Assignment 8

Submission Deadline: **21 November, 2023** at 23:59

Course Website: https://ti.inf.ethz.ch/ew/courses/LA23

Exercises

You can get feedback from your TA for Exercise 1 by handing in your solution as pdf via Moodle before the deadline.

1. Gram-Schmidt (hand-in) (★☆☆)

This task includes Challenge 20 from the lecture notes.

Consider the invertible matrices

		0	0	1
<i>A</i> =	=	1	0 0 1	1 1 1
		1	1	1
B =	Γ1	2	3	0
	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	4	5	6
	0	0	${3 \atop {5} \atop {7} \atop {0}}$	$\begin{bmatrix} 0\\6\\8 \end{bmatrix}$
	0	0	0	9

and

- a) Apply the Gram-Schmidt process to the columns of A.
- **b**) Write down a QR-decomposition of A.
- c) Apply the Gram-Schmidt process to the columns of B.
- d) Is it always true that the Gram-Schmidt process on the columns of an upper triangular $n \times n$ matrix with non-zero diagonal entries yields the canonical basis e_1, \ldots, e_n ? Provide a proof or counterexample.

2. Permutation matrices (★☆☆)

This task includes Challenge 17 from the lecture notes.

Let $P \in \mathbb{R}^{n \times n}$ be a permutation matrix for some $n \ge 1$. In particular, P has the form

$$P = \begin{bmatrix} | & | & \dots & | \\ \mathbf{e}_{p(1)} & \mathbf{e}_{p(2)} & \dots & \mathbf{e}_{p(n)} \\ | & | & \dots & | \end{bmatrix}$$

where $p : [n] \to [n]$ is a bijective function (the permutations of [n] are exactly the bijective functions $p : [n] \to [n]$). Prove that P is orthogonal.

3. Orthogonal matrices (★☆☆)

This task includes Challenge 16 from the lecture notes.

- a) Let R_{θ} be a 2 × 2 rotation matrix. Prove that R_{θ} is orthogonal. *Hint: It might be worth to have another look at the exercise on rotation matrices from Assignment 2.*
- **b**) Find an orthogonal 2×2 matrix that is not a rotation matrix.
- c) Consider an arbitrary 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Prove that if A is orthogonal, then we have |ad bc| = 1.
- d) Prove that the converse is not true, i.e. find values for a, b, c, d such that A is not orthogonal but we still have |ad bc| = 1.

4. Fitting a line $(\bigstar \bigstar)$

This task includes Challenge 11 from the lecture notes.

As in Section 4.3.2, assume we are given $m \ge 2$ distinct datapoints $(t_1, b_1), \ldots, (t_m, b_m)$ where $t_k, b_k \in \mathbb{R}$ for all $k \in [m]$ (distinct means that we have $t_i \ne t_j$ for all $i \ne j$ with $i, j \in [m]$). Using the least squares method, we want to find a line described by two parameters $\alpha_0, \alpha_1 \in \mathbb{R}$ such that we have

$$b_k \approx \alpha_0 + \alpha_1 t_k$$

for all $k \in [m]$. More concretely, we want to solve the optimization problem

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^2} ||A\boldsymbol{\alpha} - \mathbf{b}||^2 = \min_{\alpha_0, \alpha_1 \in \mathbb{R}} \sum_{k=1}^m (b_k - (\alpha_0 + \alpha_1 t_k))^2$$

where

$$\boldsymbol{\alpha} = \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}, \quad A = \begin{bmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix}.$$

In Remark 4.3.5, we derived the closed form solution

$$\begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix} = \begin{bmatrix} \frac{1}{m} \sum_{k=1}^m b_k \\ (\sum_{k=1}^m t_k b_k) / (\sum_{k=1}^m t_k^2) \end{bmatrix}$$

for this problem under the additional assumption that $\sum_{k=1}^{m} t_k = 0$. In this exercise, we want to find a closed form solution for the general case, i.e. we want to drop the assumption $\sum_{k=1}^{m} t_k = 0$.

