Assignment 9

Submission Deadline: $\mathbf{2 8}$ November, 2023 at 23:59
Course Website: https://ti.inf.ethz.ch/ew/courses/LA23

Exercises

You can get feedback from your TA for Exercise 1 by handing in your solution as pdf via Moodle before the deadline.

1. Properties of pseudoinverses (hand-in) (

This is Challenge 23 from the lecture notes.
Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ be arbitrary matrices.
a) Prove that if $\operatorname{rank}(A)=\operatorname{rank}(B)=n$, we have $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$.
b) Prove that $\left(A^{\top}\right)^{\dagger}=\left(A^{\dagger}\right)^{\top}$.
c) Prove that $A A^{\dagger}$ is symmetric and that it is the projection matrix for the subspace $\mathbf{C}(A)$.
d) Prove that $A^{\dagger} A$ is symmetric and that it is the projection matrix for the subspace $\mathbf{C}\left(A^{\top}\right)$.

Hint: Use Proposition 4.5.9 from the lecture notes.

2. Bijective map ($\boldsymbol{\sim} \boldsymbol{\sim}$

This task includes Challenge 24 from the lecture notes which asks you to prove Proposition 4.5.11.
Let $A \in \mathbb{R}^{m \times n}$ be an arbitrary matrix with column space $\mathbf{C}(A)$ and row space $\mathbf{C}\left(A^{\top}\right)$. Consider the function $f: \mathbf{C}\left(A^{\top}\right) \rightarrow \mathbf{C}(A)$ that maps $\mathbf{x} \in \mathbf{C}\left(A^{\top}\right)$ to $(A \mathbf{x}) \in \mathbf{C}(A)$. Prove that f is bijective.

Hint: Solve Exercise 1 first.

3. Linear transformations $(\underset{\sim}{\wedge} \mathfrak{v})$

This task provides some ideas for Challenge 26, but we encourage you to find some more examples on your own. For all subtask it might help to draw a sketch of the respective linear transformations to understand what is going on.
a) Let $\mathbf{v} \in \mathbb{R}^{2}$ be a unit vector. Consider the linear transformation given by the matrix $A=I-2 \mathbf{v} \mathbf{v}^{\top}$. Geometrically speaking, does applying A correspond to stretching, shearing, rotating, or reflecting vectors?
b) Consider the linear transformation given by the matrix

$$
A=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Describe the geometric operation that this linear transformation corresponds to.
c) Consider the line $L=\{c \mathbf{v}: c \in \mathbb{R}\} \subseteq \mathbb{R}^{3}$ with $\mathbf{v}=\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\top}$. Find a matrix $A \in \mathbb{R}^{3 \times 3}$ that corresponds to rotating vectors by 180° around the axis L.

Hint: Try to find out what $A \mathbf{e}_{1}, A \mathbf{e}_{2}$, and $A \mathbf{e}_{3}$ should be

4. Linear transformation of triangles $\left(\boldsymbol{H}_{\sim}\right)$

This task includes Challenge 27 from the lecture notes.
For this exercise, we will need the notion of a line segment. Consider an arbitrary set $S \subseteq \mathbb{R}^{2}$. We say that S is a line segment if and only if there exist two distinct points $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{2}$ such that

$$
S=\left\{c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}: c_{1}, c_{2} \in \mathbb{R}_{0}^{+}, c_{1}+c_{2}=1\right\}
$$

In other words, S is the set of so-called convex combinations of \mathbf{v}_{1} and \mathbf{v}_{2}. Notice that in contrast to linear combinations, for convex combinations we additionally require the coefficients to be non-negative and their sum to be 1 . Try to convince yourself that this characterization of line segments corresponds to what you intuitively think of as a line segment. It might help to draw some examples.

We will also need a more concrete notion of a triangle: We say that a set $T \subseteq \mathbb{R}^{2}$ is a triangle if and only if T is not a line segment and there exist three distinct points $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in \mathbb{R}^{2}$ such that

$$
T=\left\{c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}: c_{1}, c_{2}, c_{3} \in \mathbb{R}_{0}^{+}, c_{1}+c_{2}+c_{3}=1\right\}
$$

Again, convince yourself that this characterization intuitively makes sense by drawing some examples.
Let now T be an arbitrary triangle in the plane with vertices $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in \mathbb{R}^{2}$. Let $A \in \mathbb{R}^{2 \times 2}$ be an arbitrary matrix and consider the set

$$
T^{\prime}=\left\{c_{1} \mathbf{v}_{1}^{\prime}+c_{2} \mathbf{v}_{2}^{\prime}+c_{3} \mathbf{v}_{3}^{\prime}: c_{1}, c_{2}, c_{3} \in \mathbb{R}_{0}^{+}, c_{1}+c_{2}+c_{3}=1\right\}
$$

with $\mathbf{v}_{1}^{\prime}=A \mathbf{v}_{1}, \mathbf{v}_{2}^{\prime}=A \mathbf{v}_{2}$, and $\mathbf{v}_{3}^{\prime}=A \mathbf{v}_{3}$.
a) Prove that $(A \mathbf{x}) \in T^{\prime}$ for all $\mathbf{x} \in T$.
b) Prove that if T^{\prime} is neither a single point nor a triangle, then it has to be a line segment.
c) Prove that A has rank 0 if and only if T^{\prime} is a point.
d) Prove that A has rank 2 if and only if T^{\prime} is a triangle.
e) Prove that A has rank 1 if and only if T^{\prime} is a line segment.

Hint: Use previous subtasks.

5. Fitting a circle (

Consider the following points

$$
\mathbf{p}_{1}=\left[\begin{array}{l}
0 \\
2
\end{array}\right], \mathbf{p}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \mathbf{p}_{3}=\left[\begin{array}{c}
-\frac{2}{3} \\
\frac{4}{3}
\end{array}\right], \mathbf{p}_{4}=\left[\begin{array}{c}
-\frac{3}{2} \\
-\frac{1}{2}
\end{array}\right] \in \mathbb{R}^{2}
$$

in the plane. We want to find a circle C_{r} with origin $\mathbf{0}$ and radius $r \in \mathbb{R}^{+}$such that the sum of the quadratic distances of the points to the circle is minimized. Note that the quadratic distance of a point $\mathbf{p} \in \mathbb{R}^{2}$ to the circle C_{r} is $(r-\|\mathbf{p}\|)^{2}$. Find the optimal value of r for the four points above.

Note that the interesting thing here is to find a formula for r in terms of $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}_{4}$. The actual numerical answer is of secondary interest here, i.e. you are not expected to simplify the value you get for r as much as possible.

