in the programming
language considered or not. It is worth noting that

A compiler can check the syntactical correctness of a text as
a program but not the semantical correctness.

This means that a compiler checks whether a text is a correctly
written sequence of computer instructions, i.e., whether the text is
a program. A compiler does not verify whether the program is an
algorithm, i.e., whether the program does something reasonable

4.2 How Many Programs Exist? 129

or not, or whether the program can repeat a loop infinitely many
times.

Hence, we are allowed to number all programs, and so to list all
programs in a sequence

P0, P1, P2, P3, . . ., Pi, . . .

where Pi denotes the i-th program.

Why is it important for us that the number of programs and so
the number of algorithms is not larger than |N|? The answer is
that the number of all possible computing tasks is larger than |N|,
and so there are more problems than algorithms. The immediate
consequence is that there exist problems that cannot be solved by
any algorithm (for which no solution method exists).

We have already showed in Chapter 3 that the number of problems
is very large. For each real number c, one can consider the following
computer task Problem(c).

Problem(c)

Input: a natural number n

Output: a number c up to n decimal digits after the decimal point

We say that an algorithm Ac solves Problem(c) or that Ac

generates c, if, for any given n ∈ N, Ac outputs all digits of c
before the decimal point and the first n digits of c after the decimal
point.

For instance,

• For c = 4
3

and an input n = 5, the algorithm A 4
3

has to give
the output 1.33333.

• For
√

2, the algorithm A√2 has to generate the number 1.4142
for the input n = 4 and the number 1.414213 for the input
n = 6.

• For c = π, the algorithm Aπ has to provide the output 3.141592
for n = 6.

130 CHAPTER 4

Exercise 4.1 What is the output of an algorithm A 17

6

generating 17/6 for the

input n = 12? What are the outputs of an algorithm Aπ that generates π for inputs
n = 2, n = 0, n = 7, and n = 9?

Exercise 4.2 (challenge) Can you present a method for the generation of π up to
an arbitrarily large number of digits after the decimal point?

In Chapter 3, we proved that the number of real numbers is larger
than |N|, i.e., that |R| > |N|. Since the number of algorithms is
not larger than |N|, the number of real numbers is larger than the
number of algorithms. Therefore, we can conclude that

There exists a real number c such that Problem(c) is not
algorithmically solvable.

Thus, we proved that there are real numbers that cannot be gen-
erated by any algorithm. Do we understand exactly what this
means? Let us try to build our intuition in order to get a bet-
ter understanding of this result. The objects as natural numbers,
rational numbers, texts, programs, recipes, and algorithms have
something in common.

All these objects have a finite representation.

But this is not true for real numbers. If one can represent a real
number in a finite way, then one can view this representation as a
text. Since the number of different texts is smaller than the number
of real numbers, there must exist a real number without any finite
representation.

What does it exactly mean? To have a constructive description
of a real number e means that one is able to generate e com-
pletely digit by digit. Also, if the number e has an infinite decimal
representation, one can use the description to unambiguously es-
timate the digit on any position of its decimal representation. In
this sense, the finite description of e is complete. In other words,
such a finite description of e provides an algorithm for generating
e. For instance,

√
2 is a finite description of the irrational number

4.3 YES or NO, That Is the Question 131

e =
√

2, and we can compute this number with an arbitrarily high
precision by an algorithm.3 Therefore, we are allowed to say:

Real numbers having a finite representation are exactly the
numbers that can be algorithmically generated, and there
exist real numbers that do not possess a finite representation
and so are not computable (algorithmically generable).

Exercise 4.3 What do you mean? Are there more real numbers with finite repre-
sentations than real numbers without any finite representation, or vice versa? Justify
your answer!

We see that there are tasks that cannot be solved by algorithms.
But we are not satisfied with this knowledge. Who is interested
in asking for an algorithm generating a number e that does not
have any finite representation? How can one formulate such a task
in a finite way? Moreover, when only tasks of this kind are not
algorithmically solvable, then we are happy and forget about this
“artificial” theory and dedicate our time to solving problems of
practical relevance. Hence, you may see the reason why we do not
stop our investigation here and are not contented with our achieve-
ments. We have to continue our study in order to discover, whether
there are interesting computing tasks with a finite description that
cannot be automatically solved by means of computers.

4.3 YES or NO, That Is the Question, or
Another Application of Diagonalization

Probably the simplest problems considered in computer science
are decision problems. A decision problem is to recognize whether
a given object has a special property we are searching for or not.
For instance, one gets a digital picture and has to decide whether a
chair is in the picture. One can also ask whether a person is in the
picture, or even whether a specific person (for instance, Albert
Einstein) is in the picture. The answer has to be unambiguous

3For instance, by the algorithm of Heron.

132 CHAPTER 4

“YES” or “NO”. Other answers are not allowed and we force that
the answer is always correct.

Here, we consider a simple kind of decision problems. Let M be
an arbitrary subset of N, i.e., let M be a set that contains some
natural numbers. We specify the decision problem (N, M)as
follows.

Input: a natural number n from N

Output:

“YES” if n belongs to M
“NO” if n does not belong to M

For instance, one can take PRIME as M , where

PRIME = {2, 3, 5, 7, 11, 13, 17, 19, . . .}
is the infinite set of all primes. Then, (N, PRIME) is the problem
to decide whether a given natural number n is prime or not. The
problem (N, Neven) is to decide whether a given nonnegative integer
is even or not.

For each subset M of N we say that an algorithm A recog-
nizes M or that an algorithm A solves the decision problem
(N, M), if, for any input n, A computes

(i) the answer “YES” if n belongs to M , and

(ii) the answer “NO” if n does not belong to M (n /∈M).

Sometimes one uses the digit “1” instead of “YES” and the digit
“0” instead of “NO”. If A answers “YES” for an input n, then
we say that algorithm A accepts the number n. If A outputs
“NO” for an input n, then we say that algorithm A rejects the
number n. Thus, an algorithm recognizing PRIME accepts each
prime and rejects each composite number.

If there exists an algorithm solving a decision problem (N,M),
then we say that the problem (N,M) is algorithmically solvable
or that

4.3 YES or NO, That Is the Question 133

the problem (N, M) is decidable.

Clearly, the decision problem (N, Neven) is decidable. It is sufficient
to verify whether a given natural number is even or odd. The
problem (N, PRIME) is also decidable because we know how to
check whether a natural number is a prime or not, and it is not
too complicated to describe such a method as an algorithm.

