
Fliesskommazahlen 

Typen float und double; 
Fliesskommazahlensysteme, 

Löcher im Wertebereich, IEEE 
Standard, Fliesskomma-Richtlinien 



“Richtig” Rechnen 
// Program: fahrenheit.cpp 
// Convert temperatures from Celsius to Fahrenheit. 
 
#include <iostream> 
 
int main()  
{ 
  // Input 
  std::cout << "Temperature in degrees Celsius =? "; 
  int celsius; 
  std::cin >> celsius;  
 
  // Computation and output 
  std::cout << celsius << " degrees Celsius are " 
            << 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n"; 
  return 0; 
} 

28 degrees Celsius are 82 degrees Fahrenheit. 



“Richtig” Rechnen 
// Program: fahrenheit.cpp 
// Convert temperatures from Celsius to Fahrenheit. 
 
#include <iostream> 
 
int main()  
{ 
  // Input 
  std::cout << "Temperature in degrees Celsius =? "; 
  int celsius; 
  std::cin >> celsius;  
 
  // Computation and output 
  std::cout << celsius << " degrees Celsius are " 
            << 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n"; 
  return 0; 
} 

28 degrees Celsius are 82 degrees Fahrenheit. 

Richtig wäre: 82.4 



“Richtig” Rechnen 
// Program: fahrenheit.cpp 
// Convert temperatures from Celsius to Fahrenheit. 
 
#include <iostream> 
 
int main()  
{ 
  // Input 
  std::cout << "Temperature in degrees Celsius =? "; 
  float celsius; // Fliesskommazahlentyp 
  std::cin >> celsius;  
 
  // Computation and output 
  std::cout << celsius << " degrees Celsius are " 
            << 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n"; 
  return 0; 
} 

28 degrees Celsius are 82.4 degrees Fahrenheit. 



Repräsentierung von 
Dezimalzahlen (z.B. 82.4) 

Fixkommazahlen (z.B. mit 10 Stellen): 
o  feste Anzahl Vorkommastellen (z.B. 7) 
o  feste Anzahl Nachkommastellen (z.B. 3) 



Repräsentierung von 
Dezimalzahlen (z.B. 82.4) 

Fixkommazahlen (z.B. mit 10 Stellen): 
o  feste Anzahl Vorkommastellen (z.B. 7) 
o  feste Anzahl Nachkommastellen (z.B. 3) 

  82.4     =    0000082.400 



Repräsentierung von 
Dezimalzahlen (z.B. 82.4) 

Fixkommazahlen (z.B. mit 10 Stellen): 
o  feste Anzahl Vorkommastellen (z.B. 7) 
o  feste Anzahl Nachkommastellen (z.B. 3) 

o  Nachteil 1: 
o  Wertebereich wird noch kleiner als bei 

ganzen Zahlen. 

  82.4     =    0000082.400 



Repräsentierung von 
Dezimalzahlen (z.B. 82.4) 

Fixkommazahlen (z.B. mit 10 Stellen): 
o  feste Anzahl Vorkommastellen (z.B. 7) 
o  feste Anzahl Nachkommastellen (z.B. 3) 

o  Nachteil 2: 
o  Repräsentierbarkeit hängt stark davon ab, 

wo das Komma ist. 

  0.0824  =    0000000.082 
dritte Stelle ab-
geschnitten! 



Repräsentierung von 
Dezimalzahlen (z.B. 82.4) 

Fliesskommazahlen (z.B. mit 10 Stellen): 
o  feste Anzahl signifikanter Stellen (10) 
o  plus Position des Kommas 



Repräsentierung von 
Dezimalzahlen (z.B. 82.4) 

Fliesskommazahlen (z.B. mit 10 Stellen): 
o  feste Anzahl signifikanter Stellen (10) 
o  plus Position des Kommas 

o  Zahl ist   Signifikand  × 10 Exponent 

82.4       =    824 × 10 -1 

  0.0824  =    824 × 10 -4 



Typen float und double  

o  sind die fundamentalen C++ Typen für 
Fliesskommazahlen  

o  approximieren den Körper (R, +, ×) in 
der Mathematik (reelle Zahlen) 

o  haben grossen Wertebereich, 
ausreichend für viele Anwendungen 
(double hat mehr Stellen als float) 

o  sind auf vielen Rechnern sehr schnell 



Arithmetische Operatoren 

Wie bei int, aber... 

o  Divisionsoperator / modelliert 
“echte” (reelle, nicht ganzzahlige) 
Division 

o  keine Modulo-Operatoren % und %= 



Literale 

Beispiele: 

1.23e-7 : Typ double, Wert 1.23 × 10-7 

1.23e-7f: Typ float,   Wert 1.23 × 10-7 



Literale 

Beispiele: 

1.23e-7 : Typ double, Wert 1.23 × 10-7 

1.23e-7f: Typ float,   Wert 1.23 × 10-7 

ganzzahliger Teil  

fraktionaler Teil  

Exponent  



Rechnen mit float: Beispiel 

Approximation der Euler-Konstante 
 

         e = Σ  ̶ 
 
mittels der ersten 10 Terme. 

i =0 

∞ 1 

i ! 



