Solution for Assignment 10

1. a) Let $C_{i j}$ be the co-factors of A where $i, j \in[5]$. Note that by combining Propositions 5.1.13 and 5.1.9, we get

$$
\begin{aligned}
\operatorname{det} A & \stackrel{5.1 .9}{=} \operatorname{det} A^{\top} \\
& \stackrel{5.1 .13}{=} \sum_{j=1}^{5}\left(A^{\top}\right)_{3, j}\left(C^{\top}\right)_{3, j} \\
& =\sum_{i=1}^{5} A_{i, 3} C_{i, 3} \\
& =0 C_{1,3}+0 C_{2,3}+b C_{3,3}+0 C_{4,3}+0 C_{5,3} \\
& =b \cdot(-1)^{(3+3)} \cdot\left|\begin{array}{cccc}
0 & 1 & 4 & c \\
a & 5 & 4 & -1 \\
0 & -2 & 1 & 0 \\
0 & -4 & 3 & 1
\end{array}\right| .
\end{aligned}
$$

This is also sometimes called expansion of the determinant along the third column. In particular, we chose the third column because it contains many zeroes and hence many terms disappeared. In order to compute

$$
\left|\begin{array}{cccc}
0 & 1 & 4 & c \\
a & 5 & 4 & -1 \\
0 & -2 & 1 & 0 \\
0 & -4 & 3 & 1
\end{array}\right|
$$

we use the same trick again for the first column. In this way we obtain

$$
\left|\begin{array}{cccc}
0 & 1 & 4 & c \\
a & 5 & 4 & -1 \\
0 & -2 & 1 & 0 \\
0 & -4 & 3 & 1
\end{array}\right|=a \cdot(-1)^{(2+1)}\left|\begin{array}{ccc}
1 & 4 & c \\
-2 & 1 & 0 \\
-4 & 3 & 1
\end{array}\right| .
$$

We repeat this one more time for the third column of

$$
\left|\begin{array}{ccc}
1 & 4 & c \\
-2 & 1 & 0 \\
-4 & 3 & 1
\end{array}\right|
$$

to get

$$
\left|\begin{array}{ccc}
1 & 4 & c \\
-2 & 1 & 0 \\
-4 & 3 & 1
\end{array}\right|=c \cdot(-1)^{(1+3)} \cdot\left|\begin{array}{cc}
-2 & 1 \\
-4 & 3
\end{array}\right|+1 \cdot(-1)^{(3+3)} \cdot\left|\begin{array}{cc}
1 & 4 \\
-2 & 1
\end{array}\right| .
$$

We can compute these 2×2 determinants using the formula from Proposition 5.1.3 to get

$$
\left|\begin{array}{ll}
-2 & 1 \\
-4 & 3
\end{array}\right|=-2 \text { and }\left|\begin{array}{cc}
1 & 4 \\
-2 & 1
\end{array}\right|=9
$$

Putting everything together, we obtain

$$
\operatorname{det} A=b \cdot(-1)^{(3+3)}\left(a \cdot(-1)^{(2+1)}\left(c \cdot(-1)^{(1+3)} \cdot(-2)+1 \cdot(-1)^{(3+3)} \cdot 9\right)\right)=a b(2 c-9)
$$

We conclude that $\operatorname{det} A=0$ if and only if $a=0$, or $b=0$, or $c=\frac{9}{2}$.
b) As it turns out, we only need to perform one step of Gauss elimination on B to obtain U :

$$
B=\left[\begin{array}{ccc}
1 & 2 & -3 \\
2 & 6 & 0 \\
-1 & -2 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 2 & -3 \\
0 & 2 & 6 \\
0 & 0 & -1
\end{array}\right]=: U
$$

