Eidgendssische Ecole polytechnigue fédérale de Zurich
Technische Hochschule Politecnico federale di Zurigo
Ztirich Swiss Federal Institute of Technology Zurich
Institut fir Theoretische Informatik 29. November 2011
Dr. B. Gartner, Prof. Dr. J. Hromkouié

Informatik fiir Mathematiker und Physiker Serie 10 HS11

URL: http://www.ti.inf.ethz.ch/ew/courses/Infol 11/

Skript-Aufgabe 116 (6 Punkte)

In how many ways can you own CHF 17 Despite its somewhat philosophical appearance, the
question is a mathematical one. Given some amount of money, in how many ways can you
partition it using the available denominations (bank notes and coins)? Today’s denominations
in CHF are 1000, 200, 100, 50, 20, 10 (banknotes), 5, 2, 1, 0.50, 0.20, 0.10, 0.05 (coins). The
amount of CHF 0.20, for example, can be owned in four ways (to get integers, let’s switch to
centimes): (20),(10,10),(10,5,5),(5,5,5,5). The amount of CHF 0.04 can be owned in no way,
while there is exactly one way to own CHF 0.00 (you cannot have 4 centimes in your wallet,
but you can have no money at all in your wallet).

Solve the problem for any given input amount, by writing a program partition.cpp that
defines the following function (all values to be understood as centimes).

// PRE: [first, last) is a wvalid nonempty range that describes

// a sequence of demominations d_1 > d_2 > ... > d_n > 0
// POST: return wvalue s the number of ways to partition amount
// using denominations from d_1, ..., d_n

unsigned int partitions (unsigned int amount,
const unsigned int* first,
const unsigned int* last);

Use your program to determine in how many ways you can own CHF 1, and CHF 10. Can your
program compute the number of ways for CHF 507 For CHF 1007

Skript-Aufgabe 121 (5 Punkte)

The following function finds an element with a given value x in a sorted sequence (if there is
such an element).

// PRE: [first, last) is a wvalid range, and the elements *p,

// p %n [first, last) are in ascending order

// POST: return value %s a pointer p in [first, last) such

// that #*p = z, or the pointer last, <f no such pointer
// exists

const int* binary_search (const int* first, const int* last, const int x)
{
const int n = last - first;
if (n == 0) return last; // empty range
if (n == 1) {
if (xfirst == x)
return first;
else
return last;
}
// n >= 2
const int* middle = first + n/2;
if (*¥middle > x) A
// x can’t be in [middle, last)



const int* p = binary_search (first, middle, x);

if (p == middle)
return last; // = mnot found
else
return p;
} else

// *middle <= z; we may skip [first, middle)
return binary_search (middle, last, x);

What is the maximum number T(n) of comparisons between sequence elements and x that this
function performs if the number of sequence elements is n? Try to find an upper bound on T(n)
that is as good as possible. (You may use the statement of Exercise 122.)

Skript-Aufgabe 124 (5 Punkte)

The Towers of Hanot puzzle (that can actually be bought from shops) is the following. There
are three wooden pegs labeled 1,2, 3, where the first peg holds a stack of n disks, stacked in
decreasing order of size, see Figure Abbildung 1.

]

Abbildung 1: The Tower of Hanoi

The goal is to transfer the stack of disks to peg 3, by moving one disk at a time from one peg to
another. The rule is that at no time, a larger disk may be on top of a smaller one. For example,
we could start by moving the topmost disk to peg 2 (move (1,2)), then move the next disk
from peg 1 to peg 3 (move (1,3)), then move the smaller disk from peg 2 onto the larger disk
on peg 3 (move (2,3)), etc.

Write a program hanoi.cpp that outputs a sequence of moves that does the required transfer,
for given input n. For example, if n = 2, the above initial sequence (1,2)(1,3)(2,3) is already
complete and solves the puzzle. Check the correctness of your program by hand at least for
n = 3, by manually reproducing the sequence of moves on a piece of paper (or an actual Tower
of Hanoi, if you have one).

Die Aufgaben 125 und 126 aus den Vorlesungsunterlagen sind die Challenge Aufgaben und geben
jeweils 8 Punkte, wenn sie vollstandig geldst werden.

Abgabe: Bis 6. Dezember 2011, 15.15 Uhr.