Exercise 4.4 The naive method for primality testing is to divide the given number
n by all numbers between 2 and n − 1. If none of these n − 2 numbers divides
n, then n is a prime. To test primality in this way means to perform a lot of
work. For the number 1000002 one has to execute 1000000 divisibility tests. Can
you propose another method that can verify primality by performing an essentially
smaller number of divisibility tests?

Exercise 4.5 (challenge) Write a program in the programming language TRANS-
PARENT of Chapter 2 that solves the problem (N, QUAD) where

QUAD = {1, 4, 9, 16, 25, . . .}

is the set of all squares i2.

First, we aim to show the existence of decision problems that are
not algorithmically solvable. Such decision problems are called

undecidable or algorithmically unsolvable.

We already recognized that we can list all programs as P0, P1, P2, . . .
and later we will see that one can do it by an algorithm. To list
all algorithms by an algorithm is not so easy. Therefore, we begin
our effort by proving a stronger result than we really need. We
show that there are decision problems that cannot be solved by
any program. What does “solved by a program” mean? What is
the difference between algorithmic solvability and solvability by a
program?

Remember that each algorithm can be written as a program, but
it does not hold that each program is an algorithm. A program can
perform a pointless work. A program can perform infinite work for
some inputs without producing any result. But an algorithm must
always finish its work in a finite time and produce a correct result.

134 CHAPTER 4

Let M be a subset of N. We say that a program P accepts the
set P , if, for any given natural number n,

(i) P outputs “YES”, if n belongs to M , and

(ii) P outputs “NO” or works infinitely long if n does not belong
to M .

For a program P , M(P) denotes the set M accepted by P . In this
way, P can be viewed as a finite representation of the potentially
infinite set M(P).

Immediately, we see the difference between the recognition of M
by an algorithm and the acceptance of M by a program. For inputs
from M both the algorithm and the program are required to work
correctly and provide the right answer “YES” in a finite time (see
requirement (i)). In contrast to an algorithm, for numbers not
belonging to M , a program is allowed to work infinitely long and
so never produce any answer. In this sense algorithms are special
programs that never run infinite computations. Therefore, it is
sufficient to show that there is no program accepting a set M , and
the direct consequence is that there does not exist any algorithm
that recognizes M (i.e., solves the decision problem (N,M)).

To construct such a “hard” subset M of N, we use the diagonal-
ization method from Chapter 3 again. For this purpose, we need
the following infinite representation of subsets of natural numbers
(Fig. 4.2).

0 1 2 3 4 . . . i i + 1 . . .

M 0 1 0 0 1 . . . 1 0 . . .

Fig. 4.2

M is represented as an infinite sequence of bits. The sequence
starts with the position 0 and has 1 at the i-th position if and
only if the number i is in M . If i is not in M , then the bit 0 is on
the i-th position of the sequence. The set M in Fig. 4.2 contains
the numbers 1, 4, and i. The numbers 0, 2, 3, and i + 1 are not in
M . The binary representation of Neven looks as follows

4.3 YES or NO, That Is the Question 135

101010101010101010 . . .

The representation of PRIM starts with the following bit sequence:

0011010100010100 . . .

Exercise 4.6 Write the first 17 bits of the binary representation of QUAD.

Now, we again build a two-dimensional table that is infinite in
both directions. The columns are given by the infinite sequence of
all numbers:

0, 1, 2, 3, 4, 5, . . . , i,

The rows are given by the infinite sequence of all programs:

P0, P1, P2, P3, . . ., Pi, . . .

that reads an input number only once and their only possible out-
puts are “YES” and “NO”. One can recognize such programs by
determining whether they contain only one instruction of read-
ing and whether the only output instructions are writing the text
“YES” or the text “NO”. Each such program Pi unambiguously
defines a set M(Pi) of all natural numbers that are accepted4 by
Pi. Those numbers, for which Pi outputs “NO” or works infinitely
long do not belong to M(Pi).

The rows of our table are the binary representations of sets M(Pi).
The k-th row (see Fig. 4.3) contains the binary representation of
the set M(Pk) that is accepted by the program Pk. The intersection
of the i-th row and the j-th column contains “1” if Pi accepts the
number j (if Pi halts on the input j with the output “YES”). The
symbol “0” lies in the intersection of the i-th row and the j-th
column, if Pi outputs “NO” or works infinitely long for the input
j. Hence

The infinite table contains in its rows the representation of
all subsets of N that can be accepted by a program.

Next we aim to show that there is at least one subset of N miss-
ing in the table, i.e., that there is a subset of N, whose binary

4Pi finishes the work on them with printing “YES”.

136 CHAPTER 4

0 1 2 3 4 5 6 · · · i · · · j · · ·
M(P0) 0 1 1 0 0 1 0 1 0

M(P1) 0 1 0 0 0 1 1 0 0

M(P2) 1 1 1 0 0 1 0 1 1

M(P3) 1 0 1 0 1 0 1 1 0

M(P4) 0 0 0 1 1 0 1 0 1

M(P5) 1 1 1 1 1 1 1 1 1

M(P6) 1 0 1 0 0 0 1 0 1
... · · ·

M(Pi) 0 1 1 0 0 1 0 1
... · · ·

M(Pj) 1 0 1 0 1 1 1 0
...

...

Fig. 4.3

0 1 2 3 4 5 6 · · · i · · · j · · ·
DIAG 1 0 0 1 0 0 0 0 1 · · ·

Fig. 4.4

representation differs from each row of the table (Fig. 4.3). We
show it by constructing a sequence of bits, called DIAG, that does
not occur in any row of the table. The construction of the bit se-
quence DIAG and the corresponding set M(DIAG) is done by the
diagonalization method.

First, see the binary value a00 in the intersection of the 0-th row
and the 0-th column. If a00 = 0 (Fig. 4.3), i.e., if 0 does not belong
to M(P0), then we set the 0-th position d0 of DIAG to 1. If a00 = 1
(i.e., if 0 is in M(P0)), then we set d0 = 0 (i.e., we do not take 0 to
M(DIAG)). After this first step of the construction of DIAG we
fixed only the value of the first position of DIAG, and due to this
we are sure that DIAG differs from the 0-th row of the table (i.e.,
from M(P0)) at least with respect to the membership of the 0-th
element.

