Assignment 6

Submission Deadline: **07 November, 2023** at 23:59 Course Website: https://ti.inf.ethz.ch/ew/courses/LA23

Exercises

You can get feedback from your TA for Exercise 1 by handing in your solution as pdf via Moodle before the deadline.

1. Underdetermined linear system (hand-in) (★公公)

Consider the underdetermined linear system $A\mathbf{x} = \mathbf{b}$ with

$$A = \begin{pmatrix} -1 & 2 & 5 & -2 \\ -3 & 3 & 12 & -3 \\ 1 & -14 & -7 & -6 \end{pmatrix}, \text{ and } \mathbf{b} = \begin{pmatrix} -6 \\ -15 \\ 8 \end{pmatrix}.$$

a) Determine the set of solutions $\mathcal{L} = {\mathbf{x} \in \mathbb{R}^4 : A\mathbf{x} = \mathbf{b}}$, i.e. write down an *explicit* characterization of this set of solutions.

Hint: In the lecture you learned that every solution can be obtained from a particular solution and a basis of N(A). Hence, an explicit characterization of \mathcal{L} can be given by finding such a particular solution and a basis of N(A) and then describing the possible combinations that are solutions.

- **b**) Write down a basis for N(A) (you might have already found it in the previous subtask), and also find a basis for C(A).
- c) What are the dimensions of N(A), C(A), $N(A^{\top})$, and $C(A^{\top})$?
- **d**) Determine a basis of $\mathbf{C}(A^{\top})$.

2. Reconstruct a matrix (★☆☆)

Let A be a 3×2 matrix satisfying

$$A\begin{bmatrix}1\\0\end{bmatrix} = \begin{bmatrix}1\\1\\2\end{bmatrix}$$
 and $A\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}2\\3\\2\end{bmatrix}$.

- a) Determine A.
- **b**) Determine the dimensions of the four fundamental subspaces $\mathbf{N}(A)$, $\mathbf{C}(A)$, $\mathbf{N}(A^{\top})$, $\mathbf{C}(A^{\top})$ of A.

3. Row operations preserve row space $(\bigstar \bigstar)$

In this exercise we prove that row operations preserve the row space of a matrix. This is an exercise from Section 3.5 of the blackboard notes.

Consider an $m \times n$ matrix A with rows $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m \in \mathbb{R}^n$ and an $m \times n$ matrix B with rows $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n \in \mathbb{R}^n$, i.e.

$$A = \begin{bmatrix} - & \mathbf{v}_1^\top & - \\ - & \mathbf{v}_2^\top & - \\ \vdots & \vdots & \vdots \\ - & \mathbf{v}_m^\top & - \end{bmatrix} \text{ and } B = \begin{bmatrix} - & \mathbf{w}_1^\top & - \\ - & \mathbf{w}_2^\top & - \\ \vdots & \vdots & \vdots \\ - & \mathbf{w}_m^\top & - \end{bmatrix}.$$

For each of the following tasks, let $i, j \in [m]$ with $i \neq j$ and $c \in \mathbb{R}$ be arbitrary.

a) Assume first that B was obtained from A by subtracting c times row i from row j of A. Prove that then $\mathbf{R}(A) = \mathbf{R}(B)$.

Hint: Concretely, we have $\mathbf{w}_k = \mathbf{v}_k$ for all $k \in [m] \setminus \{j\}$ and $\mathbf{w}_j = \mathbf{v}_j - c\mathbf{v}_i$.

- **b**) Assume now instead that B was obtained from A by switching rows i and j. Prove that then $\mathbf{R}(A) = \mathbf{R}(B)$ holds as well.
- c) Finally, assume instead that $c \neq 0$ and that B was obtained from A by multiplying row i with c. Prove $\mathbf{R}(A) = \mathbf{R}(B)$.
- d) Assume that we bring A into reduced row echolon form R via elimination. Use the previous subtasks to argue that $\mathbf{R}(A) = \mathbf{R}(R)$.

4. Subspaces (★★☆)

Let V be a vector space and let U and W be subspaces of V. Show that $U \cup W$ is a subspace of V if and only if $U \subseteq W$ or $W \subseteq U$.

5. Symmetric matrices $(\bigstar \bigstar)$

Let $n \in \mathbb{N}^+$ be arbitrary. Consider the set of symmetric $n \times n$ matrices S_n which is a subspace of $\mathbb{R}^{n \times n}$. What is the dimension of S_n ?

6. 1. Which of the following statements is true for all $n \times n$ matrices A?

(a)
$$\mathbf{N}(A) = \mathbf{N}(2A)$$

- $\mathbf{(b)} \quad \mathbf{N}(A) = \mathbf{N}(A^2)$
- (c) $\mathbf{N}(A) = \mathbf{N}(A+I)$
- (d) $\mathbf{N}(A) = \mathbf{N}(A^{\top})$

2. Which of the following statements is true for all square matrices A?

- (a) $\mathbf{C}(A) = \mathbf{C}(2A)$
- $\mathbf{(b)} \quad \mathbf{C}(A) = \mathbf{C}(A^2)$
- (c) $\mathbf{C}(A) = \mathbf{C}(A+I)$
- (d) $\mathbf{C}(A) = \mathbf{C}(A^{\top})$

3. The following equations each describe a plane in \mathbb{R}^3 :

x	_	y	_	z	=	0
2x	_	5y	+	3z	=	0
3x			+	4z	=	0.

Which of the following statements is true?

- (a) The intersection of all three planes is empty.
- (b) The intersection of all three planes contains exactly one element.
- (c) The intersection of all three planes is a line.
- 4. Consider the linear system

$$x_1 + (b-1)x_2 = 3$$

-3x₁ - (2b - 8)x₂ = -5

with variables x_1, x_2 and parameter $b \in \mathbb{R}$. For which values of b is the set of solutions to the above system empty (i.e. there is no solution)?

- (a) Only for b = 0.
- (**b**) Only for b = -5.
- (c) For all possible values of b (i.e. for all of \mathbb{R}).
- (d) The system always has a solution regardless of the value of b.