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Solution for Assignment 11

1. a) Consider the rotation Φ. Applying Φ to a vector should leave the second coordinate unchanged but
rotate in the plane given by the first and third coordinate. In particular, deleting the second row
and second column should give us the corresponding rotation matrix in two dimensions. Hence, the
matrix A is given by

A =

 cos π
3 0 sin π

3
0 1 0

− sin π
3 0 cos π

3

 =
1

2

 1 0
√
3

0 2 0

−
√
3 0 1

 .

Note that this solution assumes that the direction of the rotation is given by the right-hand rule in a
right-handed coordinate system, as explained e.g. on Wikipedia1. This was not properly specified
in the original task description.

b) The vector
[
3 4 0

]⊤ ∈ R3 is orthogonal to the plane P . Normalizing it yields the normal vector

n =
[
3
5

4
5 0

]⊤
.

Now consider an arbitrary vector x ∈ R3. We can split it into x = x⊥ + x| with x⊥,x| ∈ R3 such
that x⊥ · n = 0 and x| · n = ||x||| (i.e. x| is collinear with n). In particular, we then must have
x⊥ ∈ P . Hence, reflecting x on the plane P should yield Ψ(x) = −x| + x⊥. This works for any
x ∈ R3 and plugging in e1, e2, and e3 for x will give you the desired matrix.

To avoid this computation, let us recall that we have previously projected vectors to a plane. In
particular, the projection matrix here would be I − nn⊤. From that, one might now guess that the
reflection matrix for reflection on the plane P should be I−2nn⊤ (the term −nn⊤ in the projection
gets rid of the x| part, hence the term −2nn⊤ should negate the x| part). Indeed, we can check that

(I − 2nn⊤)x = (I − 2nn⊤)(x⊥ + x|) = (x⊥ + x|)− 2x| = x⊥ − x|

as desired. Hence, we get

B = I − 2nn⊤ =
1

25

 7 −24 0
−24 −7 0
0 0 25

 .

c) Both matrices are square, hence it suffices to check AA⊤ = I and BB⊤ = I . Indeed, we have

AA⊤ =
1

4

1 + 3 0 0
0 4 0
0 0 3 + 1

 =

1 0 0
0 1 0
0 0 1


and

BB⊤ =
1

625

72 + 242 0 0
0 242 + 72 0
0 0 252

 =

1 0 0
0 1 0
0 0 1

 .

d) As we have observed before, a rotation should leave the axis of rotation unchanged. In our case, the
vector e2 ∈ R3 is on this axis of rotation. Indeed, we get Ae2 = e2. Hence, e2 is a real eigenvector
of A with corresponding eigenvalue 1. As it turns out, this is the only real eigenvalue of A and all
other real eigenvectors of A are multiples of e2 (i.e. all vectors on the axis of rotation).

1https://en.wikipedia.org/wiki/Right-hand_rule

https://en.wikipedia.org/wiki/Right-hand_rule


e) Consider the vector n ∈ R3 from before. As we observed, we have Ψ(n) = Bn = −n and
hence n is a real eigenvector of B with corresponding eigenvalue −1. Similarly, vectors that lie
in the plane P should not be affected by the reflection. Indeed, consider for example the vector
v =

[
−4 3 0

]⊤. We have v · n = 0 and hence v ∈ P and Bv = (I − 2nn⊤)v = v. Hence, v
is a real eigenvector of B with corresponding eigenvalue 1.

The matrix B does not have any other (distinct) eigenvalues because, as it turns out, the eigenvalue
1 appears with algebraic multiplicity two. (But it would be possible to find another real eigenvector
corresponding to eigenvalue 1 that is linearly independent from v.) This corresponds to the fact that
all vectors in P (a two-dimensional object) are eigenvectors of B.

2. We compute

1 +
1 +

√
5

2
=

2 + 1 +
√
5

2
=

1 + 5 + 2
√
5

4
=

(
1 +

√
5

2

)2

and similarly

1 +
1−

√
5

2
=

2 + 1−
√
5

2
=

1 + 5− 2
√
5

4
=

(
1−

√
5

2

)2

.

