
Fliesskommazahlen

Typen float und double;
Fliesskommazahlensysteme,

Löcher im Wertebereich, IEEE
Standard, Fliesskomma-Richtlinien

“Richtig” Rechnen
// Program: fahrenheit.cpp
// Convert temperatures from Celsius to Fahrenheit.

#include <iostream>

int main()
{
 // Input
 std::cout << "Temperature in degrees Celsius =? ";
 int celsius;
 std::cin >> celsius;

 // Computation and output
 std::cout << celsius << " degrees Celsius are "
 << 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";
 return 0;
}

28 degrees Celsius are 82 degrees Fahrenheit.

“Richtig” Rechnen
// Program: fahrenheit.cpp
// Convert temperatures from Celsius to Fahrenheit.

#include <iostream>

int main()
{
 // Input
 std::cout << "Temperature in degrees Celsius =? ";
 int celsius;
 std::cin >> celsius;

 // Computation and output
 std::cout << celsius << " degrees Celsius are "
 << 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";
 return 0;
}

28 degrees Celsius are 82 degrees Fahrenheit.

Richtig wäre: 82.4

“Richtig” Rechnen
// Program: fahrenheit.cpp
// Convert temperatures from Celsius to Fahrenheit.

#include <iostream>

int main()
{
 // Input
 std::cout << "Temperature in degrees Celsius =? ";
 float celsius; // Fliesskommazahlentyp
 std::cin >> celsius;

 // Computation and output
 std::cout << celsius << " degrees Celsius are "
 << 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";
 return 0;
}

28 degrees Celsius are 82.4 degrees Fahrenheit.

Repräsentierung von
Dezimalzahlen (z.B. 82.4)

Fixkommazahlen (z.B. mit 10 Stellen):
o  feste Anzahl Vorkommastellen (z.B. 7)
o  feste Anzahl Nachkommastellen (z.B. 3)

Repräsentierung von
Dezimalzahlen (z.B. 82.4)

Fixkommazahlen (z.B. mit 10 Stellen):
o  feste Anzahl Vorkommastellen (z.B. 7)
o  feste Anzahl Nachkommastellen (z.B. 3)

 82.4 = 0000082.400

Repräsentierung von
Dezimalzahlen (z.B. 82.4)

Fixkommazahlen (z.B. mit 10 Stellen):
o  feste Anzahl Vorkommastellen (z.B. 7)
o  feste Anzahl Nachkommastellen (z.B. 3)

o  Nachteil 1:
o  Wertebereich wird noch kleiner als bei

ganzen Zahlen.

 82.4 = 0000082.400

Repräsentierung von
Dezimalzahlen (z.B. 82.4)

Fixkommazahlen (z.B. mit 10 Stellen):
o  feste Anzahl Vorkommastellen (z.B. 7)
o  feste Anzahl Nachkommastellen (z.B. 3)

o  Nachteil 2:
o  Repräsentierbarkeit hängt stark davon ab,

wo das Komma ist.

 0.0824 = 0000000.082
dritte Stelle ab-
geschnitten!

Repräsentierung von
Dezimalzahlen (z.B. 82.4)

Fliesskommazahlen (z.B. mit 10 Stellen):
o  feste Anzahl signifikanter Stellen (10)
o  plus Position des Kommas

Repräsentierung von
Dezimalzahlen (z.B. 82.4)

Fliesskommazahlen (z.B. mit 10 Stellen):
o  feste Anzahl signifikanter Stellen (10)
o  plus Position des Kommas

o  Zahl ist Signifikand × 10 Exponent

82.4 = 824 × 10 -1

 0.0824 = 824 × 10 -4

Typen float und double

o  sind die fundamentalen C++ Typen für
Fliesskommazahlen

o  approximieren den Körper (R, +, ×) in
der Mathematik (reelle Zahlen)

o  haben grossen Wertebereich,
ausreichend für viele Anwendungen
(double hat mehr Stellen als float)

o  sind auf vielen Rechnern sehr schnell

Arithmetische Operatoren

Wie bei int, aber...

o  Divisionsoperator / modelliert
“echte” (reelle, nicht ganzzahlige)
Division

o  keine Modulo-Operatoren % und %=

Literale

Beispiele:

1.23e-7 : Typ double, Wert 1.23 × 10-7

1.23e-7f: Typ float, Wert 1.23 × 10-7

Literale

Beispiele:

1.23e-7 : Typ double, Wert 1.23 × 10-7

1.23e-7f: Typ float, Wert 1.23 × 10-7

ganzzahliger Teil

fraktionaler Teil

Exponent

Rechnen mit float: Beispiel

Approximation der Euler-Konstante

 e = Σ ̶

mittels der ersten 10 Terme.

i =0

∞ 1

i !

