Solution for Assignment 0

1. Linear combinations of vectors (★☆☆)

a) Consider an arbitrary vector $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \in \mathbb{R}^2$. We define $c \coloneqq \frac{b_1 + b_2}{2}$ and $d \coloneqq \frac{b_2 - b_1}{2}$. Then we have

$$c\mathbf{v} + d\mathbf{w} = \begin{bmatrix} c - d\\ c + d \end{bmatrix} = \begin{bmatrix} b_1\\ b_2 \end{bmatrix} = \mathbf{b}$$
(1)

which proves that **b** can be written as a linear combination of **v** and **w**. While this proves the claim and is considered a complete solution, let us also explain how to find out that we should pick $c := \frac{b_1+b_2}{2}$ and $d := \frac{b_2-b_1}{2}$. For this, assume that we do not know yet what values c and d should have. We can still write down Equation 1, interpreting c and d as unknowns. In fact, this gives us a system of two equations

$$c - d = b_1$$
$$c + d = b_2$$

(one for each coordinate). Adding the two equations we obtain $2c = b_1 + b_2$ and hence $c = \frac{b_1+b_2}{2}$. On the other hand, subtracting the first equation from the second gives $2d = b_2 - b_1$ and hence $d = \frac{b_2-b_1}{2}$. One can also think about this geometrically, analogous to the "row picture" from Section 1.1.3 in the blackboard notes (Figure 1).

Figure 1: The lines given by the two equations intersect at $(\frac{b_1+b_2}{2}, \frac{b_2-b_1}{2})$.

b) Consider the vector $\mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \in \mathbb{R}^3$. In order to write it as a linear combination of \mathbf{v} and \mathbf{w} , we

would have to find $c, d \in \mathbb{R}$ such that

$$c\mathbf{v} + d\mathbf{w} = c \begin{bmatrix} 1\\0\\1 \end{bmatrix} + d \begin{bmatrix} 0\\1\\1 \end{bmatrix} \stackrel{!}{=} \begin{bmatrix} 0\\1\\0 \end{bmatrix} = \mathbf{b}$$

Each coordinate provides a constraint on the values of c and d. In particular, from the first coordinate we get the constraint c = 0, from the second coordinate we get the constraint d = 1, and from the third coordinate we get c + d = 0. This system of three equations in two unknowns does not have a solution and hence we conclude that b cannot be written as a linear combination of v and w.

2. The perfect long drink (★☆☆)

a) Mixing $\frac{3}{5}$ of the first imperfect drink with $\frac{2}{5}$ of the second imperfect drink will yield a perfect drink. To see this, represent the imperfect drinks as vectors $\begin{bmatrix} 15\\85 \end{bmatrix} \in \mathbb{R}^2$ and $\begin{bmatrix} 35\\65 \end{bmatrix} \in \mathbb{R}^2$, and the perfect drink as $\begin{bmatrix} 23\\77 \end{bmatrix} \in \mathbb{R}^2$. It remains to check that

$$\frac{3}{5} \begin{bmatrix} 15\\85 \end{bmatrix} + \frac{2}{5} \begin{bmatrix} 35\\65 \end{bmatrix} = \begin{bmatrix} 23\\77 \end{bmatrix}.$$

While this is already a full solution, we describe again how one could arrive at $\frac{3}{5}$ and $\frac{2}{5}$, respectively. We want to find c and d such that

$$c\begin{bmatrix}15\\85\end{bmatrix} + d\begin{bmatrix}35\\65\end{bmatrix} = \begin{bmatrix}23\\77\end{bmatrix}.$$

This gives us the two equations

$$15c + 35d = 23$$

 $85c + 65d = 77$

which can be solved in various ways. One way is to add the two equations to get 100c+100d = 100and thus c + d = 1. Now plug in c = 1 - d into the first equation to get $d = \frac{2}{5}$ and hence $c = 1 - d = \frac{3}{5}$.

b) The set \hat{D} can be written down as

$$\hat{D} = \{ c\mathbf{v} + d\mathbf{w} \in \mathbb{R}^2 : c \ge 0, d \ge 0, c + d = 1 \}.$$

In words, \hat{D} consists of all vectors that can be written as linear combinations $c\mathbf{v} + d\mathbf{w}$ that additionally satisfy $c \ge 0$, $d \ge 0$ and c + d = 1. We need the constraints $c \ge 0$ and $d \ge 0$ because we cannot use a negative amount of one of the drinks. Moreover, we need to make sure that we are mixing a drink of size 100ml, hence the constraint c + d = 1. In math lingo, \hat{D} is the set of convex combinations of \mathbf{v} and \mathbf{w} . Geometrically, \hat{D} has the shape of a line segment that connects the points \mathbf{v} and \mathbf{w} .

c) Since the mixed drink does not need to contain exactly 100ml anymore, we can get rid of the constraint c + d = 1. But we still cannot use v and w more than once each, i.e. we need to include the constraints $c \le 1$ and $d \le 1$ instead. We get the parallelogram (see Figure 2)

$$\overline{D} = \{ c\mathbf{v} + d\mathbf{w} \in \mathbb{R}^2 : 0 \le c \le 1, 0 \le d \le 1 \}.$$

Figure 2: A sketch of the situation with the two imperfect drinks \mathbf{v} and \mathbf{w} . The set D is shown as a dotted line between the two axis. The set \hat{D} is shown in bold connecting \mathbf{v} and \mathbf{w} . The set \overline{D} is the parallelogram. We can see in the picture that any linear combination $c\mathbf{v} + d\mathbf{w}$ with $0 \le c \le 1$ and $0 \le d \le 1$ must land inside the parallelogram. Moreover, any point inside the parallelogram can be reached by choosing c and d appropriately. The argument for this is given in the "column picture" from Section 1.1.3 of the first lecture.