Using Proposition 5.1.8, we see that $\operatorname{det}(U)=-2$. By Proposition 5.1.19 (or the discussion in Section 5.1.6), we know that the determinant of U is the same as the determinant of B (we did not swap any rows). Hence, we conclude $\operatorname{det}(B)=-2$.
2. a) As the hint suggests, we start by using Definition 5.1 .6 for the determinant of M, i.e. we have

$$
\operatorname{det} M=\sum_{\sigma \in \Pi_{\mathrm{n}}} \operatorname{sign}(\sigma) \prod_{i=1}^{n} M_{i, \sigma(i)}
$$

where Π_{n} is the set of all permutations on n elements. The key observation for this exercise is that only those permutations $\sigma \in \Pi_{\mathrm{n}}$ that satisfy $\sigma(1), \ldots, \sigma(m) \in\{1, \ldots, m\}$ will contribute to this sum. To see this, let $\sigma \in \Pi_{\mathrm{n}}$ be a permutation with $\sigma(i)>m$ for some $i \in[m]$. By the pigeonhole principle, there must exist $j \in[n] \backslash[m]$ with $\sigma(j) \in[m]$. But by the shape of M, we must have $M_{j, \sigma(i)}=0$ and hence the contribution of σ to the sum is 0 .
In particular, the relevant (those that contribute non-zero terms to the sum) permutations $\sigma \in \Pi_{\mathrm{n}}$ satisfy $\sigma(i) \in[m]$ for all $i \in[m]$ and $\sigma(j) \in[n] \backslash[m]$ for all $j \in[n] \backslash[m]$. In other words, restricting such a permutation σ to $[m]$ yields a permutation on m elements, and restricting σ to $[n] \backslash[m]$ yields a permutation on $n-m$ elements. Conversely, any two permutations $\sigma_{1} \in \Pi_{m}$ and $\sigma_{2} \in \Pi_{\mathrm{n}-\mathrm{m}}$ yield a permutation $\sigma \in \Pi_{\mathrm{n}}$ that contributes to the sum (define $\sigma(i)=\sigma_{1}(i)$ for $i \in[m]$ and $\sigma(j)=m+\sigma_{2}(j-m)$ for $j \in[n] \backslash[m]$). Observe that the number of inversions in σ is exactly the number of inversions in σ_{1} plus the number of inversions in σ_{2}. Hence, we always have $\operatorname{sign}(\sigma)=\operatorname{sign}\left(\sigma_{1}\right) \operatorname{sign}\left(\sigma_{2}\right)$ in this correspondence.
We conclude that we can rewrite the sum as
$\operatorname{det} M=\sum_{\sigma \in \Pi_{\mathrm{n}}} \operatorname{sign}(\sigma) \prod_{i=1}^{n} M_{i, \sigma(i)}=\sum_{\sigma_{1} \in \Pi_{\mathrm{m}}} \sum_{\sigma_{2} \in \Pi_{\mathrm{n}-\mathrm{m}}} \operatorname{sign}\left(\sigma_{1}\right) \operatorname{sign}\left(\sigma_{2}\right) \prod_{i=1}^{m} M_{i, \sigma_{1}(i)} \prod_{j=m+1}^{n} M_{j, j+\sigma_{2}(j-m)}$.
Next, observe that the terms $M_{i, \sigma_{1}(i)}$ are always in the A-part of M, i.e. we have $M_{i, \sigma_{1}(i)}=A_{i, \sigma_{1}(i)}$. Similarly, the terms $M_{j, j+\sigma_{2}(j-m)}$ are always in the C-part of M, i.e. we have $M_{j, j+\sigma_{2}(j-m)}=$ $C_{j-m, \sigma_{2}(j-m)}$. Hence, we can further rewrite the sum as