Rechnen mit float: Beispiel
// Program: euler.cpp
// Approximate Euler's constant e.

#include <iostream>

int main ()
{
 // values for term i, initialized for i = 0
 float t = 1.0f; // 1/i!
 float e = 1.0f; // i-th approximation of e

 std::cout << "Approximating the Euler constant...\n";
 // steps 1,...,n
 for (unsigned int i = 1; i < 10; ++i) {
 e += t /= i; // compact form of t = t / i; e = e + t
 std::cout << "Value after term " << i << ": " << e << "\n";
 }

 return 0;
}

Rechnen mit float: Beispiel
// Program: euler.cpp
// Approximate Euler's constant e.

#include <iostream>

int main ()
{
 // values for term i, initialized for i = 0
 float t = 1.0f; // 1/i!
 float e = 1.0f; // i-th approximation of e

 std::cout << "Approximating the Euler constant...\n";
 // steps 1,...,n
 for (unsigned int i = 1; i < 10; ++i) {
 e += t /= i; // compact form of t = t / i; e = e + t
 std::cout << "Value after term " << i << ": " << e << "\n";
 }

 return 0;
} Zuweisungen sind rechtsassoziativ: e += (t /= i);

Rechnen mit float: Beispiel
// Program: euler.cpp
// Approximate Euler's constant e.

#include <iostream>

int main ()
{
 // values for term i, initialized for i = 0
 float t = 1.0f; // 1/i!
 float e = 1.0f; // i-th approximation of e

 std::cout << "Approximating the Euler constant...\n";
 // steps 1,...,n
 for (unsigned int i = 1; i < 10; ++i) {
 e += t /= i; // compact form of t = t / i; e = e + t
 std::cout << "Value after term " << i << ": " << e << "\n";
 }

 return 0;
} Zuweisungen sind rechtsassoziativ: e += (t /= i);

t: 1 / (i-1)! 1 / i!

Rechnen mit float: Beispiel
// Program: euler.cpp
// Approximate Euler's constant e.

#include <iostream>

int main ()
{
 // values for term i, initialized for i = 0
 float t = 1.0f; // 1/i!
 float e = 1.0f; // i-th approximation of e

 std::cout << "Approximating the Euler constant...\n";
 // steps 1,...,n
 for (unsigned int i = 1; i < 10; ++i) {
 e += t /= i; // compact form of t = t / i; e = e + t
 std::cout << "Value after term " << i << ": " << e << "\n";
 }

 return 0;
} Zuweisungen sind rechtsassoziativ: e += (t /= i);

e: 1+...+1 / (i-1)! 1+...+1 / i!

Rechnen mit float: Beispiel

Ausgabe:

Approximating the Euler constant...
Value after term 1: 2
Value after term 2: 2.5
Value after term 3: 2.66667
Value after term 4: 2.70833
Value after term 5: 2.71667
Value after term 6: 2.71806
Value after term 7: 2.71825
Value after term 8: 2.71828
Value after term 9: 2.71828

Gemischte Ausdrücke,
Konversion

o  Fliesskommatypen sind allgemeiner als
ganzzahlige Typen.

o  in gemischten Ausdrücken werden
ganze Zahlen zu Fliesskommazahlen
konvertiert.

9 * celsius / 5 + 32

Gemischte Ausdrücke,
Konversion

o  Fliesskommatypen sind allgemeiner als
ganzzahlige Typen.

o  in gemischten Ausdrücken werden
ganze Zahlen zu Fliesskommazahlen
konvertiert.

9 * celsius / 5 + 32

Typ: float; Wert: 28

Gemischte Ausdrücke,
Konversion

o  Fliesskommatypen sind allgemeiner als
ganzzahlige Typen.

o  in gemischten Ausdrücken werden
ganze Zahlen zu Fliesskommazahlen
konvertiert.

9 * 28.0f / 5 + 32

Gemischte Ausdrücke,
Konversion

o  Fliesskommatypen sind allgemeiner als
ganzzahlige Typen.

o  in gemischten Ausdrücken werden
ganze Zahlen zu Fliesskommazahlen
konvertiert.

