!'_ Fliesskommazahlen

Typen £loat und double;
Fliesskommazahlensysteme,
Locher im Wertebereich, IEEE

Standard, Fliesskomma-Richtlinien



"Richtig” Rechnen

// Program: fahrenheit.cpp
// Convert temperatures from Celsius to Fahrenheit.

#include <iostream>

int main()
{
// Input
std: :cout << "Temperature in degrees Celsius =? ";
int celsius;
std::cin >> celsius;

// Computation and output
std: :cout << celsius << " degrees Celsius are "
<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";

return O;

28 degrees Celsius are 82 degrees Fahrenheit.



"Richtig” Rechnen

// Program: fahrenheit.cpp
// Convert temperatures from Celsius to Fahrenheit.

#include <iostream>

int main()
{
// Input
std: :cout << "Temperature in degrees Celsius =? ";
int celsius;
std::cin >> celsius;

// Computation and output
std: :cout << celsius << " degrees Celsius are "
<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";

return O;

28 degrees Celsius are 82 degrees Fahrenheit.

Richtig ware: 82.4



"Richtig” Rechnen

// Program: fahrenheit.cpp
// Convert temperatures from Celsius to Fahrenheit.

#include <iostream>

int main()
{
// Input
std: :cout << "Temperature in degrees Celsius =? ";
float celsius; // Fliesskommazahlentyp
std::cin >> celsius;

// Computation and output
std: :cout << celsius << " degrees Celsius are "
<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";

return O;

28 degrees Celsius are 82.4 degrees Fahrenheit.



Reprasentierung von
i Dezimalzahlen (z.B. 82.4)

Fixkommazahlen (z.B. mit 10 Stellen):
o feste Anzahl Vorkommastellen (z.B. 7)
o feste Anzahl Nachkommastellen (z.B. 3)




Reprasentierung von
i Dezimalzahlen (z.B. 82.4)

Fixkommazahlen (z.B. mit 10 Stellen):
o feste Anzahl Vorkommastellen (z.B. 7)
o feste Anzahl Nachkommastellen (z.B. 3)

82.4 = 0000082.400




Reprasentierung von
i Dezimalzahlen (z.B. 82.4)

Fixkommazahlen (z.B. mit 10 Stellen):

o feste Anzahl Vorkommastellen (z.B. 7)

o feste Anzahl Nachkommastellen (z.B. 3)
82.4 = 0000082.400

o Nachteil 1:

o Wertebereich wird noch kleiner als bei
ganzen Zahlen.




Reprasentierung von
‘-L Dezimalzahlen (z.B. 82.4)

Fixkommazahlen (z.B. mit 10 Stellen):
o feste Anzahl Vorkommastellen (z.B. 7)
o feste Anzahl Nachkommastellen (z.B. 3)

0.0824 = 0000000.082 \-
o Nachteil 2:

o Reprasentierbarkeit hangt stark davon ab,
wo das Komma ist.




Reprasentierung von
‘-L Dezimalzahlen (z.B. 82.4)

Fliesskommazahlen (z.B. mit 10 Stellen):
o feste Anzahl signifikanter Stellen (10)
o plus Position des Kommas




Reprasentierung von
i Dezimalzahlen (z.B. 82.4)

Fliesskommazahlen (z.B. mit 10 Stellen):
o feste Anzahl signifikanter Stellen (10)
o plus Position des Kommas
82.4 = 824 x 10
0.0824 = 824 x 10

o Zahlist Signifikand x 10 Fxponent



i Typen £loat und double

o sind die fundamentalen C++ Typen fur
Fliesskommazahlen

o approximieren den Korper (R, +, X) in
der Mathematik (reelle Zahlen)

o haben grossen Wertebereich,

ausreichend fur viele Anwendungen
(double hat mehr Stellen als £1loat)

o sind auf vielen Rechnern sehr schnell



i Arithmetische Operatoren

Wie bei int, aber...

o Divisionsoperator / modelliert
“echte” (reelle, nicht ganzzahlige)
Division

o keine Modulo-Operatoren $ und %=



i Literale

Beispiele:
1.23e-7 : Typ double, Wert 1.23 x 10/

1.23e-7£: Typ £float, Wert 1.23 x 10~/



i Literale

Beispiele:
1.23e-7 : Typ double, Wert 1.23 x 10/

1.23e-7£: Typ float, Wert 1.23 x 10~/

ganzzahliger Teil \ Exponent

fraktionaler Teil



‘L Rechnen mit £loat: Beispiel

Approximation der Euler-Konstante

mittels der ersten 10 Terme.