Analogously, we continue in the second construction step. We con-
sider the second diagonal square, where the first row intersects the
first column. We aim to choose the first position d1 of DIAG is such

4.3 YES or NO, That Is the Question 137

a way that DIAG differs from the binary representation of M(P1)
at least in the value of this position. Therefore, if a11 = 1 (i.e., if 1
is M(P1)), we set d1 to 0 (i.e., we do not take 1 into M(DIAG)).
If a11 = 0 (i.e., if 1 is not in M(P1)), then we set d1 = 1 (i.e., we
take 1 into M(DIAG)).

If āij represents the opposite value to aij for any bit in the inter-
section of the i-th row and the j-th column (the opposite value to
1 is the value 1̄ = 0 and 0̄ = 1 is the opposite value to 0), then,
after two construction steps, we reached the situation as depicted
in Fig. 4.5.

0 1 2 3 4 · · · i i + 1 · · ·
DIAG ā00 ā11 ? ? ? · · · ? ? · · ·

Fig. 4.5

The first two elements of DIAG are ā00 and ā11, and so DIAG
differs from both M(P0) and M(P1). The remaining positions of
DIAG are still not determined, and we aim to fix them in such a
way that DIAG will differ from each row of the table in Fig. 4.3.

In general, we guarantee a difference between DIAG, and the i-th
row of the table in Fig. 4.3 as follows. Remember that āii is the
bit of the square in the intersection of the i-th row and the i-th
column and that di denotes the i-th bit of DIAG. If āii = 1 (i.e.,
if i belongs to M(Pi)), then we set di = 0 (i.e., we do not take i
into M(DIAG)). If āii = 0 (i.e., if i is not in M(Pi)), then we set
di = 1 (i.e., we take i into M(DIAG)). Hence, M(DIAG) differs
from M(Pi).

By this approach DIAG is constructed in such a way that it does
not occur in any row of the table. For the concrete, hypothetical
table in Fig. 4.3, Fig. 4.4 shows the corresponding representation
of DIAG. In general, one can outline the representation of DIAG
as done in Fig. 4.6.

In this way we obtain that

138 CHAPTER 4

0 1 2 3 4 · · · i · · ·
DIAG ā00 ā11 ā22 ā33 ā44 · · · āii · · ·

Fig. 4.6

M(DIAG) is not accepted by any program, and therefore the
decision problem (N, M(DIAG)) cannot be solved by any
algorithm.

One can specify M(DIAG) also in the following short way:

M(DIAG) = {n ∈ N | n is not in M(Pn)}
= the set of all natural numbers n,

such that n is not in M(Pn).

Exercise 4.7 Assume the intersection of the first 10 rows and the first 10 columns
in the table of all programs contains values as written in Fig. 4.7. Estimate the first
10 positions of DIAG.

0 1 2 3 4 5 6 7 8 9 · · ·
M(P0) 1 1 1 0 0 1 0 1 0 1

M(P1) 0 0 0 0 0 0 0 0 0 0

M(P2) 0 1 1 0 1 0 1 1 0 0

M(P3) 1 1 1 0 1 1 0 0 0 0

M(P4) 1 1 1 1 1 1 1 0 1 0

M(P5) 0 0 1 0 0 1 0 1 1 0

M(P6) 1 0 0 0 1 0 1 0 0 0

M(P7) 1 1 1 1 1 1 1 1 1 1

M(P8) 0 0 1 1 0 0 1 1 0 0

M(P9) 1 0 1 0 1 0 1 0 1 0

M(P10) 0 0 1 0 0 0 1 1 0 1
...

. . .

Fig. 4.7

Exercise 4.8 (challenge) Consider

M(2-DIAG) = the set of all even numbers 2i, such that 2i is not in M(Pi).

Is the decision problem (N, M(2-DIAG)) algorithmically solvable? Carefully explain
your argument! Draw diagrams that would similarly to Fig. 4.3 and Fig. 4.4 show
the construction of 2-DIAG.

4.4 Reduction Method 139

Exercise 4.9 (challenge) Can you use the solution to Exercise 4.8 in order to
define two other subsets of N that are not algorithmically solvable? How many
algorithmically unsolvable problems can be derived by diagonalization?

Exercise 4.10 (challenge) Consider

M(DIAG2) as the set of all even natural numbers 2i such that 2i is not in
L(P2i).

Can you say something about the algorithmical solvability of (N, M(DIAG2))?

Now, we know that the decision problem (N, M(DIAG)) is not
algorithmically solvable. But we are not satisfied with this result.
The problem looks to be described in a finite way by our construc-
tion, though it is represented by an infinite sequence of bits. But
our construction does not provide any algorithm for generating
DIAG because, as we will see later, though the table in Fig. 4.3
really exists, it cannot be generated by an algorithm. Moreover,
the decision problem (N,M(DIAG)) does not correspond to any
natural task arising in practice.

4.4 Reduction Method or How a Successful
Method for Solving Problem Can Be Used to
Get Negative Results

We already know how to use the diagonalization method in order
to describe algorithmically unsolvable problems. This provides a
good starting position for us. In this section, we learn how to “ef-
ficiently” spread the proofs of algorithmic unsolvability to further
problems. The main idea is to introduce the relation “easier or
equally hard” or “not harder than” with respect to the algorith-
mic solvability.

Let U1 and U2 be two problems. We say that

U1 is easier than or equally hard as U2

or that

140 CHAPTER 4

U1 is not harder than U2

with respect to algorithmic solvability and write

U1 ≤Alg U2,

if the algorithmic solvability of U2 implies (guarantees) the algo-
rithmic solvability of U1.

What does it exactly mean? If

U1 ≤Alg U2

holds, then the following situations are possible:

• U1 and U2 are both algorithmically solvable.

• U1 is algorithmically solvable, and U2 is not algorithmically solv-
able.

• Both U1 and U2 are algorithmically solvable.

The only situation that the validity of the relation U1 ≤Alg U2

excludes is the following one5:

• U2 is algorithmically solvable and U2 is not algorithmically solv-
able.

Assume that the following sequence of relations

U1 ≤Alg U2 ≤Alg U3 ≤Alg . . . ≤Alg Uk

between the k problems U1, U2, . . . , Uk was proved. Moreover, as-
sume that one can show by the diagonalization method that

U1 is not algorithmically solvable.

What can be concluded from these facts? Since U1 is the easiest
problem among all problems of the sequence, all other problems
U2, U3, . . . , Uk are at least as hard as U1 with respect to algorithmic
solvability, and so one can conclude that

5Remember the definition of the notion of implication in Chapter 1. The truthfulness
of the implication “The solvability of U2 implies the solvability of U1” excludes
exactly this one situation.