3. a) Using the rules we learned in the lecture, we calculate

u+ v + w = (u+ v) + w = (4 + 2i) + (3− 4i) = (4 + 3) + (2− 4)i = 7− 2i

u · v = (3 + i) · (1 + i) = 3 + 3i+ i− 1 = 2 + 4i

v · w · i = (1 + i) · (3− 4i) · i = (3− 4i+ 3i+ 4) · i = 3i+ 4− 3 + 4i = 1 + 7i

w

v
=

w

v
· v
v
=

(3− 4i)(1− i)

(1 + i)(1− i)
=

3− 3i− 4i− 4

1 + 1
= −1

2
− 7

2
i

v

u
=

v

u
· u
u
=

(1 + i)(3− i)

(3 + i)(3− i)
=

3− i+ 3i+ 1

9 + 1
=

2

5
+

1

5
i

|v| =
√
12 + 12 =

√
2.

b) To find the polar form reiθ of a complex number, first calculate its absolute value r. This can then
be factored out and the corresponding angle θ can be determined with the help of trigonometry on
the unit circle (and Euler’s formula) to obtain

3 = 3(1 + 0i) = 3(cos 0 + sin 0i) = 3ei0

2i = 2(0 + i) = 2(cos
π

2
+ sin

π

2
i) = 2ei

π
2

1 +
√
3i = 2(

1

2
+

√
3

2
i) = 2(cos

π

3
+ sin

π

3
i) = 2ei

π
3

5
√
3− 5i = 10(

√
3

2
− 1

2
i) = 10(cos

11π

6
+ sin

11π

6
i) = 10ei

11π
6 .

In case you are struggling to compute the angle θ, here are some details for the computation in the
third calculation above. In particular, assume that we already found the radius and factored

1 +
√
3i = 2(

1

2
+

√
3

2
i).

We now want to find θ ∈ [0, 2π) such that cos(θ) = 1
2 and sin(θ) =

√
3
2 . You can either look this

up in a table or alternatively, in this case you can find the angle with the idea described in Figure 1
below.



Figure 1: Assume we want to compute the angle of the complex number 1
2 +

√
3
2 i. In the drawing, the initial

situation is drawn in black and the angle is labeled θ. For this particular complex number, it can be seen that
θ must be π/3: we add a mirrored copy of the black triangle in pink. Together, the two triangles form a big
triangle with three sides of length 1 each. Hence, all angles in this big triangle must be π/3.

c) We can also use Euler’s formula to get from polar coordinates to cartesian coordinates:

−2ei
π
4 = −2(cos

π

4
+ sin

π

4
i) = −2(

√
2

2
+

√
2

2
i) = −

√
2−

√
2i

4ei
2π
3 = 4(cos

2π

3
+ sin

2π

3
i) = 4(−1

2
+

√
3

2
i) = −2 + 2

√
3i.

4. a) Let z = x+ iy ∈ C be arbitrary. We want to understand the term I(iz̄). A brief calculation reveals

I(iz̄) = I(i(x− iy)) = I(ix+ y) = x.

Hence, we have
1 < I(iz̄) < 2 ⇐⇒ 1 < x < 2

and we get the following drawing of A:

Re

Im

-1 1

i

-i

0 2

Figure 2: The set A is shown in red. Note that the two vertical lines through 1 and 2, respectively, are not part
of A.



b) Let z = x+ iy ∈ C be arbitrary. We simplify the condition in the definition of B as follows:

|z − 2| < |z − 2i| ⇐⇒ |z − 2|2 < |z − 2i|2

⇐⇒ (x− 2)2 + y2 < x2 + (y − 2)2

⇐⇒ x2 − 4x+ 4 + y2 < x2 + y2 − 4y + 4

⇐⇒ x > y.

Hence, we get the following drawing of B:
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Figure 3: The set B is shown in red. Note that the diagonal line through 0 is not part of B.

c) Let z = x+ iy ∈ C be arbitrary. We obtain the following simplification of the condition in C:

(z̄ + 1)(z + 1) = 2 · I(z) ⇐⇒ |z|2 + z̄ + z + 1 = 2 · I(z)
⇐⇒ x2 + y2 + x− iy + x+ iy + 1 = 2y

⇐⇒ x2 + 2x+ 1 + y2 − 2y + (1− 1) = 0

⇐⇒ (x+ 1)2 + (y − 1)2 = 1.

This is the equation of a circle with center at x = −1, y = 1 and radius 1. Hence, we get the
following drawing of C:
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Figure 4: The set C is shown by the red circle with centerpoint −1 + i and radius 1.