Rechnen mit £1oat: Beispie

// Program: euler.cpp
// Approximate Euler's constant e.

#include <iostream>

int main ()

{

// values for term i, initialized for i = 0
float t = 1.0f; // 1/i!
float e = 1.0f£; // i-th approximation of e

std: :cout << "Approximating the Euler constant...\n";

// steps 1,...,n

for (unsigned int i = 1; i1 < 10; ++i) {
e += t /= i; // compact form of t =t / i; e =e + t
std: :cout << "Value after term " << i << ": " << e << "\n";

return O;



Rechnen mit £1loat: Beispiel

// Program: euler.cpp
// Approximate Euler's constant e.

#include <iostream>

int main ()

{

// values for term i, initialized for i = 0
float t = 1.0f; // 1/i!
float e = 1.0f£; // i-th approximation of e

std: :cout << "Approximating the Euler constant...\n";
// steps 1,...,n
for (unsigned int i = 1; i1 < 10; ++i) {

e +=t /= 1i; // compact form of t =t / i; e =e + t
std: :cout << "Value after term " << i << ": " << e << "\n";
}
return O0;

Zuweisungen sind rechtsassoziativ: e += (t /= i) ;



Rechnen mit £1loat: Beispiel

// Program: euler.cpp
// Approximate Euler's constant e.

#include <iostream>

int main ()

{

// values for term i, initialized for i = 0
float t = 1.0f; // 1/i!
float e = 1.0f£; // i-th approximation of e

std: :cout << "Approximating the Euler constant...\n";
// steps 1,...,n
for (unsigned int i = 1; i1 < 10; ++i) {

e +=t /= 1i; // compact form of t =t / i; e =e + t
std: :cout << "Value after term " << i << ": " << e << "\n";
}
t: 1/(G-1)! —— 1/l
return O; l

Zuweisungen sind rechtsassoziativ: e += (t /= i) ;



Rechnen mit £1loat: Beispiel

// Program: euler.cpp
// Approximate Euler's constant e.

#include <iostream>

int main ()

{

// values for term i, initialized for i = 0
float t = 1.0f; // 1/i!
float e = 1.0f£; // i-th approximation of e

std: :cout << "Approximating the Euler constant...\n";
// steps 1,...,n
for (unsigned int i = 1; i1 < 10; ++i) {

e +=t /= 1i; // compact form of t =t / i; e =e + t
std: :cout << "Value after term " << i << ": " << e << "\n";
}
e: 1+..+1 /(1) ——1+...+1 /1!
return O; l

Zuweisungen sind rechtsassoziativ: e += (t /= i) ;



Rechnen mit £1loat: Beispiel

Ausgabe:

Approximating the Euler constant...

Value
Value
Value
Value
Value
Value
Value
Value
Value

after
after
after
after
after
after
after
after
after

term
term
term
term
term
term
term
term
term
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.66667
.70833
.71667
.71806
.71825
.71828
.71828



Gemischte Ausdrucke,
i Konversion

o Fliesskommatypen sind allgemeiner als
ganzzahlige Typen.

o in gemischten Ausdricken werden
ganze Zahlen zu Fliesskommazahlen
konvertiert.

O * celsius / 5 + 32



Gemischte Ausdrucke,
i Konversion

o Fliesskommatypen sind allgemeiner als
ganzzahlige Typen.

o in gemischten Ausdricken werden
ganze Zahlen zu Fliesskommazahlen
konvertiert.

O * celsius / 5 + 32

|

Typ: £loat; Wert: 28



Gemischte Ausdrucke,
i Konversion

o Fliesskommatypen sind allgemeiner als
ganzzahlige Typen.

o in gemischten Ausdricken werden
ganze Zahlen zu Fliesskommazahlen
konvertiert.