Rechnen mit float: Beispiel 
// Program: euler.cpp 
// Approximate Euler's constant e. 
 
#include <iostream> 
 
int main ()  
{ 
  // values for term i, initialized for i = 0 
  float t = 1.0f;   // 1/i! 
  float e = 1.0f;   // i-th approximation of e   
 
  std::cout << "Approximating the Euler constant...\n"; 
  // steps 1,...,n 
  for (unsigned int i = 1; i < 10; ++i) { 
    e += t /= i;    // compact form of t = t / i; e = e + t 
    std::cout << "Value after term " << i << ": " << e << "\n"; 
  }  
 
  return 0; 
} 



Rechnen mit float: Beispiel 
// Program: euler.cpp 
// Approximate Euler's constant e. 
 
#include <iostream> 
 
int main ()  
{ 
  // values for term i, initialized for i = 0 
  float t = 1.0f;   // 1/i! 
  float e = 1.0f;   // i-th approximation of e   
 
  std::cout << "Approximating the Euler constant...\n"; 
  // steps 1,...,n 
  for (unsigned int i = 1; i < 10; ++i) { 
    e += t /= i;    // compact form of t = t / i; e = e + t 
    std::cout << "Value after term " << i << ": " << e << "\n"; 
  }  
 
  return 0; 
} Zuweisungen sind rechtsassoziativ:  e += (t /= i); 



Rechnen mit float: Beispiel 
// Program: euler.cpp 
// Approximate Euler's constant e. 
 
#include <iostream> 
 
int main ()  
{ 
  // values for term i, initialized for i = 0 
  float t = 1.0f;   // 1/i! 
  float e = 1.0f;   // i-th approximation of e   
 
  std::cout << "Approximating the Euler constant...\n"; 
  // steps 1,...,n 
  for (unsigned int i = 1; i < 10; ++i) { 
    e += t /= i;    // compact form of t = t / i; e = e + t 
    std::cout << "Value after term " << i << ": " << e << "\n"; 
  }  
 
  return 0; 
} Zuweisungen sind rechtsassoziativ:  e += (t /= i); 

t:   1 / (i-1)!                1 / i! 



Rechnen mit float: Beispiel 
// Program: euler.cpp 
// Approximate Euler's constant e. 
 
#include <iostream> 
 
int main ()  
{ 
  // values for term i, initialized for i = 0 
  float t = 1.0f;   // 1/i! 
  float e = 1.0f;   // i-th approximation of e   
 
  std::cout << "Approximating the Euler constant...\n"; 
  // steps 1,...,n 
  for (unsigned int i = 1; i < 10; ++i) { 
    e += t /= i;    // compact form of t = t / i; e = e + t 
    std::cout << "Value after term " << i << ": " << e << "\n"; 
  }  
 
  return 0; 
} Zuweisungen sind rechtsassoziativ:  e += (t /= i); 

e:  1+...+1 / (i-1)!          1+...+1 / i! 



Rechnen mit float: Beispiel 

Ausgabe: 
 
Approximating the Euler constant... 
Value after term 1: 2 
Value after term 2: 2.5 
Value after term 3: 2.66667 
Value after term 4: 2.70833 
Value after term 5: 2.71667 
Value after term 6: 2.71806 
Value after term 7: 2.71825 
Value after term 8: 2.71828 
Value after term 9: 2.71828 
 



Gemischte Ausdrücke, 
Konversion 

o  Fliesskommatypen sind allgemeiner als 
ganzzahlige Typen. 

o  in gemischten Ausdrücken werden 
ganze Zahlen zu Fliesskommazahlen 
konvertiert.  

9 * celsius / 5 + 32 



Gemischte Ausdrücke, 
Konversion 

o  Fliesskommatypen sind allgemeiner als 
ganzzahlige Typen. 

o  in gemischten Ausdrücken werden 
ganze Zahlen zu Fliesskommazahlen 
konvertiert.  

9 * celsius / 5 + 32 

Typ: float; Wert: 28 



Gemischte Ausdrücke, 
Konversion 

o  Fliesskommatypen sind allgemeiner als 
ganzzahlige Typen. 

o  in gemischten Ausdrücken werden 
ganze Zahlen zu Fliesskommazahlen 
konvertiert.  

9 * 28.0f / 5 + 32 



Gemischte Ausdrücke, 
Konversion 

o  Fliesskommatypen sind allgemeiner als 
ganzzahlige Typen. 

o  in gemischten Ausdrücken werden 
ganze Zahlen zu Fliesskommazahlen 
konvertiert.  