4.4 Reduction Method 141

the problems U2, U3, . . . , Uk are not algorithmically solvable.

This is the way we want to walk around in order to prove the
algorithmic unsolvability of further problems. Due to diagonaliza-
tion we already have the initial problem U1 for this approach. This
problem is the decision problem (N,M(DIAG)). The only question
is, how to prove the validity of the relation U1 ≤Alg U2 between
two problems?

For this purpose, we apply the reduction method, which was de-
veloped in mathematics in order to solve new problems by clever
application of known methods for solving other problems. We
give two examples showing a simple application of the reduction
method.

Example 4.1 Assume one has a method for solving quadratic
equations in the so-called p, q-form

x2 + px + q = 0,

i.e., quadratic equations with the coefficient 1 before the term x2.
The method for solving such quadratic equations is given by the
so-called p-q-formula:

x1 = −p

2
+

√
(p

2

)2

− q

x2 = −p

2
−
√
(p

2

)2

− q.

If
(

p

2

)2− q < 0 holds, then the quadratic equation in the p, q-form
does not have any real solution.

Now, we are searching for a method for solving arbitrary quadratic
equations

ax2 + bx + c = 0 .

Instead of deriving a new formula6 for this purpose, we reduce the
problem of solving general quadratic equations to the problem of
solving quadratic equations in the p, q-form.

6We presented such a formula in Chapter 2 and wrote a program computing solutions
by this formula there.

142 CHAPTER 4

We know that the solutions of an arbitrary equation do not change,
if one multiplies both sides of the equation by the same number
different form 0. Hence, we are allowed to multiply both sides of
the general quadratic equation by 1/a.

ax2 + bx + c = 0 | · 1
a

a · 1
a
· x2 + b · 1

a
x + c · 1

a
= 0 · 1

a

x2 +
b

a
x +

c

a
= 0.

In this way we got a quadratic equation in the p, q-form and this
equation can be solved by the method presented above. An algo-
rithmic representation of this reduction is outlined in Fig. 4.8.

Part A is an algorithm that corresponds to the reduction. Here,
one computes the coefficients p and q of the equivalent quadratic
equation in the p, q-form. This is all one has to do in this algorith-
mic reduction. The coefficients p and q are the inputs for algorithm
B for solving the quadratic equations in the form x2+px+q = 0. B
solves this equation for the given p and q. The output of B (either
the solutions x1 and x2 or the answer “there is no solution”) can
be taken over as the output of the whole algorithm C for solving
general quadratic equations. 2

Exercise 4.11 Assume we have an algorithm B for solving linear equations in the
form

ax + b = 0.

Design an algorithm for solving linear equations of the form

cx + d = nx + m

by reduction. The symbols c, d, n, and m remain for concrete numbers, and x is the
unknown. Outline the reduction in a similar way to what we used in Fig. 4.8.

The reduction form in Example 4.1 is called 1-1-reduction (one
to one reduction). It is the simplest possible reduction, in which
the input of a problem U1 (a general quadratic equation) is directly

4.4 Reduction Method 143

algorithm C
for solving
general
quadratic
equations
ax2 + bx + c = 0

Solve the quadratic
equation

by applying the

p := b
a

q := c
a

A

reduction

B

a, b, c with a 6= 0

p q

x2 + px + q = 0

(x1, x2) or “no solution”

p-q-formula

Fig. 4.8

transformed to an input of a problem U2 (a quadratic equation in
the p, q-form), and the result of the computation of the algorithm
on the input of U2 is taken one to one over as the result for the
given input instance of U1. This means that

U1 ≤Alg U2 (4.1)

holds. In other words, solving U1 in an algorithmic way is not
harder than solving U2, because each algorithm B solving U2 can
be “modified” by reduction (Fig. 4.8 to an algorithm C that solves
U1.

Moreover, in the case of quadratic equations, we observe that U2

(solving quadratic equations in p, q-form) is a special case of U1

(solving general quadratic equations). Hence, each algorithm for
U1 is automatically an algorithm for U2, and so

U2 ≤Alg U1. (4.2)

144 CHAPTER 4

Following Equations (4.1) and (4.2) we may claim that U1 and
U2 are equally hard. This means that either both problems are
algorithmically solvable or both are not algorithmically solvable.
Clearly, we know in this special case of solving quadratic equations
that the first possibility is true.

In general, the reductions need not be so simple as the one pre-
sented. To prove

U1 ≤Alg U2

one can need to apply the algorithm B solving U2 several times
for different inputs and additionally to work on the outputs of B
in order to compute the correct results for U1. To illustrate such a
more general reduction, we present the following example.

Example 4.2 We assume that everybody is familiar with the
Pythagorean theorem, which says that in any right-angled triangle
(Fig. 4.9) the equality

c2 = a2 + b2

holds. In other words

The square of the length of the longest side of any right-
angled triangle is equal to the sum of the squares of the
lengths of the two shorter sides.

In this way, we obtained an algorithm B△ that for given lengths
of two sides of a right-angled triangle computes the length of the
third side. For instance, for known a and b, one can compute c by
the formula

c =
√

a2 + b2.

If a and c are known, one can compute b as

b =
√

c2 − a2.

Let us denote by U△ the problem of computing the missing side
length of a right-angled triangle.

Assume now a new task UArea. For a given equilateral triangle
(Fig. 4.10) with the side lengths m, one has to compute the area

4.4 Reduction Method 145

a

b

c

Fig. 4.9

of the triangle. We see (Fig. 4.10) that the area of such a triangle
is

m

2
· h

where h is the height of the triangle (Fig. 4.10).

A B

C

h

m
2

m m

Dm

Fig. 4.10

We are able to show
UArea ≤Alg U△

146 CHAPTER 4

by reducing solving UArea to solving U△. How to do it is depicted
in Fig. 4.11.