9 *» 28.0£ / 5 + 32



Gemischte Ausdrucke,
i Konversion

o Fliesskommatypen sind allgemeiner als
ganzzahlige Typen.

o in gemischten Ausdricken werden
ganze Zahlen zu Fliesskommazahlen
konvertiert.

9 *» 28.0£ / 5 + 32

wird nach £loat konvertiert: 9.0f



Gemischte Ausdrucke,
i Konversion

o Fliesskommatypen sind allgemeiner als
ganzzahlige Typen.

o in gemischten Ausdricken werden
ganze Zahlen zu Fliesskommazahlen
konvertiert.

252.0£f / 5 + 32



Gemischte Ausdrucke,
i Konversion

o Fliesskommatypen sind allgemeiner als
ganzzahlige Typen.

o in gemischten Ausdricken werden
ganze Zahlen zu Fliesskommazahlen
konvertiert.

252.0f / T + 32

wird nach £loat konvertiert: 5.0f



Gemischte Ausdrucke,
i Konversion

o Fliesskommatypen sind allgemeiner als
ganzzahlige Typen.

o in gemischten Ausdricken werden
ganze Zahlen zu Fliesskommazahlen
konvertiert.

50.4 + 32



Gemischte Ausdrucke,
i Konversion

o Fliesskommatypen sind allgemeiner als
ganzzahlige Typen.

o in gemischten Ausdricken werden
ganze Zahlen zu Fliesskommazahlen
konvertiert.

50.4 + 32

wird nach £loat konvertiert: 32.0f



Gemischte Ausdrucke,
i Konversion

o Fliesskommatypen sind allgemeiner als
ganzzahlige Typen.

o in gemischten Ausdricken werden
ganze Zahlen zu Fliesskommazahlen
konvertiert.

82.4



i Wertebereich

Ganzzahlige Typen:
> Uber- und Unterlauf haufig, aber...

o Wertebereich ist zusammenhangend
(keine “Locher”): Z ist “diskret”.



i Wertebereich

Ganzzahlige Typen:
> Uber- und Unterlauf haufig, aber...

o Wertebereich ist zusammenhangend
(keine “Locher”): Z ist “diskret”.

Fliesskommatypen:

o Uber- und Unterlauf selten, aber...

o es gibt Locher: R ist “kontinuierlich”.



Locher im Wertebereich

// Program: diff.cpp
// Check subtraction of two floating point numbers

#include <iostream>

int main()
{
// Input
float nl;
std: :cout << "First number = ";
std::cin >> nl;

float n2;
std: :cout << "Second number =2 ";
std::cin >> n2;

float d;
std: :cout << "Their difference =? ";

std::cin >> d;

// Computation and output

std: :cout << "Computed difference - input difference = "
<< nl - n2 - d<< ".\n";

return O;



Locher im Wertebereich

// Program: diff.cpp
// Check subtraction of two floating point numbers

#include <iostream>

int main()

{

// Input

float nl;

std: :cout << "First number = ", A .
std::cin >> nl; IanIt' 15
float n2;

std: :cout << "Second number = ", 0 t_ 1 O
std::cin >> n2; INput. 1.
float d;

td:: t << "Their diff =2 "; . .

s cou eir difference |npUt. 05

std::cin >> d;

// Computation and output

std: :cout << "Computed difference - input difference = "
<< nl - n2 - d<< ".\n";

return O;



Locher im Wertebereich

// Program: diff.cpp
// Check subtraction of two floating point numbers

#include <iostream>

int main()

{

// Input

float nl;

std: :cout << "First number = ", A .
std::cin >> nl; IanIt' 15
float n2;

std: :cout << "Second number = ", 0 t_ 1 O
std::cin >> n2; INput. 1.
float d;

td:: t << "Their diff =2 "; . .

s cou eir difference |npUt. 05

std::cin >> d;

// Computation and output
std: :cout << "Computed difference - input difference = "
<< nl - n2 - d<< ".\n";

return 0; output: 0



Locher im Wertebereich

// Program: diff.cpp
// Check subtraction of two floating point numbers

#include <iostream>

int main()