9 * 28.0f / 5 + 32 

wird nach float konvertiert: 9.0f 



Gemischte Ausdrücke, 
Konversion 

o  Fliesskommatypen sind allgemeiner als 
ganzzahlige Typen. 

o  in gemischten Ausdrücken werden 
ganze Zahlen zu Fliesskommazahlen 
konvertiert.  

   252.0f / 5 + 32 



Gemischte Ausdrücke, 
Konversion 

o  Fliesskommatypen sind allgemeiner als 
ganzzahlige Typen. 

o  in gemischten Ausdrücken werden 
ganze Zahlen zu Fliesskommazahlen 
konvertiert.  

   252.0f / 5 + 32 

wird nach float konvertiert: 5.0f 



Gemischte Ausdrücke, 
Konversion 

o  Fliesskommatypen sind allgemeiner als 
ganzzahlige Typen. 

o  in gemischten Ausdrücken werden 
ganze Zahlen zu Fliesskommazahlen 
konvertiert.  

         50.4 + 32 



Gemischte Ausdrücke, 
Konversion 

o  Fliesskommatypen sind allgemeiner als 
ganzzahlige Typen. 

o  in gemischten Ausdrücken werden 
ganze Zahlen zu Fliesskommazahlen 
konvertiert.  

         50.4 + 32 

wird nach float konvertiert: 32.0f 



Gemischte Ausdrücke, 
Konversion 

o  Fliesskommatypen sind allgemeiner als 
ganzzahlige Typen. 

o  in gemischten Ausdrücken werden 
ganze Zahlen zu Fliesskommazahlen 
konvertiert.  

              82.4 



Wertebereich 

Ganzzahlige Typen: 
o  Über- und Unterlauf häufig, aber... 
o  Wertebereich ist zusammenhängend 

(keine “Löcher”): Z ist “diskret”.  



Wertebereich 

Ganzzahlige Typen: 
o  Über- und Unterlauf häufig, aber... 
o  Wertebereich ist zusammenhängend 

(keine “Löcher”): Z ist “diskret”. 
Fliesskommatypen: 
o  Über- und Unterlauf selten, aber... 
o  es gibt Löcher: R ist “kontinuierlich”. 



Löcher im Wertebereich 
// Program: diff.cpp 
// Check subtraction of two floating point numbers 
 
#include <iostream> 
 
int main() 
{ 
  // Input 
  float n1; 
  std::cout << "First number     =? "; 
  std::cin >> n1; 
   
  float n2; 
  std::cout << "Second number    =? "; 
  std::cin >> n2; 
 
  float d; 
  std::cout << "Their difference =? "; 
  std::cin >> d; 
 
  // Computation and output 
  std::cout << "Computed difference - input difference = "  
            << n1 - n2 - d << ".\n"; 
  return 0; 
} 



Löcher im Wertebereich 
// Program: diff.cpp 
// Check subtraction of two floating point numbers 
 
#include <iostream> 
 
int main() 
{ 
  // Input 
  float n1; 
  std::cout << "First number     =? "; 
  std::cin >> n1; 
   
  float n2; 
  std::cout << "Second number    =? "; 
  std::cin >> n2; 
 
  float d; 
  std::cout << "Their difference =? "; 
  std::cin >> d; 
 
  // Computation and output 
  std::cout << "Computed difference - input difference = "  
            << n1 - n2 - d << ".\n"; 
  return 0; 
} 

input: 1.5 

input: 0.5 

input: 1.0 



Löcher im Wertebereich 
// Program: diff.cpp 
// Check subtraction of two floating point numbers 
 
#include <iostream> 
 
int main() 
{ 
  // Input 
  float n1; 
  std::cout << "First number     =? "; 
  std::cin >> n1; 
   
  float n2; 
  std::cout << "Second number    =? "; 
  std::cin >> n2; 
 
  float d; 
  std::cout << "Their difference =? "; 
  std::cin >> d; 
 
  // Computation and output 
  std::cout << "Computed difference - input difference = "  
            << n1 - n2 - d << ".\n"; 
  return 0; 
} 

input: 1.5 

input: 0.5 

input: 1.0 

output: 0 



Löcher im Wertebereich 
// Program: diff.cpp 
// Check subtraction of two floating point numbers 
 
#include <iostream> 
 
int main() 
{ 
  // Input 
  float n1; 
  std::cout << "First number     =? "; 
  std::cin >> n1; 
   
  float n2; 
  std::cout << "Second number    =? "; 
  std::cin >> n2; 
 
  float d; 
  std::cout << "Their difference =? "; 
  std::cin >> d; 
 