9 * 28.0f / 5 + 32

wird nach float konvertiert: 9.0f

Gemischte Ausdrücke,
Konversion

o  Fliesskommatypen sind allgemeiner als
ganzzahlige Typen.

o  in gemischten Ausdrücken werden
ganze Zahlen zu Fliesskommazahlen
konvertiert.

 252.0f / 5 + 32

Gemischte Ausdrücke,
Konversion

o  Fliesskommatypen sind allgemeiner als
ganzzahlige Typen.

o  in gemischten Ausdrücken werden
ganze Zahlen zu Fliesskommazahlen
konvertiert.

 252.0f / 5 + 32

wird nach float konvertiert: 5.0f

Gemischte Ausdrücke,
Konversion

o  Fliesskommatypen sind allgemeiner als
ganzzahlige Typen.

o  in gemischten Ausdrücken werden
ganze Zahlen zu Fliesskommazahlen
konvertiert.

 50.4 + 32

Gemischte Ausdrücke,
Konversion

o  Fliesskommatypen sind allgemeiner als
ganzzahlige Typen.

o  in gemischten Ausdrücken werden
ganze Zahlen zu Fliesskommazahlen
konvertiert.

 50.4 + 32

wird nach float konvertiert: 32.0f

Gemischte Ausdrücke,
Konversion

o  Fliesskommatypen sind allgemeiner als
ganzzahlige Typen.

o  in gemischten Ausdrücken werden
ganze Zahlen zu Fliesskommazahlen
konvertiert.

 82.4

Wertebereich

Ganzzahlige Typen:
o  Über- und Unterlauf häufig, aber...
o  Wertebereich ist zusammenhängend

(keine “Löcher”): Z ist “diskret”.

Wertebereich

Ganzzahlige Typen:
o  Über- und Unterlauf häufig, aber...
o  Wertebereich ist zusammenhängend

(keine “Löcher”): Z ist “diskret”.
Fliesskommatypen:
o  Über- und Unterlauf selten, aber...
o  es gibt Löcher: R ist “kontinuierlich”.

Löcher im Wertebereich
// Program: diff.cpp
// Check subtraction of two floating point numbers

#include <iostream>

int main()
{
 // Input
 float n1;
 std::cout << "First number =? ";
 std::cin >> n1;

 float n2;
 std::cout << "Second number =? ";
 std::cin >> n2;

 float d;
 std::cout << "Their difference =? ";
 std::cin >> d;

 // Computation and output
 std::cout << "Computed difference - input difference = "
 << n1 - n2 - d << ".\n";
 return 0;
}

Löcher im Wertebereich
// Program: diff.cpp
// Check subtraction of two floating point numbers

#include <iostream>

int main()
{
 // Input
 float n1;
 std::cout << "First number =? ";
 std::cin >> n1;

 float n2;
 std::cout << "Second number =? ";
 std::cin >> n2;

 float d;
 std::cout << "Their difference =? ";
 std::cin >> d;

 // Computation and output
 std::cout << "Computed difference - input difference = "
 << n1 - n2 - d << ".\n";
 return 0;
}

input: 1.5

input: 0.5

input: 1.0

Löcher im Wertebereich
// Program: diff.cpp
// Check subtraction of two floating point numbers

#include <iostream>

int main()
{
 // Input
 float n1;
 std::cout << "First number =? ";
 std::cin >> n1;

 float n2;
 std::cout << "Second number =? ";
 std::cin >> n2;

 float d;
 std::cout << "Their difference =? ";
 std::cin >> d;

 // Computation and output
 std::cout << "Computed difference - input difference = "
 << n1 - n2 - d << ".\n";
 return 0;
}

input: 1.5

input: 0.5

input: 1.0

output: 0

Löcher im Wertebereich
// Program: diff.cpp
// Check subtraction of two floating point numbers

#include <iostream>

int main()
{
 // Input
 float n1;
 std::cout << "First number =? ";
 std::cin >> n1;

 float n2;
 std::cout << "Second number =? ";
 std::cin >> n2;

 float d;
 std::cout << "Their difference =? ";
 std::cin >> d;

 // Computation and output
 std::cout << "Computed difference - input difference = "
 << n1 - n2 - d << ".\n";
 return 0;
}

input: 1.1

input: 0.1

input: 1.0

Löcher im Wertebereich
// Program: diff.cpp
// Check subtraction of two floating point numbers