$$
\begin{aligned}
\operatorname{det} M & =\sum_{\sigma_{1} \in \Pi_{\mathrm{m}}} \sum_{\sigma_{2} \in \Pi_{\mathrm{n}-\mathrm{m}}} \operatorname{sign}\left(\sigma_{1}\right) \operatorname{sign}\left(\sigma_{2}\right) \prod_{i=1}^{m} M_{i, \sigma_{1}(i)} \prod_{j=m+1}^{n} M_{j, j+\sigma_{2}(j-m)} \\
& =\sum_{\sigma_{1} \in \Pi_{\mathrm{m}}} \sum_{\sigma_{2} \in \Pi_{\mathrm{n}-\mathrm{m}}} \operatorname{sign}\left(\sigma_{1}\right) \operatorname{sign}\left(\sigma_{2}\right) \prod_{i=1}^{m} A_{i, \sigma_{1}(i)} \prod_{j=m+1}^{n} C_{j-m, \sigma_{2}(j-m)} \\
& =\sum_{\sigma_{1} \in \Pi_{\mathrm{m}}} \operatorname{sign}\left(\sigma_{1}\right) \prod_{i=1}^{m} A_{i, \sigma_{1}(i)}\left(\sum_{\sigma_{2} \in \Pi_{\mathrm{n}-\mathrm{m}}} \operatorname{sign}\left(\sigma_{2}\right) \prod_{j=m+1}^{n} C_{j-m, \sigma_{2}(j-m)}\right) \\
& =\left(\sum_{\sigma_{1} \in \Pi_{\mathrm{m}}} \operatorname{sign}\left(\sigma_{1}\right) \prod_{i=1}^{m} A_{i, \sigma_{1}(i)}\right)\left(\sum_{\sigma_{2} \in \Pi_{\mathrm{n}-\mathrm{m}}} \operatorname{sign}\left(\sigma_{2}\right) \prod_{j=m+1}^{n} C_{j-m, \sigma_{2}(j-m)}\right) \\
& =\left(\sum_{\sigma_{1} \in \Pi_{\mathrm{m}}} \operatorname{sign}\left(\sigma_{1}\right) \prod_{i=1}^{m} A_{i, \sigma_{1}(i)}\right)\left(\sum_{\sigma_{2} \in \Pi_{\mathrm{n}-\mathrm{m}}} \operatorname{sign}\left(\sigma_{2}\right) \prod_{j=1}^{n-m} C_{j, \sigma_{2}(j)}\right) \\
& =\operatorname{det}(A) \operatorname{det}(C)
\end{aligned}
$$

which concludes the proof.
b) In order to calculate the determinant of M using the previous result, we must first bring it into the right form. Clearly, M already contains a lot of zero entries. In the end, we want to have a block of zeroes in the bottom left corner. We can use that transposing the matrix does not change its determinant. Moreover, by Proposition 5.1.18, swapping two rows of a matrix negates its determinant. Hence we proceed as follows: we first transpose M and then swap the second row and fourth row, as well as the third and sixth row of the resulting matrix. In this way, we obtain the matrix

$$
M^{\prime}=\left[\begin{array}{llllll}
2 & 9 & 1 & 3 & 2 & 8 \\
4 & 0 & 0 & 5 & 5 & 3 \\
7 & 4 & 0 & 7 & 2 & 1 \\
0 & 0 & 0 & 2 & 3 & 8 \\
0 & 0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 1 & 7
\end{array}\right]
$$

Using the result from the previous subtask and some more row swaps as well as the formula for the determinant of triangular matrices, we get

$$
\begin{aligned}
\operatorname{det} M & =(-1)^{2} \operatorname{det} M^{\prime} \\
& =\operatorname{det} M^{\prime} \\
& =\left|\begin{array}{lll}
2 & 9 & 1 \\
4 & 0 & 0 \\
7 & 4 & 0
\end{array}\right|\left|\begin{array}{lll}
2 & 3 & 8 \\
0 & 0 & 2 \\
0 & 1 & 7
\end{array}\right| \\
& =(-1)^{2}\left|\begin{array}{lll}
4 & 0 & 0 \\
7 & 4 & 0 \\
2 & 9 & 1
\end{array}\right|(-1)\left|\begin{array}{lll}
2 & 3 & 8 \\
0 & 1 & 7 \\
0 & 0 & 2
\end{array}\right| \\
& =-16 \cdot 4=-64 .
\end{aligned}
$$

3. a) We prove this by induction over k.