{

// Input

float nl;

std: :cout << "First number = ", A .
std::cin >> nl; IanIt' 11
float n2;

std: :cout << "Second number = ", 0 t_ 1 O
std::cin >> n2; INput. 1.
float d;

td:: t << "Their diff =2 "; . .

s cou eir difference |npUt. 01

std::cin >> d;

// Computation and output

std: :cout << "Computed difference - input difference = "
<< nl - n2 - d<< ".\n";

return O;



Locher im Wertebereich

// Program: diff.cpp
// Check subtraction of two floating point numbers

#include <iostream>

int main()

{

// Input

float nl;

std: :cout << "First number = "; 5 .
std::cin >> nl; IanIt' 11
float n2;

std: :cout << "Second number =? "; c t_ 1 O
std::cin >> n2; INput. 1.
float d;

td:: t << "Their diff =2 "; . .

s cou eir difference |npUt. 01

std::cin >> d;

// Computation and output
std: :cout << "Computed difference - input difference = "
<< nl - n2 - d<< ".\n";

return 0; output: 2.23517e-8



Locher im Wertebereich

// Program: diff.cpp
// Check subtraction of two floating point numbers

#include <iostream>

int main()

{

// Input

float nl;

std: :cout << "First number =? "; A .

std::cin >> nl; Inpl"It' 11

float n2;

std: :cout << "Second number =? "; c . 1 O

std::cin >> n2; mPUt- .

float d;

std: :cout << "Their difference =? "; A . =
std: :cin >> d; IanIt' 01 WaS ISt
// Computation and output hler IOS?

std: :cout << "Computed difference - input difference = "
<< nl - n2 - d<< ".\n";

return 0; output: 2.23517e-8



i Fliesskommazahlensysteme

Ein Fliesskommazahlensystem ist durch
vier naturliche Zahlen definiert:

o B =2, die Basis

o p=1, die Prazision

o €mins der kleinste Exponent
0 €maxs der grédsste Exponent



i Fliesskommazahlensysteme

Ein Fliesskommazahlensystem ist durch
vier naturliche Zahlen definiert:

F ( /3) 7 Pr €min s emax)
o B =2, die Basis
o p=1, die Prazision
o €mins der kleinste Exponent
0 €maxs der grésste Exponent.



i Fliesskommazahlensysteme

F ( ﬁ / ,U, emin / emax)

enthalt die Zahlen
p-1 _
+ X djS'x fFe,

CIIE {O,...,ﬁ = 1}, e E {em,-n,..., emax}



i Fliesskommazahlensysteme

F ( /3) / ,U, emin / emax)

enthalt die Zahlen (Basis- £ -Darstellung)

+dp.dy...dy X 5 €,

CIIE {O,...,ﬁ = 1}, e E {em,-n,..., emax}



‘-L Fliesskommazahlensysteme

Beispiel:
0 ﬁ — 10

Darstellungen der Dezimalzahl 0.1:

1.0 x 101, 0.1 x 109, 0.01 x 10%,...



ﬁ Normalisierte Darstellung

Normalisierte Zahl:

tdy. dy...dy; x F¢, dy#0



i Normalisierte Darstellung

Normalisierte Zahl:

tdy. dy...dy; x F¢, dy#0

Bemerkung 1: Die normalisierte Darstellung
einer Fliesskommazahl ist eindeutig und deshalb
Zu bevorzugen.



i Normalisierte Darstellung

Normalisierte Zahl:

tdy. dy...dy; x F¢, dy#0

Bemerkung 2: Die Zahl 0 (und alle Zahlen
kleiner als #° ) haben keine normalisierte
Darstellung (werden wir spater beheben)!



i Normalisierte Darstellung

Normalisierte Zahl:

tdy. dy...dy; x F¢, dy#0

Die Menge der normalisierten Zahlen ist

F* (/3)/ ,U, emin/ emax)



i Normalisierte Darstellung

Normalisierte Zahl:

tdy. dy...dy; x F¢, dy#0

Beispiel:

\ .