#include <iostream>

int main()
{
 // Input
 float n1;
 std::cout << "First number =? ";
 std::cin >> n1;

 float n2;
 std::cout << "Second number =? ";
 std::cin >> n2;

 float d;
 std::cout << "Their difference =? ";
 std::cin >> d;

 // Computation and output
 std::cout << "Computed difference - input difference = "
 << n1 - n2 - d << ".\n";
 return 0;
}

input: 1.1

input: 0.1

input: 1.0

output: 2.23517e-8

Löcher im Wertebereich
// Program: diff.cpp
// Check subtraction of two floating point numbers

#include <iostream>

int main()
{
 // Input
 float n1;
 std::cout << "First number =? ";
 std::cin >> n1;

 float n2;
 std::cout << "Second number =? ";
 std::cin >> n2;

 float d;
 std::cout << "Their difference =? ";
 std::cin >> d;

 // Computation and output
 std::cout << "Computed difference - input difference = "
 << n1 - n2 - d << ".\n";
 return 0;
}

input: 1.1

input: 0.1

input: 1.0

output: 2.23517e-8

Was ist
hier los?

Fliesskommazahlensysteme

Ein Fliesskommazahlensystem ist durch
vier natürliche Zahlen definiert:

o  β ≥ 2, die Basis
o  p ≥ 1, die Präzision
o  emin , der kleinste Exponent
o  emax , der grösste Exponent

Fliesskommazahlensysteme

Ein Fliesskommazahlensystem ist durch
vier natürliche Zahlen definiert:

o  β ≥ 2, die Basis
o  p ≥ 1, die Präzision
o  emin , der kleinste Exponent
o  emax , der grösste Exponent.

F (β, p, emin , emax)

Fliesskommazahlensysteme

enthält die Zahlen

 ± Σ di β -i × β e ,

di ∈ {0,...,β – 1}, e ∈ {emin ,..., emax}

F (β, p, emin , emax)

i=0

p-1

Fliesskommazahlensysteme

enthält die Zahlen (Basis-β -Darstellung)

 ± d0. d1 ... dp-1 × β e ,

di ∈ {0,...,β – 1}, e ∈ {emin ,..., emax}

F (β, p, emin , emax)

Fliesskommazahlensysteme

Beispiel:
o  β = 10

Darstellungen der Dezimalzahl 0.1:

 1.0 × 10-1, 0.1 × 100 , 0.01 × 101 ,...

Normalisierte Darstellung

Normalisierte Zahl:

± d0. d1 ... dp-1 × β e , d0 ≠0

Normalisierte Darstellung

Normalisierte Zahl:

± d0. d1 ... dp-1 × β e , d0 ≠0

Bemerkung 1: Die normalisierte Darstellung
einer Fliesskommazahl ist eindeutig und deshalb
zu bevorzugen.

Normalisierte Darstellung

Normalisierte Zahl:

± d0. d1 ... dp-1 × β e , d0 ≠0

Bemerkung 2: Die Zahl 0 (und alle Zahlen
kleiner als β) haben keine normalisierte
Darstellung (werden wir später beheben)!

emin

Normalisierte Darstellung

Normalisierte Zahl:

± d0. d1 ... dp-1 × β e , d0 ≠0

Die Menge der normalisierten Zahlen ist

F * (β, p, emin , emax)

Normalisierte Darstellung

Normalisierte Zahl:

± d0. d1 ... dp-1 × β e , d0 ≠0

Beispiel:

F * (2, 3, -2 , 2) (Zahlen ≥ 0)

Normalisierte Darstellung

Normalisierte Zahl:

± d0. d1 ... dp-1 × β e , d0 ≠0

Beispiel:

F * (2, 3, -2 , 2) (Zahlen ≥ 0)

1.00 × 2-2 = 1/4

Normalisierte Darstellung

Normalisierte Zahl:

± d0. d1 ... dp-1 × β e , d0 ≠0

Beispiel:

F * (2, 3, -2 , 2) (Zahlen ≥ 0)

1.00 × 2-2 = 1/4 1.11 × 22 = 7

Binäre und dezimale Systeme

o  intern rechnet der Computer meistens
mit β = 2 (binäres Fliesskommazahlen-
system)

Binäre und dezimale Systeme

o  intern rechnet der Computer meistens
mit β = 2 (binäres Fliesskommazahlen-
system)

o  Literale und Eingaben haben β = 10
(dezimales Fliesskommazahlensystem)

Binäre und dezimale Systeme

o  intern rechnet der Computer meistens
mit β = 2 (binäres Fliesskommazahlen-
system)

o  Literale und Eingaben haben β = 10
(dezimales Fliesskommazahlensystem)

o  Eingaben müssen umgerechnet werden!