  // Computation and output 
  std::cout << "Computed difference - input difference = "  
            << n1 - n2 - d << ".\n"; 
  return 0; 
} 

input: 1.1 

input: 0.1 

input: 1.0 



Löcher im Wertebereich 
// Program: diff.cpp 
// Check subtraction of two floating point numbers 
 
#include <iostream> 
 
int main() 
{ 
  // Input 
  float n1; 
  std::cout << "First number     =? "; 
  std::cin >> n1; 
   
  float n2; 
  std::cout << "Second number    =? "; 
  std::cin >> n2; 
 
  float d; 
  std::cout << "Their difference =? "; 
  std::cin >> d; 
 
  // Computation and output 
  std::cout << "Computed difference - input difference = "  
            << n1 - n2 - d << ".\n"; 
  return 0; 
} 

input: 1.1 

input: 0.1 

input: 1.0 

output: 2.23517e-8 



Löcher im Wertebereich 
// Program: diff.cpp 
// Check subtraction of two floating point numbers 
 
#include <iostream> 
 
int main() 
{ 
  // Input 
  float n1; 
  std::cout << "First number     =? "; 
  std::cin >> n1; 
   
  float n2; 
  std::cout << "Second number    =? "; 
  std::cin >> n2; 
 
  float d; 
  std::cout << "Their difference =? "; 
  std::cin >> d; 
 
  // Computation and output 
  std::cout << "Computed difference - input difference = "  
            << n1 - n2 - d << ".\n"; 
  return 0; 
} 

input: 1.1 

input: 0.1 

input: 1.0 

output: 2.23517e-8 

Was ist 
hier los? 



Fliesskommazahlensysteme 

Ein Fliesskommazahlensystem ist durch  
vier natürliche Zahlen definiert: 
 
o  β ≥ 2,      die Basis 
o  p ≥ 1,      die Präzision 
o  emin ,        der kleinste Exponent 
o  emax ,        der grösste Exponent 



Fliesskommazahlensysteme 

Ein Fliesskommazahlensystem ist durch  
vier natürliche Zahlen definiert: 
 
o  β ≥ 2,      die Basis 
o  p ≥ 1,      die Präzision 
o  emin ,        der kleinste Exponent 
o  emax ,        der grösste Exponent. 

F (β, p, emin , emax) 



Fliesskommazahlensysteme 

 
 
enthält die Zahlen 
 

  ± Σ di β -i × β e , 
 
di ∈ {0,...,β – 1},    e ∈ {emin ,..., emax}  

F (β, p, emin , emax) 

i=0 

p-1 



Fliesskommazahlensysteme 

 
 
enthält die Zahlen (Basis-β -Darstellung) 
 

  ± d0. d1 ... dp-1 × β e , 
 
di ∈ {0,...,β – 1},    e ∈ {emin ,..., emax}  

F (β, p, emin , emax) 



Fliesskommazahlensysteme 

Beispiel: 
o  β = 10 
 
Darstellungen der Dezimalzahl 0.1: 
 
   1.0 × 10-1, 0.1 × 100 , 0.01 × 101 ,... 



Normalisierte Darstellung 

Normalisierte Zahl: 

± d0. d1 ... dp-1 × β e ,   d0 ≠0 
 
  



Normalisierte Darstellung 

Normalisierte Zahl: 

± d0. d1 ... dp-1 × β e ,   d0 ≠0 
 
Bemerkung 1: Die normalisierte Darstellung 
einer Fliesskommazahl ist eindeutig und deshalb 
zu bevorzugen. 

  



Normalisierte Darstellung 

Normalisierte Zahl: 

± d0. d1 ... dp-1 × β e ,   d0 ≠0 
 
Bemerkung 2: Die Zahl 0 (und alle Zahlen 
kleiner als β     ) haben keine normalisierte 
Darstellung (werden wir später beheben)! 
 

  

emin 



Normalisierte Darstellung 

Normalisierte Zahl: 

± d0. d1 ... dp-1 × β e ,   d0 ≠0 
 
Die Menge der normalisierten Zahlen ist 
 
 
 

  

F * (β, p, emin , emax) 



Normalisierte Darstellung 

Normalisierte Zahl: 

± d0. d1 ... dp-1 × β e ,   d0 ≠0 
 
Beispiel: 
 
 
 

  

F * (2, 3, -2 , 2 ) (Zahlen ≥ 0) 



Normalisierte Darstellung 

Normalisierte Zahl: 

± d0. d1 ... dp-1 × β e ,   d0 ≠0 
 
Beispiel: 
 
 
 

  

F * (2, 3, -2 , 2 ) (Zahlen ≥ 0) 

1.00 × 2-2 = 1/4 



Normalisierte Darstellung 

Normalisierte Zahl: 

± d0. d1 ... dp-1 × β e ,   d0 ≠0 
 
Beispiel: 
 
 
 

  

F * (2, 3, -2 , 2 ) (Zahlen ≥ 0) 