F*(2, 3, -2, 2) (Zahlen > 0)
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i Normalisierte Darstellung

Normalisierte Zahl:

tdy. dy...dy; x F¢, dy#0

Beispiel:

F*(2, 3, -2, 2) (Zahlen > 0)

A ]
0 1

2

2

1.00 x 22 =1/4
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i Normalisierte Darstellung

Normalisierte Zahl:

tdy. dy...dy; x F¢, dy#0

Beispiel:

F*(2, 3, -2, 2) (Zahlen > 0)

A ]
0 1

2

2

1.00 x 22 =1/4

S D S NS S S—

3 4 5 6 /7 8

1.11 x 22=7



i Bindre und dezimale Systeme

o intern rechnet der Computer meistens
mit 4 = 2 (binares Fliesskommazahlen-
system)



i Bindre und dezimale Systeme

o intern rechnet der Computer meistens
mit 4 = 2 (binares Fliesskommazahlen-
system)

o Literale und Eingaben haben 5 = 10
(dezimales Fliesskommazahlensystem)



i Bindre und dezimale Systeme

o intern rechnet der Computer meistens
mit 4 = 2 (binares Fliesskommazahlen-
system)

o Literale und Eingaben haben 5 = 10
(dezimales Fliesskommazahlensystem)

o Eingaben mulssen umgerechnet werden!



ﬁ Umrechung dezimal -> binar

Angenommen, 0< x < 2.
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Angenommen, 0< x < 2.

Binarexpansion:

lllll



i Umrechung dezimal -> binar

Angenommen, 0< x < 2.

Binarexpansion:
X=Zi_ . 002 =Dbybb,bs...
= Dby + Zi_ o -1 D2
= Dby + Zi_ .. o D1 2"

= by + (Zi--oo. 0b,12')/2



‘.L Umrechung dezimal -> binar

Angenommen, 0< x < 2.

Binarexpansion:
X = Zico,..,0012" = bg. by b, b3,
= Dby + Zi_ o -1 D2
= Dby + Zi_ .. o D1 2"
_ I:)0 + &Z|=-oo,...,0 bl-lzl) / 2

Y X,= b-l' b_z b_3 b_4...




‘-L Umrechung dezimal -> binar

Angenommen, 0< x < 2.

Binarziffern (x ):
by, Binarziffern (b_4. b, b5 b.,...)



‘-L Umrechung dezimal -> binar

Angenommen, 0< x < 2.

Binarziffern (x ):
by, Binarziffern (b_4. b, b5 b.,...)

-
x"=2(x—by)




Binardarstellung von 1.1

X'bi

xX=2(x-Db)

X

1.1




Binardarstellung von 1.1

X - b, X=2(x—-b) —x i
1.1 bp=1
0.1 0.2 0.2 b=




Binardarstellung von 1.1

X - b, X=2(x—-b) —x b,
1.1 by =

0.1 0.2 0.2 b.,=0

0.2 0.4 0.4 b,=0




Binardarstellung von 1.1

X - b, X=2(x—-b) —x b,
1.1 by =
0.1 0.2 0.2 0., =0
0.2 0.4 0.4 D, =10
0.4 0.8 0.8 0;=10




Binardarstellung von 1.1

X - b, X=2(x—-b) —x b,
1.1 by =
0.1 0.2 0.2 0., =0
0.2 0.4 0.4 D, =10
0.4 0.8 0.8 0;=10
0.8 1.6 1.6 0.4 =




Binardarstellung von 1.1

X - b, X=2(x—-b) —x b,
1.1 by =
0.1 0.2 0.2 0., =0
0.2 0.4 0.4 D, =10
0.4 0.8 0.8 0;=10
0.8 1.6 1.6 0.4 =
0.6 1.2 1.2 0.c =




Binardarstellung von 1.1

X - b, X=2(x—-b) —x b,
1.1 by =
0.1 0.2 0.2 0., =0
0.2 0.4 0.4 D, =10
0.4 0.8 0.8 0;=10
0.8 1.6 1.6 0.4 =
0.6 1.2 1.2 0.c =
0.2 0.4 0.4 D=0




Binardarstellung von 1.1

X - b, X=2(x—-b) —x b,
1.1 by=1
0.1 0.2 0.2 0., =0
0.2 0.4 0.4 D, =10
0.4 0.8 0.8 0;=10
0.8 1.6 1.6 0., =1
0.6 1.2 1.2 D=1
0.2 0.4 0.4 D=0