Algorithm C
computes
the area of
a given equal-
sided triangle

a := m
2

c := m
A

a c

Area

m

Aarea

Compute

b :=
√

c2 − a2

B∆

solves U∆

b

h := b

Area:= 1

2
h ·m C

m

Fig. 4.11

We designed an algorithm AArea for solving UArea under the as-
sumption that one has an algorithm B△ for solving U△ (for com-
puting the missing size length in a right-angled triangle). We see
in Fig. 4.11 that one needs the height h of the triangle in order
to compute the area of the triangle. The height h is the length of
the side CD of the right-angled triangle DBC. We also see that
the length of the side DB is equal to m. Algorithm A in Fig. 4.11
uses these facts to compute the values a and c and send them as
inputs for B△. The algorithm B△ computes the missing length b

4.4 Reduction Method 147

of △DBC, which is the height h of △ABC. Finally, the algorithm
C computes the area of △ABC from the values of m and b. 2

Exercise 4.12 Consider the problem UPyr of computing the height of a pyramid
with quadratic base of the size m×m and the lengths of the edges also equal to m.
Solve this task by showing UPyr ≤Alg U△. Show the reduction as we have done in
Fig. 4.11.

[Hint: Consider the possibility of applying the algorithm B△ twice for different
inputs.]

h

m

m

m

m

Fig. 4.12

Exercise 4.13 (challenge) Let U2lin denote the problem of solving a system of
two linear equations

a11x + a12y = b1

a21x + a22y = b2

with two unknown x and y. Let U3lin denote the problem of solving a system of
three linear equations

a11x + a12y + a13z = b1

a21x + a22y + a23z = b2

a31x + a32y + a33z = b3

148 CHAPTER 4

with three unknown x, y, and z. Show that U3lin ≤Alg U2lin.

We saw how reductions can be used to develop new methods for
solving problems by using known methods for solving other prob-
lems. In this way, one uses reduction to extend the positive results
about algorithmic solvability.

But our aim is not to use reduction as a means for designing new
algorithms (i.e., for broadcasting positive messages about algo-
rithmic solvability). We aim to use reduction as an instrument for
spreading negative messages about algorithmic unsolvability. How
can one reverse a method for designing positive results to a method
for proving negative results? We outlined this idea already at the
beginning of this chapter. If one is able to prove

U1 ≤Alg U2

by a reduction and one knows that U1 is not algorithmically solv-
able, then one can conclude that U2 is not algorithmically solvable,
too.

There is a simple difference between proving

U1 ≤Alg U2

for spreading algorithmic solvability and for showing algorithmic
unsolvability. For deriving a positive result, one already has an
algorithm for U2 and one tries to use it in order to develop an
algorithm for U1. To broaden negative results about unsolvability,
we do not have any algorithm for U2. We only assume that there
exists an algorithm solving U2. Under this assumption we build an
algorithm that solves U1. This means that we have to work with
the hypothetical existence of an algorithm A2 for U2 and use it for
designing of an algorithm for U1.

Applying reduction to show the algorithmic solvability of a prob-
lem corresponds to a direct proof (direct argumentation), which
was introduced in Chapter 1. Using reduction for proving the
nonexistence of any algorithm for solving the problem considered
corresponds to an indirect proof, whose schema was presented in

4.4 Reduction Method 149

Section 1.2. To get a transparent connection to something known,
we give an example from geometry first, and then we switch to
algorithmics.

Example 4.3 One knows that it is impossible to partition an ar-
bitrary given angle into three equal-sided angles by means of a
ruler and a pair of compasses. In other words, there is no method
as a sequence of simple construction steps executable by means of
a ruler and a pair of compasses that would guarantee a successful
geometric partitioning of any angle into three equal-sided angles.
The prove of this negative result is far from being obvious and so
we prefer here to trust mathematicians and believe it.

On the other hand, one may know from one’s school time that
there are simple methods for geometric doubling or halving of
each angle.

M

kM

A

B

C

kB a

b

Fig. 4.13: Doubling an angle

For instance, Fig. 4.13 outlines how to double the angle ∠ab
between two lines a and b. An RC-algorithm (a ruler-compass-
algorithm) for doubling an angle can work as follows:

1. Take an arbitrary positive distance r with the pair of compasses
and draw a circle kM with the center M (the intersection of a
and b) and the radius r.

150 CHAPTER 4

2. Denote by A the intersection of the circle km and the line a,
and denote by B the intersection of kM and the line b.

3. Take the distance AB between A and B in the pair of compasses
and draw a circle kM with the center B and the radius AB.

4. Denote by C the intersection of the circles km and kB that is
different from A.

5. Connect the points M and C with a line.

We see that the angle ∠AMC between the straight line a and the
straight line connecting M and C is twice as large as the original
angle ∠ab = ∠AMB.

Now, our aim is to show that there do not exist any CL-algorithms
that can partition an arbitrary angle into 6 equal-sided parts.
This does not look easier than to prove the nonexistence of any
CL-algorithm for partitioning angles into three equal-sided angles.
Our advantage is that we are not required to use this hard way
of creating a nonexistence proof. We know already that one can-
not partition angles into three equal-sided parts by means of a
ruler and a pair of compasses. We use this fact to reach our aim
efficiently.

How to proceed? We assume the opposite of what we want to prove
and show under this assumption that one can partition angles into
three equal-sided parts by a CL-algorithm. But this contradicts the
already known fact about impossibility of partitioning angles into
three equal-sided parts. More precisely, we assume that there is a
CL-algorithm A6 for partitioning angles into 6 equal-sided angles
and use A6 to design a CL-algorithm A3 that partitions each given
angle into three equal-sided angles. Since A3 does not exist (as we
already know), A6 cannot exist either.

We describe the reduction of the problem of partitioning angles
into three equal-sided angles to the problem of partitioning angles
into 6 equal-sided parts as follows (Fig. 4.14). We assume that one
has a CL-algorithm A6 for partitioning angles into 6 equal-sided
parts. We design a CL-algorithm A3 that has an angle W as its

4.4 Reduction Method 151

input. At the beginning, A3 applies A6 in order to partition W
into 6 equal-sided angles w1, w2, w3, w4, w5, w6 (Fig. 4.15). Then,
A3 joins the angles w1 and w2 into the angle w12. Similarly, A3 joins
w3 and w4 into an angle w34, and w5 and w6 are joined into w56

(Fig. 4.15). We see that partitioning W into three angles w12, w34,
and w56 corresponds to the partitioning of W .

algorithm for
dividing W

CL-algorithm A6
A6

an angle W

A3

divides W in 6 equal
angles w1, w2, w3,
w4, w5, w6. into 3 equal-

divides
W into

w1, w2, w3, w4, w5, w6

Join w1 and w2 into w12!
Join w3 and w4 into w34!
Join w5 and w6 into w56!

w12, w34, w56

sided angles
6 angles

Fig. 4.14

Using the language of the indirect argumentation (indirect proof),
the reduction in Fig. 4.14 corresponds to the following implication:

If there is a CL-algorithm for partitioning angles into 6
equal-sided parts, then there is a CL-algorithm for parti-
tioning angles into 3 equal-sided angles.

