Solution for Assignment 0

1. Linear combinations of vectors $(\underset{\sim 1}{2})$

a) Consider an arbitrary vector $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right] \in \mathbb{R}^{2}$. We define $c:=\frac{b_{1}+b_{2}}{2}$ and $d:=\frac{b_{2}-b_{1}}{2}$. Then we have

$$
c \mathbf{v}+d \mathbf{w}=\left[\begin{array}{l}
c-d \tag{1}\\
c+d
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\mathbf{b}
$$

which proves that \mathbf{b} can be written as a linear combination of \mathbf{v} and \mathbf{w}. While this proves the claim and is considered a complete solution, let us also explain how to find out that we should pick $c:=\frac{b_{1}+b_{2}}{2}$ and $d:=\frac{b_{2}-b_{1}}{2}$. For this, assume that we do not know yet what values c and d should have. We can still write down Equation 1, interpreting c and d as unknowns. In fact, this gives us a system of two equations

$$
\begin{aligned}
& c-d=b_{1} \\
& c+d=b_{2}
\end{aligned}
$$

(one for each coordinate). Adding the two equations we obtain $2 c=b_{1}+b_{2}$ and hence $c=\frac{b_{1}+b_{2}}{2}$. On the other hand, subtracting the first equation from the second gives $2 d=b_{2}-b_{1}$ and hence $d=\frac{b_{2}-b_{1}}{2}$. One can also think about this geometrically, analogous to the "row picture" from Section 1.1.3 in the blackboard notes (Figure 1).

Figure 1: The lines given by the two equations intersect at $\left(\frac{b_{1}+b_{2}}{2}, \frac{b_{2}-b_{1}}{2}\right)$.
b) Consider the vector $\mathbf{b}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] \in \mathbb{R}^{3}$. In order to write it as a linear combination of \mathbf{v} and \mathbf{w}, we
would have to find $c, d \in \mathbb{R}$ such that

$$
c \mathbf{v}+d \mathbf{w}=c\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+d\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \stackrel{!}{=}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\mathbf{b}
$$

Each coordinate provides a constraint on the values of c and d. In particular, from the first coordinate we get the constraint $c=0$, from the second coordinate we get the constraint $d=1$, and from the third coordinate we get $c+d=0$. This system of three equations in two unknowns does not have a solution and hence we conclude that \mathbf{b} cannot be written as a linear combination of \mathbf{v} and \mathbf{w}.

2. The perfect long drink (

a) Mixing $\frac{3}{5}$ of the first imperfect drink with $\frac{2}{5}$ of the second imperfect drink will yield a perfect drink. To see this, represent the imperfect drinks as vectors $\left[\begin{array}{l}15 \\ 85\end{array}\right] \in \mathbb{R}^{2}$ and $\left[\begin{array}{l}35 \\ 65\end{array}\right] \in \mathbb{R}^{2}$, and the perfect drink as $\left[\begin{array}{l}23 \\ 77\end{array}\right] \in \mathbb{R}^{2}$. It remains to check that

$$
\frac{3}{5}\left[\begin{array}{l}
15 \\
85
\end{array}\right]+\frac{2}{5}\left[\begin{array}{l}
35 \\
65
\end{array}\right]=\left[\begin{array}{l}
23 \\
77
\end{array}\right]
$$

While this is already a full solution, we describe again how one could arrive at $\frac{3}{5}$ and $\frac{2}{5}$, respectively. We want to find c and d such that

$$
c\left[\begin{array}{l}
15 \\
85
\end{array}\right]+d\left[\begin{array}{l}
35 \\
65
\end{array}\right]=\left[\begin{array}{l}
23 \\
77
\end{array}\right] .
$$

This gives us the two equations

$$
\begin{aligned}
& 15 c+35 d=23 \\
& 85 c+65 d=77
\end{aligned}
$$

which can be solved in various ways. One way is to add the two equations to get $100 c+100 d=100$ and thus $c+d=1$. Now plug in $c=1-d$ into the first equation to get $d=\frac{2}{5}$ and hence $c=1-d=\frac{3}{5}$.
b) The set \hat{D} can be written down as

$$
\hat{D}=\left\{c \mathbf{v}+d \mathbf{w} \in \mathbb{R}^{2}: c \geq 0, d \geq 0, c+d=1\right\}
$$

In words, \hat{D} consists of all vectors that can be written as linear combinations $c \mathbf{v}+d \mathbf{w}$ that additionally satisfy $c \geq 0, d \geq 0$ and $c+d=1$. We need the constraints $c \geq 0$ and $d \geq 0$ because we cannot use a negative amount of one of the drinks. Moreover, we need to make sure that we are mixing a drink of size 100 ml , hence the constraint $c+d=1$. In math lingo, \hat{D} is the set of convex combinations of \mathbf{v} and \mathbf{w}. Geometrically, \hat{D} has the shape of a line segment that connects the points \mathbf{v} and \mathbf{w}.
c) Since the mixed drink does not need to contain exactly 100 ml anymore, we can get rid of the constraint $c+d=1$. But we still cannot use \mathbf{v} and \mathbf{w} more than once each, i.e. we need to include the constraints $c \leq 1$ and $d \leq 1$ instead. We get the parallelogram (see Figure 2)

$$
\bar{D}=\left\{c \mathbf{v}+d \mathbf{w} \in \mathbb{R}^{2}: 0 \leq c \leq 1,0 \leq d \leq 1\right\}
$$

Figure 2: A sketch of the situation with the two imperfect drinks \mathbf{v} and \mathbf{w}. The set D is shown as a dotted line between the two axis. The set \hat{D} is shown in bold connecting \mathbf{v} and \mathbf{w}. The set \bar{D} is the parallelogram. We can see in the picture that any linear combination $c \mathbf{v}+d \mathbf{w}$ with $0 \leq c \leq 1$ and $0 \leq d \leq 1$ must land inside the parallelogram. Moreover, any point inside the parallelogram can be reached by choosing c and d appropriately. The argument for this is given in the "column picture" from Section 1.1.3 of the first lecture.

