Assignment 8
Submission Deadline: 21 November, 2023 at 23:59
Course Website: https://ti.inf.ethz.ch/ew/courses/LA23

Exercises

You can get feedback from your TA for Exercise 1 by handing in your solution as pdf via Moodle before the deadline.

1. Gram-Schmidt (hand-in) (

This task includes Challenge 20 from the lecture notes.
Consider the invertible matrices

$$
A=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

and

$$
B=\left[\begin{array}{llll}
1 & 2 & 3 & 0 \\
0 & 4 & 5 & 6 \\
0 & 0 & 7 & 8 \\
0 & 0 & 0 & 9
\end{array}\right]
$$

a) Apply the Gram-Schmidt process to the columns of A.
b) Write down a $Q R$-decomposition of A.
c) Apply the Gram-Schmidt process to the columns of B.
d) Is it always true that the Gram-Schmidt process on the columns of an upper triangular $n \times n$ matrix with non-zero diagonal entries yields the canonical basis $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$? Provide a proof or counterexample.

2. Permutation matrices $(\underset{\sim 1}{2} \sqrt{2})$

This task includes Challenge 17 from the lecture notes.
Let $P \in \mathbb{R}^{n \times n}$ be a permutation matrix for some $n \geq 1$. In particular, P has the form

$$
P=\left[\begin{array}{cccc}
\mid & \mid & \ldots & \mid \\
\mathbf{e}_{p(1)} & \mathbf{e}_{p(2)} & \ldots & \mathbf{e}_{p(n)} \\
\mid & \mid & \ldots & \mid
\end{array}\right]
$$

where $p:[n] \rightarrow[n]$ is a bijective function (the permutations of $[n]$ are exactly the bijective funtions $p:[n] \rightarrow[n])$. Prove that P is orthogonal.

3. Orthogonal matrices (

This task includes Challenge 16 from the lecture notes.
a) Let R_{θ} be a 2×2 rotation matrix. Prove that R_{θ} is orthogonal.

Hint: It might be worth to have another look at the exercise on rotation matrices from Assignment 2.
b) Find an orthogonal 2×2 matrix that is not a rotation matrix.
c) Consider an arbitrary 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Prove that if A is orthogonal, then we have $|a d-b c|=1$.
d) Prove that the converse is not true, i.e. find values for a, b, c, d such that A is not orthogonal but we still have $|a d-b c|=1$.

4. Fitting a line $(\$)$

This task includes Challenge 11 from the lecture notes.
As in Section 4.3.2, assume we are given $m \geq 2$ distinct datapoints $\left(t_{1}, b_{1}\right), \ldots,\left(t_{m}, b_{m}\right)$ where $t_{k}, b_{k} \in$ \mathbb{R} for all $k \in[m]$ (distinct means that we have $t_{i} \neq t_{j}$ for all $i \neq j$ with $i, j \in[m]$). Using the least squares method, we want to find a line described by two parameters $\alpha_{0}, \alpha_{1} \in \mathbb{R}$ such that we have

$$
b_{k} \approx \alpha_{0}+\alpha_{1} t_{k}
$$

for all $k \in[m]$. More concretely, we want to solve the optimization problem

$$
\min _{\boldsymbol{\alpha} \in \mathbb{R}^{2}}\|A \boldsymbol{\alpha}-\mathbf{b}\|^{2}=\min _{\alpha_{0}, \alpha_{1} \in \mathbb{R}} \sum_{k=1}^{m}\left(b_{k}-\left(\alpha_{0}+\alpha_{1} t_{k}\right)\right)^{2}
$$

where

$$
\boldsymbol{\alpha}=\left[\begin{array}{c}
\alpha_{0} \\
\alpha_{1}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right], \quad A=\left[\begin{array}{cc}
1 & t_{1} \\
\vdots & \vdots \\
1 & t_{m}
\end{array}\right]
$$

In Remark 4.3.5, we derived the closed form solution

$$
\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{m} \sum_{k=1}^{m} b_{k} \\
\left(\sum_{k=1}^{m} t_{k} b_{k}\right) /\left(\sum_{k=1}^{m} t_{k}^{2}\right)
\end{array}\right]
$$

for this problem under the additional assumption that $\sum_{k=1}^{m} t_{k}=0$. In this exercise, we want to find a closed form solution for the general case, i.e. we want to drop the assumption $\sum_{k=1}^{m} t_{k}=0$.
a) Let $c \in \mathbb{R}$ be some constant and consider new datapoints $\left(t_{1}^{\prime}, b_{1}\right), \ldots,\left(t_{m}^{\prime}, b_{m}\right)$ with $t_{k}^{\prime}=t_{k}+c$ for all $k \in[m]$. This gives us a new optimization problem

$$
\min _{\boldsymbol{\alpha}^{\prime} \in \mathbb{R}^{2}}\left\|A^{\prime} \boldsymbol{\alpha}^{\prime}-\mathbf{b}\right\|^{2}=\min _{\alpha_{0}^{\prime}, \alpha_{1}^{\prime} \in \mathbb{R}} \sum_{k=1}^{m}\left(b_{k}-\left(\alpha_{0}^{\prime}+\alpha_{1}^{\prime} t_{k}^{\prime}\right)\right)^{2}
$$

where

$$
\boldsymbol{\alpha}^{\prime}=\left[\begin{array}{c}
\alpha_{0}^{\prime} \\
\alpha_{1}^{\prime}
\end{array}\right], \quad A^{\prime}=\left[\begin{array}{cc}
1 & t_{1}^{\prime} \\
\vdots & \vdots \\
1 & t_{m}^{\prime}
\end{array}\right]
$$