a) Let $c \in \mathbb{R}$ be some constant and consider new datapoints $(t'_1, b_1), \ldots, (t'_m, b_m)$ with $t'_k = t_k + c$ for all $k \in [m]$. This gives us a new optimization problem

$$\min_{\boldsymbol{\alpha}' \in \mathbb{R}^2} ||A'\boldsymbol{\alpha}' - \mathbf{b}||^2 = \min_{\alpha_0', \alpha_1' \in \mathbb{R}} \sum_{k=1}^m (b_k - (\alpha_0' + \alpha_1' t_k'))^2$$

where

$$\boldsymbol{lpha}' = \begin{bmatrix} \alpha_0' \\ \alpha_1' \end{bmatrix}, \quad A' = \begin{bmatrix} 1 & t_1' \\ \vdots & \vdots \\ 1 & t_m' \end{bmatrix}.$$

Intuitively speaking, how do the optimal solutions α and α' of the two optimization problems compare? Do we expect to have $\alpha_0 = \alpha'_0$? Do we expect to have $\alpha_1 = \alpha'_1$? Give a brief intuitive argument.

b) As discussed in the lecture notes, we want to set $c = -\frac{1}{m} \sum_{k=1}^{m} t_k$ so that the columns of A' will be orthogonal. Verify that this is indeed the case, i.e. verify that the columns of A' defined as above with $c = -\frac{1}{m} \sum_{k=1}^{m} t_k$ are orthogonal.

c) Given α' such that $||A'\alpha' - \mathbf{b}||^2$ is minimized (i.e. α' is an optimal solution), prove that

$$\boldsymbol{\alpha} = \boldsymbol{\alpha}' + \begin{bmatrix} c\alpha_1' \\ 0 \end{bmatrix}$$

minimizes $||A\boldsymbol{\alpha} - \mathbf{b}||^2$ (i.e. $\boldsymbol{\alpha}$ is an optimal solution for the original problem).

Hint: *This subtask gives away the answer to a*), *but make sure that you have some intuition of why* we expect $\alpha'_1 = \alpha_1$.

d) Note that by subtask b), we can use the closed form solution from Remark 4.3.5 to solve

$$\min_{oldsymbol{lpha}' \in \mathbb{R}^2} ||A'oldsymbol{lpha}' - \mathbf{b}||^2.$$

Combine this with subtask c) to get a closed form solution for the original problem

$$\min_{\boldsymbol{\alpha}\in\mathbb{R}^2}||A\boldsymbol{\alpha}-\mathbf{b}||^2 = \min_{\alpha_0,\alpha_1\in\mathbb{R}}\sum_{k=1}^m (b_k - (\alpha_0 + \alpha_1 t_k))^2.$$

You do not need to simplify the formula you get.

5. Fitting a parabola (★☆☆)

This task includes Challenge 12 from the lecture notes of the second part of the course.

Assume we are given $m \ge 3$ distinct datapoints $(t_1, b_1), \ldots, (t_m, b_m)$ where $t_k, b_k \in \mathbb{R}$ for all $k \in [m]$ (distinct means that we have $t_i \ne t_j$ for all $i \ne j$ with $i, j \in [m]$). Using the least squares method, we want to find a parabola described by three parameters $\alpha_0, \alpha_1, \alpha_2 \in \mathbb{R}$ such that we have

$$b_k \approx \alpha_0 + \alpha_1 t_k + \alpha_2 t_k^2$$

for all $k \in [m]$. More concretely, we want to solve the optimization problem

$$\min_{\boldsymbol{\alpha}\in\mathbb{R}^3} ||A\boldsymbol{\alpha}-\mathbf{b}||^2 = \min_{\alpha_0,\alpha_1,\alpha_2\in\mathbb{R}} \sum_{k=1}^m (b_k - (\alpha_0 + \alpha_1 t_k + \alpha_2 t_k^2))^2$$

where

$$\boldsymbol{\alpha} = \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}, \quad A = \begin{bmatrix} 1 & t_1 & t_1^2 \\ \vdots & \vdots & \vdots \\ 1 & t_m & t_m^2 \end{bmatrix}.$$

- **a**) Compute the matrix $A^{\top}A$.
- **b**) Prove that for $A^{\top}A$ to be diagonal, we must have $t_k = 0$ for all $k \in [m]$. Note that this is again an uninteresting case which is actually excluded by the assumption $m \ge 3$ and the assumption that our datapoints are distinct.