Umrechung dezimal -> binär

Angenommen, 0< x < 2 .

Umrechung dezimal -> binär

Angenommen, 0< x < 2 .

Binärexpansion:
 x = Σi=-∞,...,0 bi2i

Umrechung dezimal -> binär

Angenommen, 0< x < 2 .

Binärexpansion:
 x = Σi=-∞,...,0 bi2i = b0. b-1 b-2 b-3...

Umrechung dezimal -> binär

Angenommen, 0< x < 2 .

Binärexpansion:
 x = Σi=-∞,...,0 bi2i = b0. b-1 b-2 b-3...
 = b0 + Σi=-∞,...,-1 bi2i

Umrechung dezimal -> binär

Angenommen, 0< x < 2 .

Binärexpansion:
 x = Σi=-∞,...,0 bi2i = b0. b-1 b-2 b-3...
 = b0 + Σi=-∞,...,-1 bi2i

 = b0 + Σi=-∞,...,0 bi-12i-1

Umrechung dezimal -> binär

Angenommen, 0< x < 2 .

Binärexpansion:
 x = Σi=-∞,...,0 bi2i = b0. b-1 b-2 b-3...
 = b0 + Σi=-∞,...,-1 bi2i

 = b0 + Σi=-∞,...,0 bi-12i-1

 = b0 + (Σi=-∞,...,0 bi-12i) / 2

Umrechung dezimal -> binär

Angenommen, 0< x < 2 .

Binärexpansion:
 x = Σi=-∞,...,0 bi2i = b0. b-1 b-2 b-3...
 = b0 + Σi=-∞,...,-1 bi2i

 = b0 + Σi=-∞,...,0 bi-12i-1

 = b0 + (Σi=-∞,...,0 bi-12i) / 2

x’ = b-1. b-2 b-3 b-4...

Umrechung dezimal -> binär

Angenommen, 0< x < 2 .

Binärziffern (x):
 b0 , Binärziffern (b-1. b-2 b-3 b-4...)

Umrechung dezimal -> binär

Angenommen, 0< x < 2 .

Binärziffern (x):
 b0 , Binärziffern (b-1. b-2 b-3 b-4...)

x ’ = 2 (x – b0)

Binärdarstellung von 1.1

x - bi x’= 2(x – bi) x bi

1.1 b0 = 1

Binärdarstellung von 1.1

x - bi x’= 2(x – bi) x bi

1.1 b0 = 1

0.1 0.2 0.2 b-1 = 0

Binärdarstellung von 1.1

x - bi x’= 2(x – bi) x bi

1.1 b0 = 1

0.1 0.2 0.2 b-1 = 0
0.2 0.4 0.4 b-2 = 0

Binärdarstellung von 1.1

x - bi x’= 2(x – bi) x bi

1.1 b0 = 1

0.1 0.2 0.2 b-1 = 0
0.2 0.4 0.4 b-2 = 0
0.4 0.8 0.8 b-3 = 0

Binärdarstellung von 1.1

x - bi x’= 2(x – bi) x bi

1.1 b0 = 1

0.1 0.2 0.2 b-1 = 0
0.2 0.4 0.4 b-2 = 0
0.4 0.8 0.8 b-3 = 0
0.8 1.6 1.6 b-4 = 1

Binärdarstellung von 1.1

x - bi x’= 2(x – bi) x bi

1.1 b0 = 1

0.1 0.2 0.2 b-1 = 0
0.2 0.4 0.4 b-2 = 0
0.4 0.8 0.8 b-3 = 0
0.8 1.6 1.6 b-4 = 1
0.6 1.2 1.2 b-5 = 1

Binärdarstellung von 1.1

x - bi x’= 2(x – bi) x bi

1.1 b0 = 1

0.1 0.2 0.2 b-1 = 0
0.2 0.4 0.4 b-2 = 0
0.4 0.8 0.8 b-3 = 0
0.8 1.6 1.6 b-4 = 1
0.6 1.2 1.2 b-5 = 1
0.2 0.4 0.4 b-6 = 0