1.00 × 2-2 = 1/4 1.11 × 22 = 7 



Binäre und dezimale Systeme 

o  intern rechnet der Computer meistens 
mit β = 2 (binäres Fliesskommazahlen-
system) 



Binäre und dezimale Systeme 

o  intern rechnet der Computer meistens 
mit β = 2 (binäres Fliesskommazahlen-
system) 

o  Literale und Eingaben haben β = 10 
(dezimales Fliesskommazahlensystem) 



Binäre und dezimale Systeme 

o  intern rechnet der Computer meistens 
mit β = 2 (binäres Fliesskommazahlen-
system) 

o  Literale und Eingaben haben β = 10 
(dezimales Fliesskommazahlensystem) 

o  Eingaben müssen umgerechnet werden! 



Umrechung dezimal -> binär  

Angenommen, 0< x < 2 . 



Umrechung dezimal -> binär  

Angenommen, 0< x < 2 . 
 
Binärexpansion:  
    x = Σi=-∞,...,0 bi2i 



Umrechung dezimal -> binär  

Angenommen, 0< x < 2 . 
 
Binärexpansion:  
    x = Σi=-∞,...,0 bi2i  = b0. b-1 b-2 b-3... 



Umrechung dezimal -> binär  

Angenommen, 0< x < 2 . 
 
Binärexpansion:  
    x = Σi=-∞,...,0 bi2i  = b0. b-1 b-2 b-3... 
       = b0 + Σi=-∞,...,-1 bi2i  



Umrechung dezimal -> binär  

Angenommen, 0< x < 2 . 
 
Binärexpansion:  
    x = Σi=-∞,...,0 bi2i  = b0. b-1 b-2 b-3... 
       = b0 + Σi=-∞,...,-1 bi2i  

           = b0 + Σi=-∞,...,0 bi-12i-1  



Umrechung dezimal -> binär  

Angenommen, 0< x < 2 . 
 
Binärexpansion:  
    x = Σi=-∞,...,0 bi2i  = b0. b-1 b-2 b-3... 
       = b0 + Σi=-∞,...,-1 bi2i  

           = b0 + Σi=-∞,...,0 bi-12i-1 

           = b0 + (Σi=-∞,...,0 bi-12i ) / 2 



Umrechung dezimal -> binär  

Angenommen, 0< x < 2 . 
 
Binärexpansion:  
    x = Σi=-∞,...,0 bi2i  = b0. b-1 b-2 b-3... 
       = b0 + Σi=-∞,...,-1 bi2i  

           = b0 + Σi=-∞,...,0 bi-12i-1 

           = b0 + (Σi=-∞,...,0 bi-12i ) / 2 

x’ = b-1. b-2 b-3 b-4... 



Umrechung dezimal -> binär  

Angenommen, 0< x < 2 . 
 
Binärziffern (x ):  
         b0 , Binärziffern (b-1. b-2 b-3 b-4...) 



Umrechung dezimal -> binär  

Angenommen, 0< x < 2 . 
 
Binärziffern (x ):  
         b0 , Binärziffern (b-1. b-2 b-3 b-4...) 

x ’ = 2 (x – b0) 



Binärdarstellung von 1.1 

x - bi x’= 2(x – bi) x bi 

1.1 b0 = 1 



Binärdarstellung von 1.1 

x - bi x’= 2(x – bi) x bi 

1.1 b0 = 1 

0.1 0.2 0.2 b-1 = 0 



Binärdarstellung von 1.1 

x - bi x’= 2(x – bi) x bi 

1.1 b0 = 1 

0.1 0.2 0.2 b-1 = 0 
0.2 0.4 0.4 b-2 = 0 



Binärdarstellung von 1.1 

x - bi x’= 2(x – bi) x bi 

1.1 b0 = 1 

0.1 0.2 0.2 b-1 = 0 
0.2 0.4 0.4 b-2 = 0 
0.4 0.8 0.8 b-3 = 0 



Binärdarstellung von 1.1 

x - bi x’= 2(x – bi) x bi 

1.1 b0 = 1 

0.1 0.2 0.2 b-1 = 0 
0.2 0.4 0.4 b-2 = 0 
0.4 0.8 0.8 b-3 = 0 
0.8 1.6 1.6 b-4 = 1 



Binärdarstellung von 1.1 

x - bi x’= 2(x – bi) x bi 

1.1 b0 = 1 

0.1 0.2 0.2 b-1 = 0 
0.2 0.4 0.4 b-2 = 0 
0.4 0.8 0.8 b-3 = 0 
0.8 1.6 1.6 b-4 = 1 
0.6 1.2 1.2 b-5 = 1 



