Solution for Assignment 12

1. a) Let \mathbf{v} be an eigenvector of $A B$ corresponding to eigenvalue λ. Observe that

$$
(B A) B \mathbf{v}=B(A B) \mathbf{v}=B \lambda \mathbf{v}=\lambda B \mathbf{v}
$$

Hence, if $B \mathbf{v} \neq \mathbf{0}$ then $B \mathbf{v}$ is an eigenvector of $B A$ with corresponding eigenvalue λ. Otherwise, we must have $B \mathbf{v}=\mathbf{0}$ and hence $\lambda=0$. But this implies that B is not full rank which also means that $B A$ is not full rank. Thus, $\lambda=0$ must be an eigenvalue of $B A$.
b) Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$ be a complete set of real eigenvectors of $A B$. By subtask a) and the additional assumption that B is invertible, we know that the vectors $B \mathbf{v}_{1}, \ldots, B \mathbf{v}_{n} \in \mathbb{R}^{n}$ are all real eigenvectors of $B A$. Moreover, the n vectors $B \mathbf{v}_{1}, \ldots, B \mathbf{v}_{n}$ are linearly independent since B is invertible and because the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent. Hence, $B \mathbf{v}_{1}, \ldots, B \mathbf{v}_{n}$ form a basis of \mathbb{R}^{n} and therefore they are a complete set of real eigenvectors of $B A$.
c) From subtask b), we know that if $A B$ has a complete set of real eigenvectors, then so does $B A$. Using subtask b) again with matrices A and B exchanged (we can do this because here A is invertible as well), we also get that if $B A$ has a complete set of real eigenvectors, then so does $A B$. This proves the claim.
d) Consider the matrices

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

with

$$
A B=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \text { and } B A=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

The matrix $B A$ has a complete set of real eigenvectors because $\mathbf{N}(B A)=\mathbb{R}^{2}$. However, the matrix $A B$ does not have a complete set of real eigenvectors: the eigenvalue 0 appears with algebraic multiplicity 2 , but $A B$ only has rank 1 and hence $\operatorname{dim}(\mathbf{N}(A B))=1$. In other words, the geometric multiplicity of eigenvalue 0 is only 1 . We conclude that there is no complete set of real eigenvectors for $A B$.
2. a) Since $\lambda_{1}, \ldots, \lambda_{n}$ are distinct, we know from Proposition 6.1 .7 that any n corresponding real eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$ of A are linearly independent. In other words, A has a complete set of real eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. By assumption, B also has this complete set of real eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. Let V be the matrix with columns $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. From Theorem 6.2.1 it follows that $A=V \Lambda_{A} V^{-1}$ for some diagonal matrix $\Lambda_{A} \in \mathbb{R}^{n \times n}$. Analogously, it follows that $B=V \Lambda_{B} V^{-1}$ for some diagonal matrix $\Lambda_{B} \in \mathbb{R}^{n \times n}$. Now observe that since both Λ_{A} and Λ_{B} are diagonal matrices, we have $\Lambda_{A} \Lambda_{B}=\Lambda_{B} \Lambda_{A}$. Thus, we get

$$
\begin{aligned}
A B & =\left(V \Lambda_{A} V^{-1}\right)\left(V \Lambda_{B} V^{-1}\right) \\
& =V \Lambda_{A}\left(V^{-1} V\right) \Lambda_{B} V^{-1} \\
& =V \Lambda_{A} \Lambda_{B} V^{-1} \\
& =V \Lambda_{B} \Lambda_{A} V^{-1} \\
& =V \Lambda_{B}\left(V^{-1} V\right) \Lambda_{A} V^{-1} \\
& =\left(V \Lambda_{A} V^{-1}\right)\left(V \Lambda_{B} V^{-1}\right) \\
& =B A
\end{aligned}
$$

which concludes the proof.
b) By similarity of A and B, there exists an invertible matrix $S \in \mathbb{R}^{n \times n}$ with $A=S B S^{-1}$. By similarity of B and C, there exists an invertible matrix $T \in \mathbb{R}^{n \times n}$ with $B=T C T^{-1}$. Hence, we get

$$
A=S B S^{-1}=S T C T^{-1} S^{-1}=P C P^{-1}
$$

where $P=S T$ is invertible with inverse $P^{-1}=T^{-1} S^{-1}$. We conclude that A and C are similar.
c) Since A has n distinct real eigenvalues, it must have a complete set of real eigenvectors and hence it must be diagonalizable (by Proposition 6.1.7 and Theorem 6.2.1), i.e. there exists an invertible matrix $V \in \mathbb{R}^{n \times n}$ and a diagonal matrix $\Lambda \in \mathbb{R}^{n \times n}$ with $A=V \Lambda V^{-1}$. Analogously, B is diagonalizable with $B=W \Lambda W^{-1}$ for some invertible matrix $W \in \mathbb{R}^{n \times n}$. Note that we can assume that the diagonalization of both A and B use the same diagonal matrix Λ because A and B are assumed to have the same eigenvalues.
We observe that this means that A is similar to Λ and that Λ is similar to B. By using the statement from the previous subtask for A, Λ, B, it follows that A is similar to B.
d) Let $\lambda \in \mathbb{R}$ be an arbitrary real eigenvalue of A with corresponding eigenvector $\mathbf{v} \in \mathbb{R}^{n}$. By similarity of A and B, there exists an invertible matrix $S \in \mathbb{R}^{n \times n}$ with $B=S A S^{-1}$. Now consider the vector $\mathbf{w}=S \mathbf{v}$. We have

$$
B \mathbf{w}=S A S^{-1}(S \mathbf{v})=S A \mathbf{v}=\lambda S \mathbf{v}=\lambda \mathbf{w}
$$