152 CHAPTER 4

w1

w2

w3

w4

w5

w6

w12

w34

w56

Fig. 4.15

Following the definition of the notion “implication”, the truth-
fulness of this implication proved above (Fig. 4.14) excludes the
second situation from the 4 possible situations listed in Fig. 4.16.

situation 6 parts 3 parts

1 possible possible

2 possible impossible

3 impossible possible

4 impossible impossible

Fig. 4.16

Taking into account that partitioning angles into three equal-
sided parts is impossible, situations 1 and 3 are excluded, too.
Hence, the only remaining possible situation is situation 4. Sit-
uation 4 contains the impossibility of partitioning angles into 6
equal-sided parts, and this completes our indirect argumentation
for the nonexistence of a CL-algorithm partitioning angles into 6
equal-sided angles. 2

Exercise 4.14 The problem of partitioning of an angle into three parts also has
the following simplified representation. The task is to construct, for any given angle
W , such an angle V by means of a linear and a pair of compasses that the size of V
is one third of the size of W . One can prove that this simplification does not change
anything on the CL-unsolvability of this problem. Use this fact to create in a similar
way as in Fig. 4.14 reductions (proofs) showing the nonexistence of CL-algorithms
for constructing angles of the size of

(i) one sixth

4.4 Reduction Method 153

(ii) one ninth

of any given angle.

Now, we return from the world of CL-algorithms into the world of
general algorithms. Our problem DIAG plays here a similar role
as the problem of partitioning angles into three equal-sided parts
does for CL-algorithms. Starting from algorithmic unsolvability
of a problem, we want to conclude algorithmic unsolvability of
another problem.

The reduction schema for U1 ≤Alg U2 is outlined in Fig. 4.17.

algorithm
solving the

algorithm B

input y

A1

problem U1
x

A2 solves U2 for
the instance x

A2

algorithm C

output

Fig. 4.17

The algorithm A1 solving the problem U1 is created as follows.
First, the input instance y of U1 is proceeded by an algorithm
B that transforms y to a problem instance x of the problem U2.

154 CHAPTER 4

Following our assumption about the existence of an algorithm A2

solving U2, the algorithm A2 computes the correct solution for the
input x. As one may see in Fig. 4.17, A2 can be used repeatedly
several times. Finally, an algorithm C proceeds all outputs of A2

and computes the final result for the problem instance y of U1.
We call attention to the important fact that A2, B, and C are
algorithms and therefore they provide their outputs in a final time.
The number of requests on A2 must be finite and so the loop
containing B and A2 can run only finitely many times. Therefore,
we can conclude that A1 is an algorithm for U1 because it provides
the correct output in a finite time for any input instance of U1.

Next, we introduce two new decision problems that are of interest
for program developers.

UNIV (the universal problem)
Input: a program P and an input i ∈ IN for P
Output: YES, if P accepts the input i, i.e., if i is in M(P).

NO, if P does not accept i
(i.e., if i /∈ M(P)), which means that P either
halts and rejects i or P works infinitely long on
the input i.

HALT (the halting problem)
Input: a program P and a natural number i
Output: YES, if P halts on the input i

(i.e., if P finishes its work on i in a finite time).
NO, if P does not halt on i

(i.e., if P has an infinite computation on i re-
peating a loop infinitely many times).

The halting problem is one of the fundamental tasks in testing
software products. We already know that only those programs can
be considered to be algorithms that never get into an infinite com-
putation. Hence, an important part of checking the correct func-
tionality of programs is to verify whether they always (for every
input) guarantee an output in a finite time. The halting problem
HALT is a simple version of such testing. We are only asking,
whether a given program P halts on a concrete input i. (The real

4.4 Reduction Method 155

question is whether a given program halts on every possible in-
put.) Later, we will see that even this simplified testing problem
is algorithmically unsolvable.

The universal problem UNIV is directly related to verifying the
correct functionality of a program solving a decision problem. We
test whether P provides the correct result YES or NO on an input
i. Now, somebody can propose the following simple way to solve
UNIV. Simulate the work of P on i and look whether P outputs
YES or NO. Certainly, one can do it if one has a guarantee that P
halts on i (i.e., that P is an algorithm). But we do not have this
guarantee. If P executes an infinite computation on i, we would
simulate the work of P on i infinitely long and would never get the
answer to our question, whether P accepts i or not. An algorithm
for the universal problem is not allowed to work infinitely long on
any input P and i, and so it is not allowed to execute an infinite
simulation.

Following these considerations, we get the impression that the
halting problem and the universal problem are strongly inter-
locked. Really, we show that these problems are equally hard.

First we show that

UNIV ≤Alg HALT

i.e., that

UNIV is not harder than HALT with respect to algorithmical
solvability.

What do we have to show? We have to show that the existence of
an algorithm for HALT assures the existence of an algorithm that
solves UNIV. Following our schema of indirect proofs, we assume
that one has an algorithm AHALT solving the halting problem.
Using this assumption, we build an algorithm B that solves UNIV
(Fig. 4.18).

The algorithm B works on any input (P, i) as follows:

156 CHAPTER 4

algorithm B

B

decides
algorithm that
decides the
halting problem

AHALT

UNIV

simulates the finite
computation of
P on i

S

P i

YES

P i

i P
NO

P answers
NO for i

P answers
YES for i

NO YES

Fig. 4.18

1. B transfers its input (P, i) without any change to the algorithm
AHALT.

2. The algorithm AHALT decides (in finite time) whether P halts
on i or not. AHALT answers YES if P halts on i. If P does not
hold on i, AHALT answers NO.

3. If AHALT outputs NO, B is sure about the fact that P does not
accept i (because P works on i infinitely long) and provides
the final output NO saying that “i is not in M(P)”.

4. If AHALT outputs YES, then B simulates by a subprogram S
(Fig. 4.18) the finite computation of P on i. Executing this
finite simulation B sees whether P accepts i or not and outputs
the corresponding claim.

4.4 Reduction Method 157

Following the construction of B, we immediately see that B takes
the right decision with respect to the membership of i in M(P).
We still have to verify whether B always finishes its work in a
finite time. Under the assumption that AHALT is an algorithm for
HALT, we know that AHALT provides outputs in a finite time, and
so B cannot run for an infinitely long time in its part AHALT. The
simulation program S starts to work only if one has the guarantee
that the computation of P on i is finite. Therefore, the simulation
runs always in a finite time, and hence B cannot get into an infinite
repetition of a loop in the part S. Summarizing, B always halts,
and so B is an algorithm that solves the universal problem.