Binärdarstellung von 1.1 

x - bi x’= 2(x – bi) x bi 

1.1 b0 = 1 

0.1 0.2 0.2 b-1 = 0 
0.2 0.4 0.4 b-2 = 0 
0.4 0.8 0.8 b-3 = 0 
0.8 1.6 1.6 b-4 = 1 
0.6 1.2 1.2 b-5 = 1 
0.2 0.4 0.4 b-6 = 0 



Binärdarstellung von 1.1 

x - bi x’= 2(x – bi) x bi 

1.1 b0 = 1 

0.1 0.2 0.2 b-1 = 0 
0.2 0.4 0.4 b-2 = 0 
0.4 0.8 0.8 b-3 = 0 
0.8 1.6 1.6 b-4 = 1 
0.6 1.2 1.2 b-5 = 1 
0.2 0.4 0.4 b-6 = 0 

Binärdarstellung ist 1.00011 (periodisch, nicht endlich) 



Binärdarstellung von 1.1 

o  ist nicht endlich, also gibt es 
o  Fehler bei der Konversion in ein binäres 

Fliesskommazahlensystem  

o  1.1 ist für den Computer nicht 1.1 ...  



Binärdarstellung von 1.1 

o  ist nicht endlich, also gibt es 
o  Fehler bei der Konversion in ein binäres 

Fliesskommazahlensystem  

o  1.1 ist für den Computer nicht 1.1 ... 
   sondern (auf meiner Plattform) 
        1.10000002384185791015625. 



Der Excel-2007-Bug 

o  Umrechnungsfehler sind sehr klein... 



Der Excel-2007-Bug 

o  Umrechnungsfehler sind sehr klein... 
o  können aber grosse Auswirkungen 

haben! 
Microsoft Excel 2007: 

77.1 × 850 = 100000 (anstatt 65535) 



Der Excel-2007-Bug 

o  Umrechnungsfehler sind sehr klein... 
o  können aber grosse Auswirkungen 

haben! 

Microsoft: Resultat wird korrekt berechnet, “nur” 
falsch angezeigt.  

Microsoft Excel 2007: 

77.1 × 850 = 100000 (anstatt 65535) 

Microsoft Excel 2007: 

1 × 65535 = 65535 (Glück gehabt...) 



Microsoft: Resultat wird korrekt berechnet, “nur” 
falsch angezeigt.  

Der Excel-2007-Bug 

o  Umrechnungsfehler sind sehr klein... 
o  können aber grosse Auswirkungen 

haben! 

stimmt nicht ganz; 77.1 hat keine endliche Binärexpansion, 
berechnet wird also eine Zahl  λ sehr nahe an 65535. 

Microsoft Excel 2007: 

77.1 × 850 = 100000 (anstatt 65535) 



Der Excel-2007-Bug 

o  Umrechnungsfehler sind sehr klein... 
o  können aber grosse Auswirkungen 

haben! 

λ ist eine von nur zwölf Fliesskommazahlen (lt. Microsoft), 
für die die Umwandlung ins Dezimalsystem fehlerhaft ist.  

Microsoft Excel 2007: 

77.1 × 850 = 100000 (anstatt 65535) 

Microsoft: Resultat wird korrekt berechnet, “nur” 
falsch angezeigt.  



Rechnen mit 
Fliesskommazahlen 

o  fast so einfach wie mit ganzen Zahlen 
o  Beispiel (β = 2, p = 4): 



Rechnen mit 
Fliesskommazahlen 

o  fast so einfach wie mit ganzen Zahlen 
o  Beispiel (β = 2, p = 4): 
         1.111 × 2-2 

     +  1.011 × 2-1 

Schritt 1: Exponenten anpassen durch Denormalisieren einer Zahl 



Rechnen mit 
Fliesskommazahlen 

o  fast so einfach wie mit ganzen Zahlen 
o  Beispiel (β = 2 , p = 4): 
         1.111 × 2-2 

     +10.110 × 2-2 

Schritt 1: Exponenten anpassen durch Denormalisieren einer Zahl 



Rechnen mit 
Fliesskommazahlen 

o  fast so einfach wie mit ganzen Zahlen 
o  Beispiel (β = 2 , p = 4): 
         1.111 × 2-2 

     +10.110 × 2-2 

Schritt 2: Binäre Addition der Signifikanden 



Rechnen mit 
Fliesskommazahlen 

o  fast so einfach wie mit ganzen Zahlen 
o  Beispiel (β = 2 , p = 4): 
         1.111 × 2-2 

     +10.110 × 2-2 

 

      100.101 × 2-2 
 
          Schritt 2: Binäre Addition der Signifikanden 



Rechnen mit 
Fliesskommazahlen 

o  fast so einfach wie mit ganzen Zahlen 
o  Beispiel (β = 2 , p = 4): 
         1.111 × 2-2 

     +10.110 × 2-2 

 

