Assignment 12

Submission Deadline: 19 December, 2023 at 23:59
Course Website: https://ti.inf.ethz.ch/ew/courses/LA23

Exercises

You can get feedback from your TA for Exercise 1 by handing in your solution as pdf via Moodle before the deadline.

1. Eigenvalues and eigenvectors of $A B$ and $B A$ (hand-in) (

Let A, B be two matrices in $\mathbb{R}^{n \times n}$.
a) Let $\lambda \in \mathbb{R}$ be a real eigenvalue of $A B$. Prove that λ is a real eigenvalue of $B A$.
b) Assume that B is invertible and that $A B$ has a complete set of real eigenvectors (according to Definition 6.1.18). Prove that $B A$ has a complete set of real eigenvectors.
c) Assume that both A and B are invertible. Prove that $A B$ has a complete set of real eigenvectors if and only if $B A$ has a complete set of real eigenvectors.
d) Can you find an example of two matrices A and B such that $B A$ has a complete set of real eigenvectors, but $A B$ does not have a complete set of real eigenvectors?

2. Diagonalization and similarity (

This exercise includes Challenge 62 and Challenge 63.
Let A, B, C be matrices in $\mathbb{R}^{n \times n}$.
a) Assume that A has n distinct real eigenvalues $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$. Assume further that B has the same eigenvectors as A (i.e. every eigenvector of A is an eigenvector of B and vice versa). Prove that $A B=B A$.
b) Assume that A and B are similar. Further assume that B and C are similar. Prove that A and C are similar.
c) Assume that A and B have the same n distinct real eigenvalues. Prove that A and B are similar.
d) Assume that A and B are similar. Prove that they have the same real eigenvalues. Note that you are not allowed to use Proposition 6.2.4 for this exercise.

3. Eigenvalues (

a) Let $A \in \mathbb{R}^{n \times n}$ be an arbitrary matrix and consider two linearly independent vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ such that $A \mathbf{v}=3 \mathbf{w}$ and $A \mathbf{w}=3 \mathbf{v}$. Prove that both 3 and -3 are eigenvalues of A.
b) Let $A \in \mathbb{R}^{n \times n}$ be an arbitrary matrix and consider two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ such that $\mathbf{v} \neq \mathbf{0}$, $A \mathbf{v}=3 \mathbf{w}$, and $A \mathbf{w}=3 \mathbf{v}$. Prove that 3 or -3 is an eigenvalue of A.

4. Application: population with three age groups $(\star \star$)

Consider a species with three age groups. Let x_{t} denote the number of individuals in the first age group at time $t \in \mathbb{N}_{0}, y_{t}$ the number of individuals in the second age group at time $t \in \mathbb{N}_{0}$, and z_{t} the number of individuals in the third age group at time $t \in \mathbb{N}_{0}$. Moreover, assume the following:

- At every point in time, half of the individuals from the first age group make it to the second age group (the other half dies).
- At every point in time, a third of the individuals from the second age group make it to the third age group (the other two thirds die).
- At every point in time, each individual in the second group leads to one newborn individual (in group one).
- At every point in time, each individual in the third group leads to three newborns (in group one).

For $t \in \mathbb{N}_{0}$, we use the vector $\mathbf{v}_{t}=\left[\begin{array}{lll}x_{t} & y_{t} & z_{t}\end{array}\right]^{\top}$ to summarize the current population. Hence, according to the description above, we have $\mathbf{v}_{t+1}=A \mathbf{v}_{t}$ where

$$
A=\left[\begin{array}{lll}
0 & 1 & 3 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{3} & 0
\end{array}\right]
$$

Is there a choice for the initial population $\mathbf{v}_{0} \in \mathbb{R}^{3}$ such that the population will be stable over time (i.e. $\mathbf{v}_{t}=\mathbf{v}_{t+1}$ for all $t \in \mathbb{N}_{0}$)? If possible, make sure that all entries of \mathbf{v}_{0} are non-negative since that seems more realistic.

5. Eigenvalues and eigenvectors (

a) Let $A \in \mathbb{R}^{2 \times 2}$ be such that $A\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}y \\ x\end{array}\right]$ for all $x, y \in \mathbb{R}$. Find all real eigenvalues of A. For each real eigenvalue, find a corresponding real eigenvector of A.
b) Construct a square matrix A with eigenvalues $0,1,2$. Furthermore, these should be the only eigenvalues of A.
c) Construct a square matrix B with eigenvalues $0,1,2$ such that B is not diagonal matrix. As before, these should be the only eigenvalues of B.