We showed above that UNIV is easier than or equally hard as
HALT. Our aim is to show that these problems are equally hard.
Hence, we have to show that the opposite relation

HALT ≤Alg UNIV

holds, too. This means, we have to show that the algorithmic solv-
ability of UNIV implies the algorithmic solvability of HALT. Let
AUNIV be an algorithm that decides UNIV. Under this assumption
we design an algorithm D that solves HALT. For any input (P, i),
the algorithm D works as follows (Fig. 4.19).

1. D gives P to a subprogram C that transforms P into P ′ in the
following way. C finds all rows of P containing the instruction
output (“NO”) and exchanges “NO” for “YES”. Hence, the
constructed program never outputs “NO” and the following is
true:

Each finite computation of P finishes with the output
YES and P ′ accepts exactly those natural numbers i on
which P halts.

2. D gives P ′ and i as inputs to AUNIV (Fig. 4.19). AUNIV decides
whether i is in M(P ′) or not.

3. D takes over the answer YES or NO of AUNIV as the final
answer for its input (P, i).

158 CHAPTER 4

that decides,

D

algorithm

whether P
halts on i

P i

NOYES

Modify P into P ′

in such a way, that
P never answers
NO by exchanging
all occurences of
NO for YES

C

AUNIV

iP ′

AUNIV decides
whether i is in
M(P ′) or not

YES NO

Fig. 4.19

Exercise 4.15 Provide a detailed explanation why D is an algorithm that solves
the halting problem.

Exercise 4.16 (challenge) The reduction for AUNIV ≤Alg AHALT in Fig. 4.18
and the reduction AHALT ≤Alg AUNIV (Fig. 4.19) look different. Usually, one prefers
the kind of reduction presented in Fig. 4.19 because it corresponds to the typical
reduction in mathematics. Here, one transforms the input instance (P, i) of HALT
to an input instance (P ′, i) of UNIV in such a way that the solution for the instance
(P, i) of HALT is exactly the same as the solution for (P ′, i) of UNIV. Due to this,
one can take the answer of AUNIV for (P ′, i) as the final output for the input (P, i)
of HALT. The schema of this reduction is the simple schema presented in Fig. 4.8
and Fig. 4.19. Find such a simple reduction for the proof of AUNIV ≤Alg AHALT.
This means, you have to algorithmically transform the instance (P, i) of UNIV into
such an instance (P ′, i) that the output of AHALT for (P ′, i) (i.e., the reduction for
(P ′, i) of the halting problem) corresponds to the solution for the instance (P, i) of
UNIV.

4.4 Reduction Method 159

Above, we showed that the universal problem and the halting prob-
lem are equally hard with respect to algorithmic solvability. This
means that either both problems are algorithmically solvable or
both are algorithmically unsolvable. As we already mentioned, we
aim to prove their unsolvability. To do that, it is sufficient to show
that one of them is not easier than (N,M(DIAG)). Here, we prove

(N,M(DIAG)) ≤Alg UNIV.

We assume the existence of an algorithm AUNIV for UNIV and use
AUNIV to create an algorithm ADIAG that decides (N,M(DIAG)).
For any natural number i, the algorithm ADIAG has to compute
the answer YES if the i-th program Pi does not accept the number
i and the answer NO if Pi accepts i.

For any input i, our hypothetical algorithm ADIAG works on i as
follows (Fig. 4.20):

1. ADIAG gives i to a subprogram Agen that generates the i-th
program Pi.

2. ADIAG gives i and Pi as inputs to the hypothetical algorithm
AUNIV. AUNIV decides whether Pi accepts i (providing the an-
swer YES) or not (providing the answer NO).

3. ADIAG exchanges the answers of AUNIV. If AUNIV outputted
YES (i.e., that i is in M(Pi)), then i does not belong to
M(DIAG) and AUNIV computes NO. If AUNIV computed NO
(i.e., i is not in M(Pi)), then i is in M(DIAG) and AUNIV cor-
rectly answers YES (Fig. 4.20).

Following the description of the work of ADIAG on i, we see that
ADIAG provides the correct answers under the assumption that
AUNIV and Agen work correctly. The fact that AUNIV is an algo-
rithm solving UNIV is our assumption. The only open question is
whether one can build an algorithm Agen that, for each given nat-
ural number i, constructs the i-th program Pi in a finite time. Agen

can work as follows (Fig. 4.21). It generates texts over the keyboard
alphabet one after the other in the order described at the begin-
ning of this chapter. For each text generated, Agen uses a compiler

160 CHAPTER 4

and only if

ADIAG

accepts i if

the ith

Pi does not

i

NOYES

AUNIV accept i
AUNIV decides, whether
i belongs to M(Pi) or not

YES NO

Agen
Agen generates the ith

program Pi

i

i Pi

YES NO

program

Fig. 4.20

in order to check whether the text is a program representation or
not. Moreover, Agen counts the number of positive compiler an-
swers. After Agen gets i positive answers, it knows that the last
text generated is the i-th program Pi. The structure (flowchart)
of the algorithm Agen is outlined in Fig. 4.21.

Exercise 4.17 Show that (N, M(DIAG)) ≤Alg HALT is true by a reduction from
(N, M(DIAG)) to HALT.

Exercise 4.18 Let M(DIAG) be the set of all natural numbers i, such that Pi

accepts i. Hence, M(DIAG) contains exactly those natural numbers that do not
belong to M(DIAG). Show by a reduction that

(N, M(DIAG)) ≤Alg (N, M(DIAG)) and (N, M(DIAG)) ≤Alg (N, M(DIAG)).

We showed that the decision problem (N,M(DIAG)), the universal
problem UNIV, and the halting problem HALT are not algorithmi-

4.4 Reduction Method 161

Generate the subsequent text

of TEXT and save it into TEXT

Read i into I

K ← 0

TEXT ← “λ”

END

YES

NO

output TEXT

NO K
?
= I

K ← K + 1

Is TEXT a

program? The answer is given

by a compiler.

Fig. 4.21

cally solvable. The problems UNIV and HALT are very important
for testing of programs and so are of large interest in software
engineering. Unfortunately, the reality is that all important tasks
related to program testing are algorithmically unsolvable. How

162 CHAPTER 4

bad is this can be imagined by considering the unsolvability of the
following simple task.