      100.101 × 2-2 
 
          Schritt 3: Renormalisierung 



Rechnen mit 
Fliesskommazahlen 

o  fast so einfach wie mit ganzen Zahlen 
o  Beispiel (β = 2 , p = 4): 
         1.111 × 2-2 

     +10.110 × 2-2 

 

         1.00101 × 20 
 
          Schritt 3: Renormalisierung 



Rechnen mit 
Fliesskommazahlen 

o  fast so einfach wie mit ganzen Zahlen 
o  Beispiel (β = 2 , p = 4): 
         1.111 × 2-2 

     +10.110 × 2-2 

 

         1.00101 × 20 
 
          Schritt 4: Runden auf p  signifikante Stellen, falls notwendig 



Rechnen mit 
Fliesskommazahlen 

o  fast so einfach wie mit ganzen Zahlen 
o  Beispiel (β = 2 , p = 4): 
         1.111 × 2-2 

     +10.110 × 2-2 

 

         1.001 × 20 
 
          Schritt 4: Runden auf p  signifikante Stellen, falls notwendig 



Der IEEE-Standard 754 

o  legt Fliesskommazahlensysteme und 
deren Rundungsverhalten fest 

o  wird von vielen Plattformen unterstützt  



Der IEEE-Standard 754 

o  legt Fliesskommazahlensysteme und 
deren Rundungsverhalten fest 

o  wird von vielen Plattformen unterstützt  
o  single precision (float) Zahlen: 

F * (2, 24, -126, 127) 



Der IEEE-Standard 754 

o  legt Fliesskommazahlensysteme und 
deren Rundungsverhalten fest 

o  wird von vielen Plattformen unterstützt  
o  single precision (float) Zahlen: 

o  double precision (double) Zahlen: 

F * (2, 24, -126, 127) 

F * (2, 53, -1022, 1023) 



Der IEEE-Standard 754 

o  legt Fliesskommazahlensysteme und 
deren Rundungsverhalten fest 

o  wird von vielen Plattformen unterstützt  
o  single precision (float) Zahlen: 
                                         plus 0, ∞, ... 
o  double precision (double) Zahlen:                                         
                                                                  plus 0, ∞, ... 

F * (2, 24, -126, 127) 

F * (2, 53, -1022, 1023) 



Der IEEE-Standard 754 

o  legt Fliesskommazahlensysteme und 
deren Rundungsverhalten fest 

o  wird von vielen Plattformen unterstützt  
o  alle arithmetischen Operationen runden 

das exakte Ergebnis auf die nächste 
darstellbare Zahl 



Der IEEE-Standard 754 

Warum                              ?  F * (2, 24, -126, 127) 



Der IEEE-Standard 754 

Warum                              ?  
 
o  1 Bit für das Vorzeichen 
o  23 Bit für den Signifikanden (führendes 

Bit ist 1 und wird nicht gespeichert) 
o  8 Bit für den Exponenten (256 mögliche 

Werte) 

F * (2, 24, -126, 127) 



Der IEEE-Standard 754 

Warum                              ?  
 
o  1 Bit für das Vorzeichen 
o  23 Bit für den Signifikanden (führendes 

Bit ist 1 und wird nicht gespeichert) 
o  8 Bit für den Exponenten (256 mögliche 

Werte) 
insgesamt 32 Bit 

F * (2, 24, -126, 127) 



Der IEEE-Standard 754 

Warum                              ?  
 
o  1 Bit für das Vorzeichen 
o  23 Bit für den Signifikanden (führendes 

Bit ist 1 und wird nicht gespeichert) 
o  8 Bit für den Exponenten (254 mögliche 

Exponenten, 2 Spezialwerte: 0, ∞,...) 

F * (2, 24, -126, 127) 



Der IEEE-Standard 754 

Warum                                 ?  
 
o  1 Bit für das Vorzeichen 
o  52 Bit für den Signifikanden (führendes 

Bit ist 1 und wird nicht gespeichert) 
o  11 Bit für den Exponenten (2046 

mögliche Exponenten, 2 Spezialwerte) 

insgesamt 64 Bit 

F * (2, 53, -1022, 1023) 



Richtlinien fürs Rechnen mit 
Fliesskommazahlen  

Regel 1: 
  Teste keine zwei Fliesskommazahlen auf 
  Gleichheit, wenn mindestens eine das 
  Ergebnis einer Rundungsoperation ist! 



Richtlinien fürs Rechnen mit 
Fliesskommazahlen  

Regel 1: 
  Teste keine zwei Fliesskommazahlen auf 
  Gleichheit, wenn mindestens eine das 
  Ergebnis einer Rundungsoperation ist! 

for (float i = 0.1; i != 1.0; i += 0.1)  
  std::cout << i << "\n"; 



Richtlinien fürs Rechnen mit 
Fliesskommazahlen  

Regel 1: 
  Teste keine zwei Fliesskommazahlen auf 
  Gleichheit, wenn mindestens eine das 
  Ergebnis einer Rundungsoperation ist! 

for (float i = 0.1; i != 1.0; i += 0.1)  
  std::cout << i << "\n"; 

In der Praxis ist das eine Endlosschleife, weil i niemals exakt 1 ist! 