Binärdarstellung von 1.1

x - bi x’= 2(x – bi) x bi

1.1 b0 = 1

0.1 0.2 0.2 b-1 = 0
0.2 0.4 0.4 b-2 = 0
0.4 0.8 0.8 b-3 = 0
0.8 1.6 1.6 b-4 = 1
0.6 1.2 1.2 b-5 = 1
0.2 0.4 0.4 b-6 = 0

Binärdarstellung ist 1.00011 (periodisch, nicht endlich)

Binärdarstellung von 1.1

o  ist nicht endlich, also gibt es
o  Fehler bei der Konversion in ein binäres

Fliesskommazahlensystem

o  1.1 ist für den Computer nicht 1.1 ...

Binärdarstellung von 1.1

o  ist nicht endlich, also gibt es
o  Fehler bei der Konversion in ein binäres

Fliesskommazahlensystem

o  1.1 ist für den Computer nicht 1.1 ...
 sondern (auf meiner Plattform)
 1.10000002384185791015625.

Der Excel-2007-Bug

o  Umrechnungsfehler sind sehr klein...

Der Excel-2007-Bug

o  Umrechnungsfehler sind sehr klein...
o  können aber grosse Auswirkungen

haben!
Microsoft Excel 2007:

77.1 × 850 = 100000 (anstatt 65535)

Der Excel-2007-Bug

o  Umrechnungsfehler sind sehr klein...
o  können aber grosse Auswirkungen

haben!

Microsoft: Resultat wird korrekt berechnet, “nur”
falsch angezeigt.

Microsoft Excel 2007:

77.1 × 850 = 100000 (anstatt 65535)

Microsoft Excel 2007:

1 × 65535 = 65535 (Glück gehabt...)

Microsoft: Resultat wird korrekt berechnet, “nur”
falsch angezeigt.

Der Excel-2007-Bug

o  Umrechnungsfehler sind sehr klein...
o  können aber grosse Auswirkungen

haben!

stimmt nicht ganz; 77.1 hat keine endliche Binärexpansion,
berechnet wird also eine Zahl λ sehr nahe an 65535.

Microsoft Excel 2007:

77.1 × 850 = 100000 (anstatt 65535)

Der Excel-2007-Bug

o  Umrechnungsfehler sind sehr klein...
o  können aber grosse Auswirkungen

haben!

λ ist eine von nur zwölf Fliesskommazahlen (lt. Microsoft),
für die die Umwandlung ins Dezimalsystem fehlerhaft ist.

Microsoft Excel 2007:

77.1 × 850 = 100000 (anstatt 65535)

Microsoft: Resultat wird korrekt berechnet, “nur”
falsch angezeigt.

Rechnen mit
Fliesskommazahlen

o  fast so einfach wie mit ganzen Zahlen
o  Beispiel (β = 2, p = 4):

Rechnen mit
Fliesskommazahlen

o  fast so einfach wie mit ganzen Zahlen
o  Beispiel (β = 2, p = 4):
 1.111 × 2-2

 + 1.011 × 2-1

Schritt 1: Exponenten anpassen durch Denormalisieren einer Zahl

Rechnen mit
Fliesskommazahlen

o  fast so einfach wie mit ganzen Zahlen
o  Beispiel (β = 2 , p = 4):
 1.111 × 2-2

 +10.110 × 2-2

Schritt 1: Exponenten anpassen durch Denormalisieren einer Zahl

Rechnen mit
Fliesskommazahlen

o  fast so einfach wie mit ganzen Zahlen
o  Beispiel (β = 2 , p = 4):
 1.111 × 2-2

 +10.110 × 2-2

Schritt 2: Binäre Addition der Signifikanden

Rechnen mit
Fliesskommazahlen

o  fast so einfach wie mit ganzen Zahlen
o  Beispiel (β = 2 , p = 4):
 1.111 × 2-2

 +10.110 × 2-2

 100.101 × 2-2

 Schritt 2: Binäre Addition der Signifikanden

Rechnen mit
Fliesskommazahlen

o  fast so einfach wie mit ganzen Zahlen
o  Beispiel (β = 2 , p = 4):
 1.111 × 2-2

 +10.110 × 2-2

 100.101 × 2-2

 Schritt 3: Renormalisierung

Rechnen mit
Fliesskommazahlen

o  fast so einfach wie mit ganzen Zahlen
o  Beispiel (β = 2 , p = 4):
 1.111 × 2-2