- Property: $T\left(\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}\right)=\alpha_{1} T\left(\mathbf{u}_{1}\right)+\cdots+\alpha_{k} T\left(\mathbf{u}_{k}\right)$ for all $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in U$ and all $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$.
- Base case: For $k=1$, the property is true by linearity of T.
- Induction step: Fix a natural number $1 \leq k$ and assume that the property is true for k (induction hypothesis). We prove that the property is true for $k+1$. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k+1} \in U$ and $\alpha_{1}, \ldots, \alpha_{k+1} \in \mathbb{R}$ be arbitrary. By linearity of T, we have

$$
T\left(\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k+1} \mathbf{u}_{k+1}\right)=T\left(\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}\right)+\alpha_{k+1} T\left(\mathbf{u}_{k+1}\right)
$$

Moreover, we have

$$
T\left(\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}\right)=\alpha_{1} T\left(\mathbf{u}_{1}\right)+\cdots+\alpha_{k} T\left(\mathbf{u}_{k}\right)
$$

by the induction hypothesis. Plugging both together yields the desired result

$$
T\left(\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k+1} \mathbf{u}_{k+1}\right)=\alpha_{1} T\left(\mathbf{u}_{1}\right)+\cdots+\alpha_{k} T\left(\mathbf{u}_{k}\right)+\alpha_{k+1} T\left(\mathbf{u}_{k+1}\right)
$$

b) We explicitly construct such a function T. First, we define $T\left(\mathbf{u}_{i}\right)=\mathbf{v}_{i}$ for all $i \in[n]$. Now let $\mathbf{x} \in U$ be arbitrary. Since $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ is a basis of U, there exist unique scalars $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ with $\mathbf{x}=\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{n} \mathbf{u}_{n}$. Hence, we can define $T(\mathbf{x})=\alpha_{1} T\left(\mathbf{u}_{1}\right)+\cdots+\alpha_{n} T\left(\mathbf{u}_{n}\right)$. Since this works for any $\mathbf{x} \in U$ and is consistent with $T\left(\mathbf{u}_{i}\right)=\mathbf{v}_{i}$ for all $i \in[n]$, it follows that T is a well-defined function on U. It remains to argue that T is linear. For this, let $\mathbf{x}, \mathbf{y} \in U$ and
$c \in \mathbb{R}$ be arbitrary. Let $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ and $\beta_{1}, \ldots, \beta_{n} \in \mathbb{R}$ be the unique coefficients such that $\mathbf{x}=\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{n} \mathbf{u}_{n}$ and $\mathbf{y}=\beta_{1} \mathbf{u}_{1}+\cdots+\beta_{n} \mathbf{u}_{n}$. We have

$$
\begin{aligned}
T(\mathbf{x}+\mathbf{y}) & =T\left(\left(\alpha_{1}+\beta_{1}\right) \mathbf{u}_{1}+\cdots+\left(\alpha_{n}+\beta_{n}\right) \mathbf{u}_{n}\right) \\
& =\left(\alpha_{1}+\beta_{1}\right) T\left(\mathbf{u}_{1}\right)+\cdots+\left(\alpha_{n}+\beta_{n}\right) T\left(\mathbf{u}_{n}\right) \\
& =\left(\alpha_{1} T\left(\mathbf{u}_{1}\right)+\cdots+\alpha_{n} T\left(\mathbf{u}_{n}\right)\right)+\left(\beta_{1} T\left(\mathbf{u}_{1}\right)+\cdots+\beta_{n} T\left(\mathbf{u}_{n}\right)\right) \\
& =T(\mathbf{x})+T(\mathbf{y})
\end{aligned}
$$

and also

$$
\begin{aligned}
T(c \mathbf{x}) & =T\left(c \alpha_{1} \mathbf{u}_{1}+\cdots+c \alpha_{n} \mathbf{u}_{n}\right) \\
& =c \alpha_{1} T\left(\mathbf{u}_{1}\right)+\cdots+c \alpha_{n} T\left(\mathbf{u}_{n}\right) \\
& =c\left(\alpha_{1} T\left(\mathbf{u}_{1}\right)+\cdots+\alpha_{n} T\left(\mathbf{u}_{n}\right)\right) \\
& =c T(\mathbf{x})
\end{aligned}
$$

