Assignment 3

Submission Deadline: $\mathbf{1 7}$ October, 2023 at 23:59
Course Website: https://ti.inf.ethz.ch/ew/courses/LA23

Exercises

You can get feedback from your TA for Exercise 1 by handing in your solution as pdf via Moodle before the deadline.

1. Elimination, back substitution, $L U$ factorization (hand-in) (

a) Compute an $L U$ factorization of the matrix $A=\left[\begin{array}{ccc}2 & -12 & 6 \\ 1 & -4 & 1 \\ 2 & -11 & -5\end{array}\right]$.
b) Given the factorization $A=L U$ from above, solve the linear system $L \mathbf{y}=\mathbf{b}$ with $\mathbf{b}=\left[\begin{array}{c}4 \\ 4 \\ 25\end{array}\right]$.
c) Given the solution \mathbf{y} to the linear system $L \mathbf{y}=\mathbf{b}$ above, solve the linear system $U \mathbf{x}=\mathbf{y}$ (for \mathbf{x}).
d) Given the solution \mathbf{x} for the system above, prove that $A \mathbf{x}=\mathbf{b}$, i.e. \mathbf{x} also solves this system.

2. Matrix inverse $(\underset{\sim}{\wedge} \mathfrak{v})$

a) Consider the matrix $A=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ and the standard unit vectors $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \mathbf{e}_{3}=$ $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Find the solutions $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3} \in \mathbb{R}^{3}$ for the three systems $A \mathbf{x}_{1}=\mathbf{e}_{1}, A \mathbf{x}_{2}=\mathbf{e}_{2}, A \mathbf{x}_{3}=\mathbf{e}_{3}$.
b) What is the inverse A^{-1} of A ?
c) What is the inverse D^{-1} of the diagonal matrix $D=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & \frac{1}{2}\end{array}\right]$?
d) What is the inverse B^{-1} of the matrix $B=\left[\begin{array}{lll}0 & 0 & 2 \\ 3 & 0 & 0 \\ 0 & \frac{1}{2} & 0\end{array}\right]$?

3. Matrix inverse $(\underset{\sim}{\circ} \boldsymbol{\sim})$

a) Let A be an $n \times n$ matrix with inverse A^{-1} and let $k \in \mathbb{N}^{+}$be an arbitrary integer. Does A^{k} have an inverse and if yes, what is it?
b) Recall the definition of a nilpotent matrix from Assignment 2: We say that a square matrix A is nilpotent if and only if there exists $k \in \mathbb{N}$ such that $A^{k}=0$. Prove that a nilpotent matrix A cannot have an inverse.
c) Let A be an $n \times n$ matrix with $A^{3}=I$ and $A^{4}=I$. Prove that $A=I$.
d) Find a 2×2 matrix $A \neq I$ such that $A^{k}=I$ for all even k and $A^{k}=A$ for all odd $k \in \mathbb{N}$.
e) Can you also find a 2×2 matrix A that, for all $k \in \mathbb{N}$, satisfies $A^{k}=I$ if and only if $k \equiv{ }_{4} 0$ (i.e. $A^{k}=I$ if and only if k is a multiple of 4$) ?$

4. Hyperplanes $(\underset{\sim}{\boldsymbol{*}} \boldsymbol{\sim})$

Consider the following set $S=\left\{\mathbf{v} \in \mathbb{R}^{n}: \mathbf{v} \cdot \mathbf{d}=c\right\}$ for some vector $\mathbf{d} \in \mathbb{R}^{n}$ and some non-zero constant $c \in \mathbb{R}$. Notice that S is not a hyperplane according to the definition from the lecture because c is not zero. Now consider the set

$$
S^{\prime}=\left\{\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n} \\
1
\end{array}\right] \in \mathbb{R}^{n+1}: \mathbf{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right] \in S\right\}
$$

which is a subset of \mathbb{R}^{n+1}. Prove that S^{\prime} is a subset of a hyperplane of \mathbb{R}^{n+1}.

5. Commutativity of the inverse

This is an exercise from page 17 of the blackboard notes: Given two $n \times n$ matrices A and B with $A B=I$, prove that $B A=I$. You can either try to solve this directly or proceed according to the following subtasks which should guide you through the proof.
a) Prove that the columns of B are linearly independent, i.e. B has rank n.
b) Use a) to prove that the columns of A are also linearly independent.
c) Use b) to prove that $B A-I=0$.