Binardarstellung ist 1.00011 (periodisch, nicht endlich)




i Binardarstellung von 1.1

o ist nicht endlich, also gibt es

o Fehler bei der Konversion in ein binares
Fliesskommazahlensystem

o 1.1 ist fir den Computer nicht 1.1 ...



i Binardarstellung von 1.1

o ist nicht endlich, also gibt es

o Fehler bei der Konversion in ein binares
Fliesskommazahlensystem

o 1.1 ist fir den Computer nicht 1.1 ...
sondern (auf meiner Plattform)
1.10000002384185791015625.



ﬁ Der Excel-2007-Bug

o Umrechnungsfehler sind sehr klein...




i Der Excel-2007-Bug

o Umrechnungsfehler sind sehr klein...

o kbnnen aber grosse Auswirkungen
haben!
Microsoft Excel 2007:
/7.1 x 850 = 100000 (anstatt 65535)



i Der Excel-2007-Bug

o Umrechnungsfehler sind sehr klein...
o kbnnen aber grosse Auswirkungen
haben!
Microsoft Excel 2007:
/7.1 x 850 = 100000 (anstatt 65535)

Microsoft: Resultat wird korrekt berechnet, “nur”
falsch angezeigt.

Microsoft Excel 2007:
1 x 65535 = 65535 (Glick gehabt...)



i Der Excel-2007-Bug

o Umrechnungsfehler sind sehr klein...
o kbnnen aber grosse Auswirkungen
haben!
Microsoft Excel 2007:
/7.1 x 850 = 100000 (anstatt 65535)

Microsoft: Resultat wird korrekt berechnet, “nur”
falsch angezeigt. '\

stimmt nicht ganz; 77.1 hat keine endliche Binarexpansion,
berechnet wird also eine Zahl A sehr nahe an 65535.



i Der Excel-2007-Bug

o Umrechnungsfehler sind sehr klein...
o kbnnen aber grosse Auswirkungen
haben!
Microsoft Excel 2007:
/7.1 x 850 = 100000 (anstatt 65535)

Microsoft: Resultat wird korrekt berechnet, “nur”
falsch angezeigt. '\

A ist eine von nur zwolf Fliesskommazahlen (It. Microsoft),
fir die die Umwandlung ins Dezimalsystem fehlerhaft ist.



Rechnen mit
‘L Fliesskommazahlen

o fast so einfach wie mit ganzen Zahlen
o Beispiel (4 =2, p=4):




Rechnen mit
i Fliesskommazahlen

o fast so einfach wie mit ganzen Zahlen
o Beispiel (4 =2, p=4):
1.111 x 22
+ 1.011 x 21

Schritt 1: Exponenten anpassen durch Denormalisieren einer Zahl



Rechnen mit
‘-L Fliesskommazahlen

o fast so einfach wie mit ganzen Zahlen
o Beispiel (f =2, p=4):
1.111 x 22
+10.110 x 2

Schritt 1: Exponenten anpassen durch Denormalisieren einer Zahl



Rechnen mit
i Fliesskommazahlen

o fast so einfach wie mit ganzen Zahlen
o Beispiel (f =2, p=4):
1.111 x 22
+10.110 x 2+

Schritt 2: Binare Addition der Signifikanden



Rechnen mit
‘-L Fliesskommazahlen

o fast so einfach wie mit ganzen Zahlen
o Beispiel (f =2, p=4):
1.111 x 22
+10.110 x 2+

100.101 x 22

Schritt 2: Binare Addition der Signifikanden



Rechnen mit
i Fliesskommazahlen

o fast so einfach wie mit ganzen Zahlen
o Beispiel (f =2, p=4):
1.111 x 22
+10.110 x 2+

100.101 x 22

Schritt 3: Renormalisierung



Rechnen mit
‘-L Fliesskommazahlen

o fast so einfach wie mit ganzen Zahlen
o Beispiel (f =2, p=4):
1.111 x 22
+10.110 x 2+