by definition of T. We conclude that T is indeed linear.
c) Consider an arbitrary non-zero vector $\mathbf{x} \in \mathbb{R}^{n}$. If T were linear, we would have $T(-\mathbf{x})=-T(\mathbf{x})$. But this is clearly not the case, as we have $0 \neq T(\mathbf{x})=\|\mathbf{x}\|=\|-\mathbf{x}\|=T(-\mathbf{x})$. We conclude that T cannot be linear.
d) Let $\mathbf{x} \in \mathbb{R}^{n}$ be arbitrary. We directly observe that

$$
L \circ T(\mathbf{x})=L(T(\mathbf{x}))=L(A \mathbf{x})=B(A \mathbf{x})=B A \mathbf{x}
$$

4. a) By definition, we have $C_{11}=(-1)^{2} \operatorname{det}([d])=d$. Similarly, we obtain

$$
\begin{aligned}
& C_{12}=(-1)^{3} \operatorname{det}[c]=-c \\
& C_{21}=(-1)^{3} \operatorname{det}[b]=-b \\
& C_{22}=(-1)^{4} \operatorname{det}[a]=a .
\end{aligned}
$$

b) We directly compute this expression using our results from the last subtask. We get

$$
\frac{1}{\operatorname{det}(A)} C^{\top}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Observe that this is exactly the formula for inverses of 2×2 matrices.
5. a) Using the determinant formula for 2×2 matrices, we directly obtain

$$
\operatorname{det}(A)=\operatorname{det}\left[\begin{array}{cc}
0 & a \\
-a & 0
\end{array}\right]=a^{2}
$$

b) There are of course various ways to calculate determinants. One way is to use Proposition 5.1.13 (expansion along the first row) to get

$$
\operatorname{det} B=b \cdot(-1)^{3} \cdot \operatorname{det}\left(\left[\begin{array}{cc}
-b & 2 \\
1 & 0
\end{array}\right]\right)+(-1) \cdot(-1)^{4} \cdot \operatorname{det}\left(\left[\begin{array}{cc}
-b & 0 \\
1 & -2
\end{array}\right]\right)=2 b-2 b=0
$$

c) Let A be an arbitrary $n \times n$ matrix. Proposition 5.1 .19 states that the determinant is linear in each row. To illustrate how we can use this here, let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{n}$ denote the rows of A, i.e. we have

$$
A=\left[\begin{array}{ccc}
- & \mathbf{a}_{1}^{\top} & - \\
\vdots & \vdots & \vdots \\
- & \mathbf{a}_{n}^{\top} & -
\end{array}\right]
$$

Using Proposition 5.1.19 n times (once for each row), we hence calculate

$$
\operatorname{det}(-A)=\operatorname{det}\left[\begin{array}{ccc}
- & -\mathbf{a}_{1}^{\top} & - \\
\vdots & \vdots & \vdots \\
- & -\mathbf{a}_{n}^{\top} & -
\end{array}\right]=(-1)^{n} \operatorname{det}\left[\begin{array}{ccc}
- & \mathbf{a}_{1}^{\top} & - \\
\vdots & \vdots & \vdots \\
- & \mathbf{a}_{n}^{\top} & -
\end{array}\right]=(-1)^{n} \operatorname{det}(A)
$$

d) As it turns out, the determinant of C must be 0 . To see this, observe that since C is skew-symmetric, we must have $\operatorname{det}(C)=\operatorname{det}\left(-C^{\top}\right)=\operatorname{det}(-C)$. But by the previous subtask, we also know $\operatorname{det}(-C)=(-1)^{n} \operatorname{det}(C)$. Putting both things together, we obtain $\operatorname{det}(C)=(-1)^{n} \operatorname{det}(C)$. For odd n, this implies that $\operatorname{det}(C)$ must be zero.
6. a) Let \mathbf{x} denote the vector of x-coordinates $\mathbf{x}=\left[\begin{array}{lll}p_{x, 1} & \ldots & p_{x, n}\end{array}\right]^{\top}$ and let \mathbf{y} denote the vector of y-coordinates $\mathbf{y}=\left[\begin{array}{lll}p_{y, 1} & \ldots & p_{y, n}\end{array}\right]^{\top}$. The smoothness property can be rewritten as