Let f0 be a function from natural numbers to natural numbers
that is equal to 0 for every input i ∈ N. Such functions are called
constant functions because the result 0 is completely independent
of the input (of the argument). The following program

0 Output ← ‘‘0’’

1 End,

computes f0(i) for each i, and we see that it does not need to read
the input value i because i does not influence the output. Despite
of the simplicity of this task, there is no algorithm that is able to
decide for a given program P whether P computes f0 or not (i.e.,
whether P is a correct program for computing f0). To understand
it properly, note that input instances of this problem may also be
very long complex programs doing additionally a lot of pointless
work. The question is only whether at the end the correct result
“0” is computed or not.

Exercise 4.19 (challenge) Let M0 be the set of all programs with M(P) = ∅.
In other words, M0 contains all programs that, for each input, either outputs NO
or executes an infinite computation. Prove that it is not algorithmically decidable,
whether a given program P belongs to M0 (whether P does not accept any input)
or not.

In Chapter 4, we learned something very important. All syntactic
questions and problems such as “Is a given text a program rep-
resentation” are algorithmically decidable. We are even able to
construct the i-th program Pi for any given i. All the semantic
questions and problems about the meaning and the correctness of
programs are not algorithmically solvable.

4.5 Summary of the Most Important
Discoveries

We destroyed the dream from the early 20th century about au-
tomating everything. We discovered the existence of tasks that

4.5 Summary 163

cannot be automatically solved by means of computers controlled by
algorithms. This claim is true independently of current and future
computer technologies.

Among the algorithmically unsolvable problems, one can find
many tasks of interest such as

• Is a program correct? Does it fit the aim, which it was developed
for?

• Does a program avoid infinite computations (endless repetitions
of a loop)?

In computer science, there are several huge research communities
focusing on testing programs.7 Unfortunately, even such simple
questions as whether a given program computes a constant func-
tion are not algorithmically solvable. The scientists in this area are
satisfied if they are able to develop algorithms for testing some
kinds of partial correctness of programs. For instance, they try to
develop automatic testing of programs in some very special rep-
resentation or at least to find some typical errors without any
guarantee that all errors have been found.

For computing tasks related to program testing, one distinguishes
between syntactic and semantic problems. Syntactic tasks are
usually related to the correct representation of a program in the
formalism of a given programming language, and these problem
settings are algorithmically solvable. Semantic questions are re-
lated to the meaning of programs. For instance:

• What does a given program compute? Which problem does the
program solve?

• Does the program developed solve the given problem?

• Does a given program halt on a given input or does a program
always (for all inputs) halt?

• Does a given program accept a given input?

7This witnesses the importance of program testing in practice.

164 CHAPTER 4

All nontrivial semantic tasks about programs are not algorithmi-
cally solvable.

To discover the above presented facts, we learned two proof tech-
niques that can also be viewed as research methods, too. The first
technique was the diagonalization method that we already applied
in the study of infinities in Chapter 3. Using it, we were able to
show that the number of problems is a larger infinity than the
number of programs. Consequently, there exist algorithmically un-
solvable problems. The first algorithmically unsolvable problem we
discovered was the decision problem (N,M(DIAG)). To extend its
algorithmic unsolvability to other problems of practical interest,
we used the reduction method. This method was used for a long
time in mathematics in order to transform algorithmic solvability
from problem to problem (i.e., for broadcasting positive messages
about automatic solvability). The idea of the reduction method is
to say that

P1 is not harder than P2, P1 ≤Alg P2,

if, assuming the existence of an algorithm for P2, one can build an
algorithm solving P1. If this is true, we say that P1 is reducible to
P2.

The positive interpretation of the fact P1 ≤Alg P2 is that algo-
rithmic solvability of P2 implies the algorithmic solvability of P1.
The negative meaning of P1 ≤Alg P2 we used is that the algorith-
mic unsolvability of P2 follows from the algorithmic unsolvability
of P1. We applied the reduction method in order to derive the
algorithmic unsolvability of the halting problem and of the uni-
versal problem from the algorithmic unsolvability of the diagonal
problem.

Solutions to Some Exercises

Exercise 4.3 The number of real numbers with a finite representation is exactly
|N|. We know that 2 · |N| = |N| and even that |N| · |N| = |N|. Since |R| > |N|, we
obtain

|R| > |N| · |N| .

4.5 Summary 165

Therefore, we see that the number of real numbers with a finite representation is an
infinitely small fraction of the set of all real numbers.

Exercise 4.6 One can see the first 17 positions of the binary representation of
QUAD in the following table:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

QUAD 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0

You can easily extend this table for arbitrarily many positions.

Exercise 4.7 The first 10 positions of DIAG for the hypothetical table in Fig. 4.7
are

DIAG = 0101000011.

Exercise 4.9 We aim to show that the set

M(2-DIAG) = the set of all even positive integers 2i, such that 2i is not in
M(Pi)

is not decidable. The idea is again based on diagonalization as presented in Fig. 4.3.
We create 2-DIAG in such a way that M(2-DIAG) differs from each row of the table.
The only difference to constructing DIAG is that 2-DIAG differs from the i-th row
of the table in the position 2i (instead of i in the case of DIAG). The following table
in Fig. 4.22 provides a transparent explanation of the idea presented above.

0 1 2 3 4 5 6 7 8 9 10 11 12 · · ·
M(P0) 0 0 1 1 0 1 1 0 1 1 1 1 0

M(P1) 1 0 1 1 0 0 0 0 1 0 1 1 0

M(P2) 1 1 1 1 1 1 1 1 0 0 0 1 0

M(P3) 0 1 0 1 0 0 0 0 1 1 1 0 0

M(P4) 1 0 1 0 1 0 1 0 1 0 1 0 1

M(P5) 0 1 0 1 1 0 0 1 0 1 0 1 1

M(P6) 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
...

...
. . .

Fig. 4.22

The positions in boxes correspond to the intersections of the i-th row with the 2i-th
column. The set 2-DIAG differs from the rows of the table at least in the values
written on these positions. Hence, the first 13 positions of 2-DIAG with respect to
the hypothetical table in Fig. 4.22 are

2-DIAG = 1000001000101 . . .

We see that we took 0 for each odd position of 2-DIAG, and we note that the values
of these positions do not have any influence on the undecidability of 2-DIAG. The