5. a) Note that 0 is an eigenvalue of A. In particular, the nullspace of A is non-trivial (i.e. contains
vectors other than 0). Hence, A is not full rank and not invertible. By Proposition 5.1.2, this means
that det(A) = 0.

b) The given vector is a multiple of v3. In particular, it is the vector 18v3. Thus, we have A(18v3) =
18(Av3) = 0 which means that the vector belongs to the nullspace of A.

c) Let V be the 3×3 matrix with columns v1,v2,v3. Since the three vectors are orthonormal, V must
be an orthogonal matrix, i.e. we have V V ⊤ = V ⊤V = I .

We want to find the matrix A just from the information about its eigenvectors and eigenvalues. In
particular, we know that Av1 = v1, Av2 = −v2, and Av3 = 0. We can summarize this in the
equation

AV = V D

where D ∈ R3×3 is the diagonal matrix

D =

1 0 0
0 −1 0
0 0 0

 .

Multiplying from the right by V −1 = V ⊤ yields

A = V DV ⊤.

Hence, we can now calculate A as follows:

A = V DV ⊤

=
1

81

 1 −4 8
8 4 1
−4 7 4

1 0 0
0 −1 0
0 0 0

 1 8 −4
−4 4 7
8 1 4


=

1

81

 1 −4 8
8 4 1
−4 7 4

1 8 −4
4 −4 −7
0 0 0


=

1

81

−15 24 24
24 48 −60
24 −60 −33

 .

6. a) Let λ ∈ R be an arbitrary real eigenvalue of M with corresponding real eigenvector v ∈ Rn, i.e.
we have

Mv = λv.

Now let’s see what happens to v if we apply M + cI instead of M to it:

(M + cI)v = Mv + cv

= λv + cv

= (λ+ c)v.

As we have observed, v is a real eigenvector of M + cI with corresponding real eigenvalue c+ λ.
This is exactly what we wanted to prove.

b) Consider the matrix

B =



1 3 5 7 9 11
1 3 5 7 9 11
1 3 5 7 9 11
1 3 5 7 9 11
1 3 5 7 9 11
1 3 5 7 9 11

 .



We observe that A = B + 2I . Hence, our plan is to find two distinct real eigenvalues of B, and
then use the result from the previous subtask.

Since all rows of B are equal, the matrix has rank 1. Thus, 0 is an eigenvalue of B. It remains
to find another real eigenvalue. For this, let us try to guess a real eigenvector of B that does not
correspond to eigenvalue 0. This is not as hard as it may sound: every row of B is the same, hence
any eigenvector of B that does not correspond to eigenvalue 0 should have the same value in each
coordinate. Indeed, we have

B



1
1
1
1
1
1

 = 36



1
1
1
1
1
1

 .

Therefore, the vector 1 =
[
1 1 1 1 1 1

]⊤ is an eigenvector of B with corresponding eigen-
value 36.

By the result from the previous subtask, it follows that λ1 = 2 and λ2 = 38 are two distinct real
eigenvalues of A.

c) Notice that N(A− λI) is the subspace of eigenvectors corresponding to eigenvalue λ. We observe
that

N(A− λI) = N(B − (λ− 2)I)

since we have A = B + 2I .

For λ1 = 2, we hence want to find the dimension of N(B). We already observed that the rank of
B is one. Therefore, N(B) is of dimension 6− 1 = 5.

For λ2 = 38, we want to find the dimension of N(A − λ2I) = N(B − (λ2 − 2)I) = C(B⊤ −
(λ2 − 2)I)⊥. Observe that B⊤ is a matrix of rank 1 where all columns are the same. Moreover,
observe that we already found one eigenvector 1 ∈ R6 corresponding to λ2, hence the dimension
of N(A − λ2I) is at least 1. We will find 5 linearly independent vectors in C(B⊤ − (λ2 − 2)I)
which proves that actually, we have dim(N(A− λ2I)) = 1.

Concretely, consider the five vectors

v1 =



−1
1
0
0
0
0

 , v2 =



−1
0
1
0
0
0

 , v3 =



−1
0
0
1
0
0

 , v4 =



−1
0
0
0
1
0

 , v5 =



−1
0
0
0
0
1

 .

It is not hard to see that they are linearly independent since each of them fully controls one of the
coordinates. Now define wi = (B⊤ − (λ2 − 2)I)

(
−1

λ2−2vi

)
for i ∈ [5]. For any i ∈ [5], we get

B⊤vi = 0 and hence

wi = (B⊤ − (λ2 − 2)I)

(
−1

λ2 − 2
vi

)
= vi.