Richtlinien fürs Rechnen mit 
Fliesskommazahlen  

Regel 2: 
  Vermeide die Addition von Zahlen sehr 
  unterschiedlicher Grösse! 



Richtlinien fürs Rechnen mit 
Fliesskommazahlen  

Regel 2: 
  Vermeide die Addition von Zahlen sehr 
  unterschiedlicher Grösse! 
 
Beispiel (β = 2, p = 4):  
       1.000 × 24 

     +  1.000 × 20 



Richtlinien fürs Rechnen mit 
Fliesskommazahlen  

Regel 2: 
  Vermeide die Addition von Zahlen sehr 
  unterschiedlicher Grösse! 
 
Beispiel (β = 2, p = 4):  
       1.000 × 24 

     +  1.000 × 20    = 1.0001 × 24 



Richtlinien fürs Rechnen mit 
Fliesskommazahlen  

Regel 2: 
  Vermeide die Addition von Zahlen sehr 
  unterschiedlicher Grösse! 
 
Beispiel (β = 2, p = 4):  
       1.000 × 24 

     +  1.000 × 20    = 1.0001 × 24  
                         = 1.000  × 24  Rundung auf 4 Stellen! 



Richtlinien fürs Rechnen mit 
Fliesskommazahlen  

Regel 2: 
  Vermeide die Addition von Zahlen sehr 
  unterschiedlicher Grösse! 
 
Beispiel (β = 2, p = 4):  
       1.000 × 24 

     +  1.000 × 20    = 1.000 × 24  
                          Addition von 1 hat keinen Effekt! 



Beispiel für Regel 2: 
Harmonische Zahlen 

n -te Harmonische Zahl: 
 
   Hn = 1 + 1/2 + 1/3 + ... + 1/n 
       = 1/n + 1/(n-1) + ... + 1 
 
Summe kann vorwärts oder rückwärts 
berechnet werden. 
 



Beispiel für Regel 2: 
Harmonische Zahlen 
// Program: harmonic.cpp 
// Compute the n-th harmonic number in two ways. 
 
#include <iostream> 
 
int main()  
{ 
  // Input 
  std::cout << "Compute H_n for n =? "; 
  unsigned int n; 
  std::cin >> n; 
 
  // Forward sum 
  float fs = 0; 
  for (unsigned int i = 1; i <= n; ++i)  
    fs += 1.0f / i; 
     
  // Backward sum 
  float bs = 0; 
  for (unsigned int i = n; i >= 1; --i)  
    bs += 1.0f / i; 
  
  // Output 
  std::cout << "Forward sum  = " << fs << "\n" 
            << "Backward sum = " << bs << "\n"; 
  return 0; 
} 
 



Beispiel für Regel 2: 
Harmonische Zahlen 

Compute H_n for n =? 10000000 
Forward sum  = 15.4037 
Backward sum = 16.686 
 



Beispiel für Regel 2: 
Harmonische Zahlen 

Compute H_n for n =? 10000000 
Forward sum  = 15.4037 
Backward sum = 16.686 
 
Compute H_n for n =? 100000000 
Forward sum  = 15.4037 
Backward sum = 18.8079 
 
 



Beispiel für Regel 2: 
Harmonische Zahlen 

o  Die Vorwärtssumme wächst irgendwann 
nicht mehr und ist “richtig” falsch. 

o  Die Rückwärtssumme ist eine gute 
Approximation von H n. 



Beispiel für Regel 2: 
Harmonische Zahlen 

o  Die Vorwärtssumme wächst irgendwann 
nicht mehr und ist “richtig” falsch. 

o  Die Rückwärtssumme ist eine gute 
Approximation von H n. 

o  Bei 1 + 1/2 + 1/3 + ... + 1/n sind späte 
Terme zu klein, um noch beizutragen.  

wie bei 24 + 1 “=“ 24 



Beispiel für Regel 2: 
Harmonische Zahlen 

o  Die Vorwärtssumme wächst irgendwann 
nicht mehr und ist “richtig” falsch. 

o  Die Rückwärtssumme ist eine gute 
Approximation von H n. 

o  Bei 1/n + 1/(n-1) + ... + 1 sind späte 
Terme vergleichsweise gross und gehen 
deshalb in die Gesamtsumme ein.   



Richtlinien fürs Rechnen mit 
Fliesskommazahlen  

Regel 3: 
  Vermeide die Subtraktion von Zahlen 

sehr ähnlicher Grösse! 
 
Auslöschungsproblematik, siehe Skript. 
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