1.00101 x 2¢

Schritt 3: Renormalisierung



Rechnen mit
i Fliesskommazahlen

o fast so einfach wie mit ganzen Zahlen
o Beispiel (f =2, p=4):
1.111 x 22
+10.110 x 2+

1.00101 x 29

Schritt 4: Runden auf p signifikante Stellen, falls notwendig



Rechnen mit
i Fliesskommazahlen

o fast so einfach wie mit ganzen Zahlen
o Beispiel (f =2, p=4):
1.111 x 22
+10.110 x 2+

1.001 x 20

Schritt 4: Runden auf p signifikante Stellen, falls notwendig



i Der IEEE-Standard 754

o legt Fliesskommazahlensysteme und
deren Rundungsverhalten fest

o wird von vielen Plattformen unterstut
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o legt Fliesskommazahlensysteme und
deren Rundungsverhalten fest

o wird von vielen Plattformen unterstut

o Single precision (£loat) Zahlen:
F* (2, 24, -126, 127)
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i Der IEEE-Standard 754

o legt Fliesskommazahlensysteme und
deren Rundungsverhalten fest

o wird von vielen Plattformen unterstut

o Single precision (£loat) Zahlen:
F* (2, 24, -126, 127)

o double precision (double) Zahlen:
F* (2, 53, -1022, 1023)
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i Der IEEE-Standard 754

o legt Fliesskommazahlensysteme und
deren Rundungsverhalten fest

o wird von vielen Plattformen unterstut

o Single precision (£loat) Zahlen:
F* (2, 24, -126, 127) olus 0, oo, ...

o double precision (double) Zahlen:
* plus 0, oo, ...
F* (2, 53, -1022, 1023)

(Zt



i Der IEEE-Standard 754

o legt Fliesskommazahlensysteme und
deren Rundungsverhalten fest

o wird von vielen Plattformen unterstutzt

o alle arithmetischen Operationen runden
das exakte Ergebnis auf die nachste
darstellbare Zahl




‘L Der IEEE-Standard 754




i Der IEEE-Standard 754

o 1 Bit flr das Vorzeichen

o 23 Bit fur den Signifikanden (fUhrendes
Bit ist 1 und wird nicht gespeichert)

o 8 Bit fur den Exponenten (256 maogliche
Werte)



i Der IEEE-Standard 754

o 1 Bit flr das Vorzeichen

o 23 Bit fur den Signifikanden (fUhrendes
Bit ist 1 und wird nicht gespeichert)

o 8 Bit fur den Exponenten (256 maogliche

Werte)
insgesamt 32 Bit



i Der IEEE-Standard 754

o 1 Bit flr das Vorzeichen

o 23 Bit fur den Signifikanden (fUhrendes
Bit ist 1 und wird nicht gespeichert)

o 8 Bit fur den Exponenten (254 maogliche
Exponenten, 2 Spezialwerte: 0, o,...)



i Der IEEE-Standard 754

Warum £ (2 53,-1022,1023) >

o 1 Bit flr das Vorzeichen

o 52 Bit fur den Signifikanden (fUhrendes
Bit ist 1 und wird nicht gespeichert)

o 11 Bit fur den Exponenten (2046
maogliche Exponenten, 2 Spezialwerte)

insgesamt 64 Bit



Richtlinien furs Rechnen mit
i Fliesskommazahlen

Regel 1:
Teste keine zwei Fliesskommazahlen auf
Gleichheit, wenn mindestens eine das
Ergebnis einer Rundungsoperation ist!




Richtlinien furs Rechnen mit
ﬁ Fliesskommazahlen

Regel 1:
Teste keine zwei Fliesskommazahlen auf
Gleichheit, wenn mindestens eine das
Ergebnis einer Rundungsoperation ist!

for (float i = 0.1; 1 '=1.0; i += 0.1)
std: :cout << i << "\n";



Richtlinien furs Rechnen mit
ﬁ Fliesskommazahlen

Regel 1:
Teste keine zwei Fliesskommazahlen auf
Gleichheit, wenn mindestens eine das
Ergebnis einer Rundungsoperation ist!

for (float i = 0.1; 1 '=1.0; i += 0.1)
std: :cout << i << "\n";

In der Praxis ist das eine Endlosschleife, weil i niemals exakt 1 ist!



