Assignment 2

Submission Deadline: 10 October, 2023 at 23:59
Course Website: https://ti.inf.ethz.ch/ew/courses/LA23

Exercises

You can get feedback from your TA for Exercise 1 by handing in your solution as pdf via Moodle before the deadline.

1. Matrix multiplication (hand-in) (

a) For a natural number $k \geq 1$, we define the k-th power of a square matrix A as $A^{k}=\underbrace{A \times A \times \cdots \times A}_{k \text { times }}$ where \times denotes matrix multiplication. Moroever, we define $A^{0}=I$.
Now consider the matrix

$$
A=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 3 \\
0 & 1 & 0
\end{array}\right]
$$

Find $x, y, z \in \mathbb{R}$ such that $A^{3}+x A^{2}+y A+z I=0$. Note that both I and 0 are 3×3 matrices in this equation.
b) Let A and B be $n \times n$ matrices. Assume that A and B are commuting, i.e. $A B=B A$. Prove that we have $(A B)^{k}=A^{k} B^{k}$ for all $k \in \mathbb{N}$.
c) We say that a square matrix A is nilpotent if there exists $k \in \mathbb{N}$ such that $A^{k}=0$. The minimal $k \in \mathbb{N}$ such that $A^{k}=0$ is called the nilpotent degree of A.
Let A be a nilpotent matrix of degree $k \in \mathbb{N}$, and B be a matrix commuting with A. In particular, note that both A and B are square matrices. Is $A B$ nilpotent? If yes, what can we say about the nilpotent degree of $A B$?
d) Let A be an $n \times n$ nilpotent matrix of degree $k \in \mathbb{N}$. Prove that $(I-A)\left(I+A+\ldots+A^{k-1}\right)=I$.
e) Let T be an $n \times n$ upper triangular matrix. Assume that the diagonal of T consists of 0's only. Prove that $T^{n}=0$, i.e. T is nilpotent of degree less or equal to n.

Hint: Even if you do not manage to solve a question, you can use its result to tackle subsequent questions.
2. Solving linear systems ($a x^{2}+b x+c$ for some coefficients $a, b, c \in \mathbb{R}$. Assume that we already know $p(-1)=0, p(0)=2$ and $p(1)=2$. Find the coefficients a, b and c. As the title suggests, you will have to solve a linear system. We recommend that you do it by using the systematic elimination procedure from the lecture.

3. Rank-1 matrices (

a) Consider the 3×3 matrix

$$
A=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]\left[\begin{array}{lll}
w_{1} & w_{2} & w_{3}
\end{array}\right]
$$

with $v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3} \in \mathbb{R}$. What can you say about the rank of A ? How does this change if we additionally assume $v_{1} \neq 0$ and $w_{1} \neq 0$?
b) Assume now $v_{1} \neq 0$ and $w_{1} \neq 0$ and consider the equation $A \mathbf{x}=\mathbf{0}$ with $\mathbf{x} \in \mathbb{R}^{3}$. Provide a non-zero solution for \mathbf{x} in terms of $v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3} \in \mathbb{R}$ (non-zero means that it cannot be the zero-vector 0).
c) Consider the set of solutions $\mathcal{L}=\left\{\mathbf{x} \in \mathbb{R}^{3}: A \mathbf{x}=\mathbf{0}\right\}$ to the above equation. Prove that \mathcal{L} is a hyperplane of \mathbb{R}^{3}.

4. Rotation matrices $(\underset{\sim}{n} \boldsymbol{\sim})$

Hint: This exercise requires some basic knowledge of \sin and \cos. Part c) can also be solved independently by assuming parts a) and b).
a) A real 2×2 matrix A is a rotation matrix if there exists a rotation angle $\phi \in \mathbb{R}$ such that

$$
A=Q(\phi):=\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]
$$

Prove that the matrix

$$
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

is a rotation matrix.
b) Show that the matrix product $Q\left(\phi_{1}\right) Q\left(\phi_{2}\right)$ of two rotation matrices with angles ϕ_{1} and ϕ_{2} is again a rotation matrix $Q\left(\phi_{3}\right)$ and determine the corresponding rotation angle ϕ_{3}.
Hint: You might need to review trigonometric formulas to solve this question.
c) Let A be a 2×2 rotation matrix. Prove that there exists a 2×2 matrix B such that $A B=B A=I$.
5. Multiple choice Let A be an $m_{1} \times n_{1}$ matrix and let B be an $m_{2} \times n_{2}$ matrix for natural numbers $m_{1}, n_{1}, m_{2}, n_{2}$. For each statement, determine whether it is true or not (regardless of what values $m_{1}, n_{1}, m_{2}, n_{2}$ take).

1. If A^{2} is defined, then A must be square.
(a) Yes
(b) No
2. If $A^{2}=I$, then $A=I$.
(a) Yes
(b) No
3. If $A^{3}=0$, then $A=0$.
(a) Yes
(b) No
4. If $A=\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]$, then $A^{n}=\left[\begin{array}{cc}1 & n a \\ 0 & 1\end{array}\right]$ for all $n \in \mathbb{N}$.
(a) Yes
(b) No
5. If $A B=B$ for some choice of B, then $A=I$.
(a) Yes
(b) No
6. If both products $A B$ and $B A$ are defined, then A and B must be square.
(a) Yes
(b) No
7. If both products $A B$ and $B A$ are defined, then $A B$ and $B A$ must be square.
(a) Yes
(b) No
8. If two columns of A are equal and $A B$ is defined, the corresponding columns of $A B$ must also be equal.
(a) Yes
(b) No
9. If two columns of B are equal and $A B$ is defined, the corresponding columns of $A B$ must also be equal.
(a) Yes
(b) No
10. If two rows of A are equal and $A B$ is defined, the corresponding rows of $A B$ must also be equal.
(a) Yes
(b) No
11. If two rows of B are equal and $A B$ is defined, the corresponding rows of $A B$ must also be equal.
(a) Yes
(b) No
12. If A and B are symmetric matrices and $A B$ is defined, $A B$ is also symmetric.
(a) Yes
(b) No
