Assignment 1

Submission Deadline: $\mathbf{0 3}$ October, 2023 at 23:59
Course Website: https://ti.inf.ethz.ch/ew/courses/LA23

Exercises

You can get feedback from your TA for Exercise 1 by handing in your solution as pdf via Moodle before the deadline.

1. Rank and linear independence (hand-in) $(\underset{\sim}{v} \hat{\sim})$

a) Are the following three vectors in \mathbb{R}^{3} linearly independent?

$$
\mathbf{u}=\left[\begin{array}{c}
3 \\
-6 \\
3
\end{array}\right], \mathbf{v}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \mathbf{w}=\left[\begin{array}{c}
1 \\
-3 \\
4
\end{array}\right]
$$

b) Are the following three vectors in \mathbb{R}^{4} linearly independent?

$$
\mathbf{u}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \mathbf{v}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right], \mathbf{w}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]
$$

c) What is the rank of the following 2×3 matrix A ?

$$
A=\left[\begin{array}{ccc}
1 & -3 & 3 \\
-2 & 6 & 0
\end{array}\right]
$$

d) What is the rank of the following 3×3 matrix A ? You may use the (yet unproven) statement from the lecture that says that one can choose any order on the columns of a matrix to compute its rank.

$$
A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
2 & 0 & 0 \\
-1 & 1 & 1
\end{array}\right]
$$

2. Scalar product ($\boldsymbol{*} \boldsymbol{\sim}$)

Recall that the scalar product of two vectors

$$
\mathbf{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right] \text { and } \mathbf{w}=\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right]
$$

in \mathbb{R}^{n} is a real number given by

$$
\mathbf{v} \cdot \mathbf{w}=v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{n} w_{n}
$$

and that vectors \mathbf{v} and \mathbf{w} are perpendicular to each other if and only if $\mathbf{v} \cdot \mathbf{w}=0$.
a) Let $A \in \mathbb{R}^{m \times n}$ be the matrix

$$
A=\left[\begin{array}{ccc}
- & \mathbf{u}_{1} & - \\
- & \mathbf{u}_{2} & - \\
& \vdots & \\
- & \mathbf{u}_{m} & -
\end{array}\right]
$$

with rows $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m} \in \mathbb{R}^{n}$. Prove that we have $A \mathbf{x}=\mathbf{0}$ (with $\mathbf{x} \in \mathbb{R}^{n}$) if and only if \mathbf{x} is perpendicular to each of $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m}$.
b) Now consider two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ satisfying $A \mathbf{x}=\mathbf{0}$ and $A \mathbf{y}=\mathbf{0}$ and let $c, d \in \mathbb{R}$ be arbitrary. Prove that the vector $c \mathbf{x}+d \mathbf{y}$ is perpendicular to each of $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m}$.
c) Finally, consider the set of vectors $\mathcal{L}=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\mathbf{0}\right\}$ and assume $|\mathcal{L}| \geq 2$. Is \mathcal{L} a finite set?

3. Equal matrices $(\hat{\sim} \omega)$

Recall that we use $a_{i j}$ to denote the entry in the i-th row and j-th column of a matrix A. We can use this notation to define a matrix where each entry is a function of its indices. For example, the notation

$$
A=\left(a_{i j}\right) \in \mathbb{R}^{3 \times 3} \text { for } a_{i j}=i \cdot j
$$

reads as: A is a 3×3 matrix with entry $a_{i j}=i \cdot j$ for all $1 \leq i \leq 3$ and $1 \leq j \leq 3$. More concretely, we have

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & 9
\end{array}\right]
$$

Which of the following matrices are the same?

$$
\begin{aligned}
& A=\left(a_{i j}\right) \in \mathbb{R}^{3 \times 3} \text { for } a_{i j}=i \cdot j \\
& B=\left(b_{i j}\right) \in \mathbb{R}^{3 \times 3} \text { for } b_{i j}=i+j \\
& C=\left(c_{i j}\right) \in \mathbb{R}^{3 \times 3} \text { for } c_{i j}=\max \{i, j\} \\
& D=\left(d_{i j}\right) \in \mathbb{R}^{3 \times 3} \text { for } d_{i j}=\frac{i+j}{2}+\frac{|i-j|}{2} \\
& E=\left(e_{i j}\right) \in \mathbb{R}^{3 \times 3} \text { for } e_{i j}=i \cdot\left(\frac{j^{2}-1}{j+1}+1\right) \\
& F=\left(f_{i j}\right) \in \mathbb{R}^{3 \times 3} \text { for } f_{i j}=(i+1)+(j-1)
\end{aligned}
$$

4. Lines in $\mathbb{R}^{n}(\underset{\sim}{*})$

a) Let $\mathbf{0} \in \mathbb{R}^{n}$ denote the vector whose entries are all zero. We say that a set L is a line in \mathbb{R}^{n} if and only if there exists $\mathbf{w} \in \mathbb{R}^{n}$ with $\mathbf{w} \neq \mathbf{0}$ such that $L=\{c \mathbf{w}: c \in \mathbb{R}\}$. Let now L be a line in \mathbb{R}^{n} and let \mathbf{u} be an arbitrary non-zero element of L. Prove that $L=\{c \mathbf{u}: c \in \mathbb{R}\}$.
b) For two lines L_{1} and L_{2} in \mathbb{R}^{n}, prove that we have either $L_{1} \cap L_{2}=\{\mathbf{0}\}$ or $L_{1} \cap L_{2}=L_{1}=L_{2}$.
c) Consider a line L in \mathbb{R}^{2}. Prove that L is a hyperplane, i.e. find a vector $\mathbf{d} \neq \mathbf{0}$ such that

$$
L=\left\{\mathbf{v} \in \mathbb{R}^{2}: \mathbf{v} \cdot \mathbf{d}=0\right\} .
$$

5. Angle between two vectors

Consider two non-zero vectors $\mathbf{v}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{l}z \\ x \\ y\end{array}\right]$ in \mathbb{R}^{3} with $x+y+z=0$. Determine the value of $\cos (\alpha)$ where α denotes the angle between the two vectors \mathbf{v} and \mathbf{w}. You are not required to compute (or look up) α, but you are of course welcome to do so.