 +10.110 × 2-2

 1.00101 × 20

 Schritt 3: Renormalisierung

Rechnen mit
Fliesskommazahlen

o  fast so einfach wie mit ganzen Zahlen
o  Beispiel (β = 2 , p = 4):
 1.111 × 2-2

 +10.110 × 2-2

 1.00101 × 20

 Schritt 4: Runden auf p signifikante Stellen, falls notwendig

Rechnen mit
Fliesskommazahlen

o  fast so einfach wie mit ganzen Zahlen
o  Beispiel (β = 2 , p = 4):
 1.111 × 2-2

 +10.110 × 2-2

 1.001 × 20

 Schritt 4: Runden auf p signifikante Stellen, falls notwendig

Der IEEE-Standard 754

o  legt Fliesskommazahlensysteme und
deren Rundungsverhalten fest

o  wird von vielen Plattformen unterstützt

Der IEEE-Standard 754

o  legt Fliesskommazahlensysteme und
deren Rundungsverhalten fest

o  wird von vielen Plattformen unterstützt
o  single precision (float) Zahlen:

F * (2, 24, -126, 127)

Der IEEE-Standard 754

o  legt Fliesskommazahlensysteme und
deren Rundungsverhalten fest

o  wird von vielen Plattformen unterstützt
o  single precision (float) Zahlen:

o  double precision (double) Zahlen:

F * (2, 24, -126, 127)

F * (2, 53, -1022, 1023)

Der IEEE-Standard 754

o  legt Fliesskommazahlensysteme und
deren Rundungsverhalten fest

o  wird von vielen Plattformen unterstützt
o  single precision (float) Zahlen:
 plus 0, ∞, ...
o  double precision (double) Zahlen:
 plus 0, ∞, ...

F * (2, 24, -126, 127)

F * (2, 53, -1022, 1023)

Der IEEE-Standard 754

o  legt Fliesskommazahlensysteme und
deren Rundungsverhalten fest

o  wird von vielen Plattformen unterstützt
o  alle arithmetischen Operationen runden

das exakte Ergebnis auf die nächste
darstellbare Zahl

Der IEEE-Standard 754

Warum ? F * (2, 24, -126, 127)

Der IEEE-Standard 754

Warum ?

o  1 Bit für das Vorzeichen
o  23 Bit für den Signifikanden (führendes

Bit ist 1 und wird nicht gespeichert)
o  8 Bit für den Exponenten (256 mögliche

Werte)

F * (2, 24, -126, 127)

Der IEEE-Standard 754

Warum ?

o  1 Bit für das Vorzeichen
o  23 Bit für den Signifikanden (führendes

Bit ist 1 und wird nicht gespeichert)
o  8 Bit für den Exponenten (256 mögliche

Werte)
insgesamt 32 Bit

F * (2, 24, -126, 127)

Der IEEE-Standard 754

Warum ?

o  1 Bit für das Vorzeichen
o  23 Bit für den Signifikanden (führendes

Bit ist 1 und wird nicht gespeichert)
o  8 Bit für den Exponenten (254 mögliche

Exponenten, 2 Spezialwerte: 0, ∞,...)

F * (2, 24, -126, 127)

Der IEEE-Standard 754

Warum ?

o  1 Bit für das Vorzeichen
o  52 Bit für den Signifikanden (führendes

Bit ist 1 und wird nicht gespeichert)
o  11 Bit für den Exponenten (2046

mögliche Exponenten, 2 Spezialwerte)

insgesamt 64 Bit

F * (2, 53, -1022, 1023)

Richtlinien fürs Rechnen mit
Fliesskommazahlen

Regel 1:
 Teste keine zwei Fliesskommazahlen auf
 Gleichheit, wenn mindestens eine das
 Ergebnis einer Rundungsoperation ist!

Richtlinien fürs Rechnen mit
Fliesskommazahlen

Regel 1:
 Teste keine zwei Fliesskommazahlen auf
 Gleichheit, wenn mindestens eine das
 Ergebnis einer Rundungsoperation ist!

for (float i = 0.1; i != 1.0; i += 0.1)
 std::cout << i << "\n";

Richtlinien fürs Rechnen mit
Fliesskommazahlen

Regel 1:
 Teste keine zwei Fliesskommazahlen auf
 Gleichheit, wenn mindestens eine das
 Ergebnis einer Rundungsoperation ist!

for (float i = 0.1; i != 1.0; i += 0.1)
 std::cout << i << "\n";

In der Praxis ist das eine Endlosschleife, weil i niemals exakt 1 ist!