$$
\begin{aligned}
& \mathbf{p}_{j}-\frac{1}{2}\left(\mathbf{p}_{j-1}+\mathbf{p}_{j+1}\right)=\mathbf{0} \forall j \in\{2, \ldots, n-1\} \\
& \mathbf{p}_{1}-\frac{1}{2}\left(\mathbf{p}_{n}+\mathbf{p}_{2}\right)=\mathbf{0} \\
& \mathbf{p}_{n}-\frac{1}{2}\left(\mathbf{p}_{n-1}+\mathbf{p}_{1}\right)=\mathbf{0}
\end{aligned}
$$

which translates to $A \mathbf{x}=\mathbf{0}$ and $A \mathbf{y}=\mathbf{0}$ with

$$
A=\left[\begin{array}{cccccc}
1 & -\frac{1}{2} & 0 & \cdots & 0 & -\frac{1}{2} \\
-\frac{1}{2} & 1 & -\frac{1}{2} & \cdots & 0 & 0 \\
0 & \ddots & \ddots & \ddots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\
-\frac{1}{2} & 0 & \cdots & 0 & -\frac{1}{2} & 1
\end{array}\right]
$$

The matrix A can also be written as

$$
A=I-\frac{1}{2}\left(T+E_{1, n}\right)-\frac{1}{2}\left(T+E_{1, n}\right)^{\top}
$$

where T is the matrix with ones on the first strict upper diagonal (i.e. the entries where the row coefficient i and column coefficient j satisfy $j=i+1$ for $i \in\{1, \ldots, n-1\}$) and zeroes everywhere else, and $E_{1, n}$ has a single non-zero entry in row 1 and column n that is equal to 1 .
We also want to satisfy the constraints $\mathbf{p}_{j_{s}}=\mathbf{c}_{s}$ for all $s \in[k]$. Let \mathbf{x}^{c} denote the vector of x-coordinates of the locations, i.e. $\mathbf{x}^{c}=\left[\begin{array}{lll}c_{x, 1} & \ldots & c_{x, k}\end{array}\right]^{\top}$ and let \mathbf{y}^{c} denote the vector of y coordinates $\mathbf{y}^{c}=\left[\begin{array}{lll}c_{y, 1} & \ldots & c_{y, n}\end{array}\right]^{\top}$. Then, the location constraints can be written as $B \mathbf{x}=\mathbf{x}^{c}$ and $B \mathbf{y}=\mathbf{y}^{c}$ where the matrix $B \in \mathbb{R}^{k \times n}$ is given by $B_{s, r}=\delta_{r, j_{s}}$ for all $s \in[k]$ and $r \in[n]$ (recall that the Kronecker-Delta $\delta_{r, j_{s}}$ is one if $r=j_{s}$ and zero otherwise). In other words, an entry $B_{s, r}$ is one whenever the vertex \mathbf{p}_{r} should match location \mathbf{c}_{s} according to the prescribed correspondence \mathcal{C}, and $B_{s, r}$ is zero otherwise.
The final systems of linear equations hence are

$$
\left[\begin{array}{l}
A \\
B
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
\mathbf{0}_{\mathbf{n}} \\
\mathbf{x}^{c}
\end{array}\right] \text { and }\left[\begin{array}{l}
A \\
B
\end{array}\right] \mathbf{y}=\left[\begin{array}{l}
\mathbf{0}_{\mathbf{n}} \\
\mathbf{y}^{c}
\end{array}\right]
$$