Intuitively speaking, how do the optimal solutions $\boldsymbol{\alpha}$ and $\boldsymbol{\alpha}^{\prime}$ of the two optimization problems compare? Do we expect to have $\alpha_{0}=\alpha_{0}^{\prime}$? Do we expect to have $\alpha_{1}=\alpha_{1}^{\prime}$? Give a brief intuitive argument.
b) As discussed in the lecture notes, we want to set $c=-\frac{1}{m} \sum_{k=1}^{m} t_{k}$ so that the columns of A^{\prime} will be orthogonal. Verify that this is indeed the case, i.e. verify that the columns of A^{\prime} defined as above with $c=-\frac{1}{m} \sum_{k=1}^{m} t_{k}$ are orthogonal.
c) Given $\boldsymbol{\alpha}^{\prime}$ such that $\left\|A^{\prime} \boldsymbol{\alpha}^{\prime}-\mathbf{b}\right\|^{2}$ is minimized (i.e. $\boldsymbol{\alpha}^{\prime}$ is an optimal solution), prove that

$$
\boldsymbol{\alpha}=\boldsymbol{\alpha}^{\prime}+\left[\begin{array}{c}
c \alpha_{1}^{\prime} \\
0
\end{array}\right]
$$

minimizes $\|A \boldsymbol{\alpha}-\mathbf{b}\|^{2}$ (i.e. $\boldsymbol{\alpha}$ is an optimal solution for the original problem).
Hint: This subtask gives away the answer to a), but make sure that you have some intuition of why we expect $\alpha_{1}^{\prime}=\alpha_{1}$.
d) Note that by subtask b), we can use the closed form solution from Remark 4.3 .5 to solve

$$
\min _{\boldsymbol{\alpha}^{\prime} \in \mathbb{R}^{2}}\left\|A^{\prime} \boldsymbol{\alpha}^{\prime}-\mathbf{b}\right\|^{2}
$$

Combine this with subtask c) to get a closed form solution for the original problem

$$
\min _{\boldsymbol{\alpha} \in \mathbb{R}^{2}}\|A \boldsymbol{\alpha}-\mathbf{b}\|^{2}=\min _{\alpha_{0}, \alpha_{1} \in \mathbb{R}} \sum_{k=1}^{m}\left(b_{k}-\left(\alpha_{0}+\alpha_{1} t_{k}\right)\right)^{2} .
$$

You do not need to simplify the formula you get.

5. Fitting a parabola $(\underset{\sim}{\omega} \mathfrak{\imath})$

This task includes Challenge 12 from the lecture notes of the second part of the course.
Assume we are given $m \geq 3$ distinct datapoints $\left(t_{1}, b_{1}\right), \ldots,\left(t_{m}, b_{m}\right)$ where $t_{k}, b_{k} \in \mathbb{R}$ for all $k \in[m]$ (distinct means that we have $t_{i} \neq t_{j}$ for all $i \neq j$ with $i, j \in[m]$). Using the least squares method, we want to find a parabola described by three parameters $\alpha_{0}, \alpha_{1}, \alpha_{2} \in \mathbb{R}$ such that we have

$$
b_{k} \approx \alpha_{0}+\alpha_{1} t_{k}+\alpha_{2} t_{k}^{2}
$$

for all $k \in[m]$. More concretely, we want to solve the optimization problem

$$
\min _{\boldsymbol{\alpha} \in \mathbb{R}^{3}}\|A \boldsymbol{\alpha}-\mathbf{b}\|^{2}=\min _{\alpha_{0}, \alpha_{1}, \alpha_{2} \in \mathbb{R}} \sum_{k=1}^{m}\left(b_{k}-\left(\alpha_{0}+\alpha_{1} t_{k}+\alpha_{2} t_{k}^{2}\right)\right)^{2}
$$

where

$$
\boldsymbol{\alpha}=\left[\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right], \quad A=\left[\begin{array}{ccc}
1 & t_{1} & t_{1}^{2} \\
\vdots & \vdots & \vdots \\
1 & t_{m} & t_{m}^{2}
\end{array}\right]
$$

a) Compute the matrix $A^{\top} A$.
b) Prove that for $A^{\top} A$ to be diagonal, we must have $t_{k}=0$ for all $k \in[m]$. Note that this is again an uninteresting case which is actually excluded by the assumption $m \geq 3$ and the assumption that our datapoints are distinct.