and hence \mathbf{w} is a real eigenvector of B with corresponding real eigenvalue λ. Since λ was arbitrary, we conclude that every real eigenvalue of A is also a real eigenvalue of B.
By a symmetric argument (swapping the roles of A and B above) we get that every real eigenvalue of B is also a real eigenvalue of A. We conclude that A and B have the same set of real eigenvalues.
3. a) Consider the vector $\mathbf{u}=\mathbf{v}+\mathbf{w}$. By linear independence of \mathbf{v} and \mathbf{w} we get that $\mathbf{u} \neq \mathbf{0}$. We also get

$$
A \mathbf{u}=A(\mathbf{v}+\mathbf{w})=A \mathbf{v}+A \mathbf{w}=3 \mathbf{w}+3 \mathbf{v}=3 \mathbf{u}
$$

and hence 3 is an eigenvalue of A.
Analogously, we define $\mathbf{u}^{\prime}=\mathbf{v}-\mathbf{w}$. By linear independence of \mathbf{v} and \mathbf{w} we get that $\mathbf{u}^{\prime} \neq \mathbf{0}$. Again, we compute

$$
A \mathbf{u}^{\prime}=A(\mathbf{v}-\mathbf{w})=A \mathbf{v}-A \mathbf{w}=3 \mathbf{w}-3 \mathbf{v}=-3 \mathbf{u}
$$

and hence -3 is also an eigenvalue of A.
b) First of all, note that the proof that we used in the previous subtask breaks down because without linear independence we cannot conclude that \mathbf{u} and \mathbf{u}^{\prime} are both non-zero. The key insight for this subtask is that we can still guarantee that at least one of them is non-zero. Concretely, define $\mathbf{u}=\mathbf{v}+\mathbf{w}$ and $\mathbf{u}^{\prime}=\mathbf{v}-\mathbf{w}$ as before and assume for a contradiction that $\mathbf{u}=\mathbf{u}^{\prime}=\mathbf{0}$. This would imply

$$
\mathbf{u}+\mathbf{u}^{\prime}=2 \mathbf{v}=\mathbf{0}
$$

which is a contradiction to $\mathbf{v} \neq \mathbf{0}$. Hence, either $\mathbf{u} \neq \mathbf{0}$ or $\mathbf{u}^{\prime} \neq \mathbf{0}$ and by the arguments from a), either 3 or -3 is an eigenvalue of A.
4. The key insight of this exercise is to look at the real eigenvalues of A. For this, we first compute the characteristic polynomial

$$
p(\lambda)=\left|\begin{array}{ccc}
-\lambda & 1 & 3 \\
\frac{1}{2} & -\lambda & 0 \\
0 & \frac{1}{3} & -\lambda
\end{array}\right|=-\lambda^{3}+\frac{1}{2} \lambda+\frac{1}{2}
$$

We can guess one of the roots of this polynomial to be 1 . Hence, we obtain

$$
p(\lambda)=(\lambda-1)\left(-\lambda^{2}-\lambda-\frac{1}{2}\right)
$$

and it turns out that the other roots of p are complex-valued. Hence, the only real eigenvalue of A is 1 .
Recall that our goal is to find an initial population that yields a stable population over time. The idea here is that an eigenvector corresponding to eigenvalue 1 is a suitable choice. Such an eigenvector can be found in $\mathbf{N}(A-I)$ and one example would be to choose

$$
\mathbf{v}_{0}=\left[\begin{array}{lll}
6 & 3 & 1
\end{array}\right]^{\top} .
$$

Indeed, we get

$$
A \mathbf{v}_{0}=\left[\begin{array}{ccc}
0 & 1 & 3 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{3} & 0
\end{array}\right]\left[\begin{array}{l}
6 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
6 \\
3 \\
1
\end{array}\right],
$$

and hence $\mathbf{v}_{t}=A^{t} \mathbf{v}_{0}=\mathbf{v}_{0}$ for all $t \in \mathbb{N}_{0}$. We conclude that this choice of initial population yields a stable population.
5. a) One could solve this by first computing A and then computing its real eigenvalues. But in this case, it is not hard to guess eigenvectors of A. In particular, choosing $x=y=1$ yields

$$
A\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

and hence 1 is an eigenvalue of A. Moreover, guessing $x=1$ and $y=-1$ yields

$$
A\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

and hence -1 is an eigenvalue of A. We conclude that the two real eigenvalues of A are 1 and -1 . Since A is a 2×2 matrix, there cannot be more thant 2 eigenvalues.
b) The simplest choice is the diagonal matrix

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right] .
$$

Indeed, we have $A \mathbf{e}_{1}=\mathbf{0}, A \mathbf{e}_{2}=\mathbf{e}_{2}$, and $A \mathbf{e}_{3}=2 \mathbf{e}_{3}$. Hence, A has the desired eigenvalues. It does not have any other eigenvalues because a 3×3 matrix can have at most 3 eigenvalues.
c) Consider the matrix A from the previous subtask and the basis

$$
\mathbf{v}_{1}=\mathbf{e}_{1}+\mathbf{e}_{2}, \quad \mathbf{v}_{2}=\mathbf{e}_{1}-\mathbf{e}_{2}, \quad \mathbf{v}_{3}=\mathbf{e}_{3}
$$

of \mathbb{R}^{3}. In particular, consider the matrix

$$
V=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} \\
\mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

with inverse

$$
V^{-1}=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and define B as

$$
B=V A V^{-1}=\left[\begin{array}{ccc}
\frac{1}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 2
\end{array}\right] .
$$

The matrices A and B are similar and hence have the same eigenvalues.