In particular, we conclude that the vectors w1(= v1), . . . ,w5(= v5) are all in C(B⊤ − (λ2 − 2)I)
and linearly independent. Hence, we must have dim

(
C(B⊤ − (λ2 − 2)I)

)
≥ 5, as desired.

Of course, one could also solve this exercise differently. In particular, one could just compute the
nullspaces using standard techniques.

7. Note that main idea behind solving these equations is to use the polar form.



a) Let us first simplify the equation a bit by writing

3z3 + 81 = 0 ⇐⇒ 3z3 = −81

⇐⇒ z3 = −27.

Next, consider the polar form of z ∈ C, i.e. write z = reiθ. Note that the polar form of the complex
number −27 is −27 = 27eiπ. Substituting this yields

z3 = −27 ⇐⇒ r3e3iθ = 27eiπ.

We conclude that r = 3
√
27 = 3 and it remains to find the values of θ such that e3iθ = eiπ. Notice

that adding multiples of 2πi in the exponent of the polar form does not change the complex number
itself (adding 2πi corresponds to walking once around the unit circle). Hence, we want to find
values for θ such that 3θ = π + 2πk for some k ∈ Z. Rearranging this yields

θ =
π

3
+

2π

3
k

for k ∈ Z. Technically, this means that there are infinitely many possibilities for θ (one for each
k ∈ Z). However, we do not actually need to consider the cases k ≥ 3 and k < 0 (we restrict
ourselves to angles in the interval [0, 2π), all other solutions are redundant). Hence, we get

θ1 =
π

3
, θ2 = π, θ3 =

5π

3

and therefore the three solutions

z1 = 3ei
π
3 , z2 = 3eiπ, z2 = 3ei

5π
6 .

b) We proceed as in the previous subtask and rewrite 2z2+4i = 0 as z2 = −2i. Substituting the polar
form yields

z2 = −2i ⇐⇒ r2ei2θ = 2ei
3π
2 .

From this, we get r =
√
2 and θ = 3π

4 + πk for k ∈ Z. Again, we can disregard the cases k ≥ 2
and k < 0. Hence, we get the two solutions

z1 =
√
2ei

3π
4 , z2 =

√
2ei

7π
4 .

c) We first rewrite the equation as follows:

z2 −
√
2
(
2− i3 + eiπ

)
= 0

z2 −
√
2 (2 + i− 1) = 0

z2 −
√
2 (1 + i) = 0

z2 =
√
2 (1 + i) .

To substitute the polar form, notice that
√
2 (1 + i) = 2

(
1√
2
+ 1√

2
i
)
= 2ei

π
4 . Hence, we get the

equation
r2ei2θ = 2ei

π
4

in polar form. From this, we conclude r =
√
2 and θ = π

8 + πk for k ∈ Z. Again, the cases k ≥ 2
and k < 0 are redundant and we get the two solutions

z1 =
√
2ei

π
8 , z2 =

√
2ei

9π
8 .



8. By definition of the sequence, we get the relation[
3 4
1 0

] [
an−1

an−2

]
=

[
an
an−1

]
for all n ≥ 2. We proceed analogously to the Fibonacci-example from the lecture. In particular, we start
by finding the eigenvalues of the matrix

A =

[
3 4
1 0

]
.

The characteristic polynomial p(λ) of A is given by

p(λ) =

∣∣∣∣3− λ 4
1 −λ

∣∣∣∣ = (3− λ)(−λ)− 4 = λ2 − 3λ− 4 = (λ− 4)(λ+ 1)

and hence has roots λ1 = 4 and λ2 = −1. By solving the linear systems

(A− λ1I)x = 0

and
(A− λ2I)x = 0

we find the two corresponding eigenvectors (you might also be able to guess them)

v1 =

[
4
1

]
and v2 =

[
1
−1

]
.

Now define an =

[
an
an−1

]
for n ≥ 1 and observe that

a1 =

[
a1
a0

]
=

[
1
1

]
=

2

5
v1 −

3

5
v2.

Hence, we get

an = An−1a1 = An−1 2

5
v1 −An−1 3

5
v2 =

2

5
λn−1
1 v1 −

3

5
λn−1
2 v2 =

[
4n−1 2

54− (−1)n−1 3
5

4n−1 2
5 + (−1)n−1 3

5

]
for all n ≥ 1. We conclude that we have

an = 4n−1 2

5
4− (−1)n−1 3

5
=

2

5
4n +

3

5
(−1)n.

for all n ∈ N0 (it is easy to check that it actually holds for n = 0 as well).