where $\mathbf{0}_{n}$ denotes the n dimensional all-zero vector.
b) Let $S=\left[\begin{array}{l}A \\ B\end{array}\right]$ denote the system matrix. Indeed, the system matrix is the same for both linear systems. Since $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{k \times n}$, the system matrix S is in $\mathbb{R}^{(n+k) \times n}$. This implies that S has rank at most n.
c) We are solving for the curve vertex positions in the least squares sense for the values $n=6, k=3$, $\mathcal{C}=\left\{j_{1}=1, j_{2}=3, j_{3}=5\right\}$ and

$$
\begin{aligned}
& \mathbf{c}_{1}=\left[\begin{array}{l}
c_{x, 1} \\
c_{y, 1}
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right] \\
& \mathbf{c}_{2}=\left[\begin{array}{l}
c_{x, 2} \\
c_{y, 2}
\end{array}\right]=\left[\begin{array}{l}
6 \\
2
\end{array}\right] \\
& \mathbf{c}_{3}=\left[\begin{array}{l}
c_{x, 3} \\
c_{y, 3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
0
\end{array}\right] .
\end{aligned}
$$

Our strategy is to first combine the two linear systems in one larger system and then solve this using the least squares method. Observe that the two systems

$$
\left[\begin{array}{l}
A \\
\hline B
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
\mathbf{0}_{\mathbf{n}} \\
\mathbf{x}^{c}
\end{array}\right] \text { and }\left[\begin{array}{l}
A \\
\hline B
\end{array}\right] \mathbf{y}=\left[\begin{array}{l}
\mathbf{0}_{\mathbf{n}} \\
\hline \mathbf{y}^{c}
\end{array}\right]
$$

can be rewritten as

$$
M\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right]=\left[\begin{array}{cc}
A & 0_{n, n} \\
B & 0_{k, n} \\
0_{n, n} & A \\
0_{k, n} & B
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{0}_{\mathbf{n}} \\
\mathbf{x}^{c} \\
\mathbf{0}_{\mathbf{n}} \\
\mathbf{y}^{c}
\end{array}\right]
$$

where M is a $2(n+k) \times 2 n$ matrix block matrix (meaning that we put it together from smaller matrices) and $0_{n, n}$ and $0_{k, n}$ are zero-matrices of corresponding dimensions.
The normal equations hence yield

$$
M^{\top} M\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right]=M^{\top}\left[\begin{array}{l}
\mathbf{0}_{\mathbf{n}} \\
\mathbf{x}^{c} \\
\mathbf{0}_{\mathbf{n}} \\
\mathbf{y}^{c}
\end{array}\right]
$$

Plugging in the values of this specific example for A, B, \mathbf{x}^{c}, and \mathbf{y}^{c}, we get

$$
S=\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{cccccc}
1 & -1 / 2 & 0 & 0 & 0 & -1 / 2 \\
-1 / 2 & 1 & -1 / 2 & 0 & 0 & 0 \\
0 & -1 / 2 & 1 & -1 / 2 & 0 & 0 \\
0 & 0 & -1 / 2 & 1 & -1 / 2 & 0 \\
0 & 0 & 0 & -1 / 2 & 1 & -1 / 2 \\
-1 / 2 & 0 & 0 & 0 & -1 / 2 & 1 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right], \quad\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{x}^{c}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline 2 \\
6 \\
4
\end{array}\right], \quad\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{y}^{c}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
2 \\
2 \\
0
\end{array}\right] .
$$

The exact final solution is (obtained by solving the normal equations with a computer)

$$
\mathbf{x}=\left[\begin{array}{llllll}
76 / 29 & 4 & 156 / 29 & 148 / 29 & 4 & 84 / 29
\end{array}\right]^{\top} \text { and } \mathbf{y}=\left[\begin{array}{llllll}
52 / 29 & 60 / 29 & 52 / 29 & 28 / 29 & 12 / 29 & 28 / 29
\end{array}\right]^{\top} .
$$

A drawing of this solution is provided in Figure 1 below.

Figure 1: A drawing of the solution.

