Assignment 4

Submission Deadline: 24 October, 2023 at 23:59
Course Website: https://ti.inf.ethz.ch/ew/courses/LA23

Exercises

You can get feedback from your TA for Exercise 1 by handing in your solution as pdf via Moodle before the deadline.

1. Subspaces of vector spaces (hand-in) ($\hat{\sim}$)

a) Let H be a hyperplane of \mathbb{R}^{n}. Prove that H is a subspace of \mathbb{R}^{n}.
b) In this exercise we consider the vector space V of all real-valued function over \mathbb{R} on the interval $[0,1]$. In other words, every element $\mathbf{f} \in V$ is a function $\mathbf{f}:[0,1] \rightarrow \mathbb{R}$ and conversely, every function $\mathbf{f}:[0,1] \rightarrow \mathbb{R}$ is in V. Note that it might not be obvious that this is a vector space, but for the purpose of this exercise you can assume that it is. In particular, there exists a valid addition $\mathbf{f}+\mathbf{g}$ of such functions $\mathbf{f} \in V$ and $\mathbf{g} \in V$, and a valid scalar multiplication $c \mathbf{f}$ for a scalar $c \in \mathbb{R}$ and $\mathbf{f} \in V$ defined as follows:

$$
\begin{aligned}
(\mathbf{f}+\mathbf{g})(x) & :=\mathbf{f}(x)+\mathbf{g}(x) & \text { for all } \mathbf{f}, \mathbf{g} \in V \text { and } x \in[0,1] \\
(c \mathbf{f})(x) & :=c \mathbf{f}(x) & \text { for all } \mathbf{f} \in V, x \in[0,1] \text { and } c \in \mathbb{R} .
\end{aligned}
$$

Prove that

$$
U=\{\mathbf{f} \in V: \mathbf{f}(x)=\mathbf{f}(1-x) \text { for all } x \in[0,1]\} \subseteq V
$$

is a subspace of V.

2. Invertibility ($\boldsymbol{\sim}$

Let $A \in \mathbb{R}^{3 \times 3}$ be the following upper triangular matrix with $a, b, c, d \in \mathbb{R}$:

$$
A=\left(\begin{array}{lll}
a & b & c \\
0 & 1 & d \\
0 & 0 & 1
\end{array}\right)
$$

For which values of a, b, c, d is A invertible? Specify A^{-1} for these cases.

a) Find two 2×2 matrices A and B such that $(A B)^{\top} \neq A^{\top} B^{\top}$.
b) Can you also find two symmetric 2×2 matrices A, B with $(A B)^{\top} \neq A^{\top} B^{\top}$?

4. LU-Decomposition (

a) Determine an LU decomposition $P A=L U$ of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & -4 \\
-4 & -8 & 13 \\
2 & -5 & -3
\end{array}\right]
$$

b) For a different matrix B, we are given the LU decomposition $P B=L U$ with

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
3 & -1 & 1
\end{array}\right], U=\left[\begin{array}{ccc}
3 & 2 & -1 \\
0 & 2 & 0 \\
0 & 0 & -3
\end{array}\right], P=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Solve the system of equations $B \mathbf{x}=\mathbf{b}$, where

$$
\mathbf{b}=\left[\begin{array}{c}
0 \\
-1 \\
-7
\end{array}\right]
$$

5. Product of triangular matrices $(\underset{\sim}{*}$

a) Let A and B be $n \times n$ lower triangular matrices. Prove that $A B$ is lower triangular.
b) Let A and B be $n \times n$ upper triangular matrices. Prove that $A B$ is upper triangular.

Hint: Use the statement from subtask a).

6. Inverse of triangular matrices (

a) Find the inverse of the 2×2 matrix $L=\left[\begin{array}{ll}1 & 0 \\ a & 1\end{array}\right]$ where $a \in \mathbb{R}$.
b) Prove that a square lower triangular matrix is invertible if and only if all its diagonal entries are non-zero.
c) Prove that the inverse of any lower triangular matrix, if it exists, is lower triangular itself.
d) Are the statements of b) and c) also true if we replace lower triangular by upper triangular?
7. Subspaces $(\underset{\sim}{*} \hat{\sim})$

1. Let U_{1}, U_{2} be subspaces of \mathbb{R}^{n}. Which of the following subsets of \mathbb{R}^{n} are also subspaces of \mathbb{R}^{n} ?
(a) $\quad U_{1} \cap U_{2}$
(b) $U_{1} \cup U_{2}$
(c) $U_{1} \backslash U_{2}:=\left\{\mathbf{u} \in U_{1}: \mathbf{u} \notin U_{2}\right\}$
(d) \varnothing
(e) $\{0\}$
(f) $U_{1}+U_{2}:=\left\{\mathbf{u}_{1}+\mathbf{u}_{2}: \mathbf{u}_{1} \in U_{1}, \mathbf{u}_{2} \in U_{2}\right\}$