Richtlinien furs Rechnen mit
* Fliesskommazahlen

Regel 2:
Vermeide die Addition von Zahlen sehr
unterschiedlicher Grosse!




Richtlinien furs Rechnen mit
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Regel 2:
Vermeide die Addition von Zahlen sehr
unterschiedlicher Grosse!

Beispiel (5 = 2, p=4):
1.000 x 24
+ 1.000 x 20



Richtlinien furs Rechnen mit
ﬁ Fliesskommazahlen

Regel 2:
Vermeide die Addition von Zahlen sehr
unterschiedlicher Grosse!

Beispiel (5 = 2, p=4):
1.000 x 24
+ 1.000 x 20 =1.0001 x 24



Richtlinien furs Rechnen mit
* Fliesskommazahlen

Regel 2:
Vermeide die Addition von Zahlen sehr
unterschiedlicher Grosse!

Beispiel (5 = 2, p=4):
1.000 x 24

+ 1.000 x 20 = TO864=x 7"

Rundung auf 4 Stellen! = 1.000 X 24



Richtlinien furs Rechnen mit
ﬁ Fliesskommazahlen

Regel 2:
Vermeide die Addition von Zahlen sehr
unterschiedlicher Grosse!

Beispiel (5 = 2, p=4):
1.000 x 24
+ 1.000 x 20 = 1.000 x 24

Addition von 1 hat keinen Effekt!



Beispiel fur Regel 2:
i Harmonische Zahlen

n -te Harmonische Zahl:

H=1+1/2+1/3+ ..+ 1/n
=1/n+1/(n-1) + ... +1

Summe kann vorwarts oder ruckwart
berechnet werden.



Beispiel fur Regel 2:
Harmonische Zahlen

// Program: harmonic.cpp
// Compute the n-th harmonic number in two ways.

#include <iostream>

int main()
{
// Input
std: :cout << "Compute H n for n =? ";
unsigned int n;
std::cin >> n;

// Forward sum

float fs = 0;

for (unsigned int i
fs += 1.0f / i;

I
[y
n

<= n; ++1i)

// Backward sum

float bs = 0;

for (unsigned int i = n; i >= 1; --i)
bs += 1.0£f / i;

// Output

std::cout << "Forward sum = " << fs << "\n"
<< "Backward sum = " << bs << "\n";

return O0;



Beispiel fur Regel 2:
‘L Harmonische Zahlen

Compute H n for n =? 10000000
Forward sum = 15.4037
Backward sum = 16.686




Beispiel fur Regel 2:
i Harmonische Zahlen

Compute H n for n =? 10000000
Forward sum = 15.4037
Backward sum = 16.686

Compute H n for n =? 100000000
Forward sum = 15.4037
Backward sum = 18.8079



Beispiel fur Regel 2:
i Harmonische Zahlen

o Die Vorwartssumme wachst irgendwann
nicht mehr und ist “richtig” falsch.

o Die Ruckwartssumme ist eine gute
Approximation von H ...




Beispiel fur Regel 2:
i Harmonische Zahlen

o Die Vorwartssumme wachst irgendwann

nicht mehr u

nd ist “richtig” falsch.

o Die Ruckwar

'lssumme ist eine gute

Approximation von H ...

o Beil+ 1/2 +1/3 + ... + 1/n sind spate
Terme zu klein, um noch beizutragen.

wie bej 24+ 1 “=" 24



Beispiel fur Regel 2:
i Harmonische Zahlen

o Die Vorwartssumme wachst irgendwann

nicht mehr u

nd ist “richtig” falsch.

o Die Ruckwar

'lssumme ist eine gute

Approximation von H ...

o Bei 1/n + 1/(n-1) + ... + 1 sind spate
Terme vergleichsweise gross und gehen
deshalb in die Gesamtsumme ein.



Richtlinien furs Rechnen mit
ﬁ Fliesskommazahlen

Regel 3:

Vermeide die Subtraktion von Zahlen
sehr ahnlicher Grosse!

Ausloschungsproblematik, siehe Skript.
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