Richtlinien fürs Rechnen mit
Fliesskommazahlen

Regel 2:
 Vermeide die Addition von Zahlen sehr
 unterschiedlicher Grösse!

Richtlinien fürs Rechnen mit
Fliesskommazahlen

Regel 2:
 Vermeide die Addition von Zahlen sehr
 unterschiedlicher Grösse!

Beispiel (β = 2, p = 4):
 1.000 × 24

 + 1.000 × 20

Richtlinien fürs Rechnen mit
Fliesskommazahlen

Regel 2:
 Vermeide die Addition von Zahlen sehr
 unterschiedlicher Grösse!

Beispiel (β = 2, p = 4):
 1.000 × 24

 + 1.000 × 20 = 1.0001 × 24

Richtlinien fürs Rechnen mit
Fliesskommazahlen

Regel 2:
 Vermeide die Addition von Zahlen sehr
 unterschiedlicher Grösse!

Beispiel (β = 2, p = 4):
 1.000 × 24

 + 1.000 × 20 = 1.0001 × 24
 = 1.000 × 24 Rundung auf 4 Stellen!

Richtlinien fürs Rechnen mit
Fliesskommazahlen

Regel 2:
 Vermeide die Addition von Zahlen sehr
 unterschiedlicher Grösse!

Beispiel (β = 2, p = 4):
 1.000 × 24

 + 1.000 × 20 = 1.000 × 24
 Addition von 1 hat keinen Effekt!

Beispiel für Regel 2:
Harmonische Zahlen

n -te Harmonische Zahl:

 Hn = 1 + 1/2 + 1/3 + ... + 1/n
 = 1/n + 1/(n-1) + ... + 1

Summe kann vorwärts oder rückwärts
berechnet werden.

Beispiel für Regel 2:
Harmonische Zahlen
// Program: harmonic.cpp
// Compute the n-th harmonic number in two ways.

#include <iostream>

int main()
{
 // Input
 std::cout << "Compute H_n for n =? ";
 unsigned int n;
 std::cin >> n;

 // Forward sum
 float fs = 0;
 for (unsigned int i = 1; i <= n; ++i)
 fs += 1.0f / i;

 // Backward sum
 float bs = 0;
 for (unsigned int i = n; i >= 1; --i)
 bs += 1.0f / i;

 // Output
 std::cout << "Forward sum = " << fs << "\n"
 << "Backward sum = " << bs << "\n";
 return 0;
}

Beispiel für Regel 2:
Harmonische Zahlen

Compute H_n for n =? 10000000
Forward sum = 15.4037
Backward sum = 16.686

Beispiel für Regel 2:
Harmonische Zahlen

Compute H_n for n =? 10000000
Forward sum = 15.4037
Backward sum = 16.686

Compute H_n for n =? 100000000
Forward sum = 15.4037
Backward sum = 18.8079

Beispiel für Regel 2:
Harmonische Zahlen

o  Die Vorwärtssumme wächst irgendwann
nicht mehr und ist “richtig” falsch.

o  Die Rückwärtssumme ist eine gute
Approximation von H n.

Beispiel für Regel 2:
Harmonische Zahlen

o  Die Vorwärtssumme wächst irgendwann
nicht mehr und ist “richtig” falsch.

o  Die Rückwärtssumme ist eine gute
Approximation von H n.

o  Bei 1 + 1/2 + 1/3 + ... + 1/n sind späte
Terme zu klein, um noch beizutragen.

wie bei 24 + 1 “=“ 24

Beispiel für Regel 2:
Harmonische Zahlen

o  Die Vorwärtssumme wächst irgendwann
nicht mehr und ist “richtig” falsch.

o  Die Rückwärtssumme ist eine gute
Approximation von H n.

o  Bei 1/n + 1/(n-1) + ... + 1 sind späte
Terme vergleichsweise gross und gehen
deshalb in die Gesamtsumme ein.

Richtlinien fürs Rechnen mit
Fliesskommazahlen

Regel 3:
 Vermeide die Subtraktion von Zahlen

sehr ähnlicher Grösse!

Auslöschungsproblematik, siehe Skript.

Literatur

n  David Goldberg: What Every Computer
Scientist Should Know About Floating-
Point Arithmetic (1991)

