
D-INFK Linear Algebra HS 2023
Afonso Bandeira
Bernd Gärtner
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1. a) Let v be an eigenvector of AB corresponding to eigenvalue λ. Observe that

(BA)Bv = B(AB)v = Bλv = λBv.

Hence, if Bv ̸= 0 then Bv is an eigenvector of BA with corresponding eigenvalue λ. Otherwise,
we must have Bv = 0 and hence λ = 0. But this implies that B is not full rank which also means
that BA is not full rank. Thus, λ = 0 must be an eigenvalue of BA.

b) Let v1, . . . ,vn ∈ Rn be a complete set of real eigenvectors of AB. By subtask a) and the addi-
tional assumption that B is invertible, we know that the vectors Bv1, . . . , Bvn ∈ Rn are all real
eigenvectors of BA. Moreover, the n vectors Bv1, . . . , Bvn are linearly independent since B is
invertible and because the vectors v1, . . . ,vn are linearly independent. Hence, Bv1, . . . , Bvn form
a basis of Rn and therefore they are a complete set of real eigenvectors of BA.

c) From subtask b), we know that if AB has a complete set of real eigenvectors, then so does BA.
Using subtask b) again with matrices A and B exchanged (we can do this because here A is invert-
ible as well), we also get that if BA has a complete set of real eigenvectors, then so does AB. This
proves the claim.

d) Consider the matrices

A =

[
1 0
0 0

]
and B =

[
0 1
0 0

]
with

AB =

[
0 1
0 0

]
and BA =

[
0 0
0 0

]
.

The matrix BA has a complete set of real eigenvectors because N(BA) = R2. However, the matrix
AB does not have a complete set of real eigenvectors: the eigenvalue 0 appears with algebraic
multiplicity 2, but AB only has rank 1 and hence dim(N(AB)) = 1. In other words, the geometric
multiplicity of eigenvalue 0 is only 1. We conclude that there is no complete set of real eigenvectors
for AB.

2. a) Since λ1, . . . , λn are distinct, we know from Proposition 6.1.7 that any n corresponding real eigen-
vectors v1, . . . ,vn ∈ Rn of A are linearly independent. In other words, A has a complete set
of real eigenvectors v1, . . . ,vn. By assumption, B also has this complete set of real eigenvectors
v1, . . . ,vn. Let V be the matrix with columns v1, . . . ,vn. From Theorem 6.2.1 it follows that
A = V ΛAV

−1 for some diagonal matrix ΛA ∈ Rn×n. Analogously, it follows that B = V ΛBV
−1

for some diagonal matrix ΛB ∈ Rn×n. Now observe that since both ΛA and ΛB are diagonal
matrices, we have ΛAΛB = ΛBΛA. Thus, we get

AB = (V ΛAV
−1)(V ΛBV

−1)

= V ΛA(V
−1V )ΛBV

−1

= V ΛAΛBV
−1

= V ΛBΛAV
−1

= V ΛB(V
−1V )ΛAV

−1

= (V ΛAV
−1)(V ΛBV

−1)

= BA



which concludes the proof.

b) By similarity of A and B, there exists an invertible matrix S ∈ Rn×n with A = SBS−1. By
similarity of B and C, there exists an invertible matrix T ∈ Rn×n with B = TCT−1. Hence, we
get

A = SBS−1 = STCT−1S−1 = PCP−1

where P = ST is invertible with inverse P−1 = T−1S−1. We conclude that A and C are similar.

c) Since A has n distinct real eigenvalues, it must have a complete set of real eigenvectors and hence
it must be diagonalizable (by Proposition 6.1.7 and Theorem 6.2.1), i.e. there exists an invertible
matrix V ∈ Rn×n and a diagonal matrix Λ ∈ Rn×n with A = V ΛV −1. Analogously, B is
diagonalizable with B = WΛW−1 for some invertible matrix W ∈ Rn×n. Note that we can
assume that the diagonalization of both A and B use the same diagonal matrix Λ because A and B
are assumed to have the same eigenvalues.

We observe that this means that A is similar to Λ and that Λ is similar to B. By using the statement
from the previous subtask for A,Λ,B, it follows that A is similar to B.

d) Let λ ∈ R be an arbitrary real eigenvalue of A with corresponding eigenvector v ∈ Rn. By
similarity of A and B, there exists an invertible matrix S ∈ Rn×n with B = SAS−1. Now
consider the vector w = Sv. We have

Bw = SAS−1(Sv) = SAv = λSv = λw

and hence w is a real eigenvector of B with corresponding real eigenvalue λ. Since λ was arbitrary,
we conclude that every real eigenvalue of A is also a real eigenvalue of B.

By a symmetric argument (swapping the roles of A and B above) we get that every real eigenvalue
of B is also a real eigenvalue of A. We conclude that A and B have the same set of real eigenvalues.

3. a) Consider the vector u = v +w. By linear independence of v and w we get that u ̸= 0. We also
get

Au = A(v +w) = Av +Aw = 3w + 3v = 3u

and hence 3 is an eigenvalue of A.

Analogously, we define u′ = v − w. By linear independence of v and w we get that u′ ̸= 0.
Again, we compute

Au′ = A(v −w) = Av −Aw = 3w − 3v = −3u

and hence −3 is also an eigenvalue of A.

b) First of all, note that the proof that we used in the previous subtask breaks down because without
linear independence we cannot conclude that u and u′ are both non-zero. The key insight for
this subtask is that we can still guarantee that at least one of them is non-zero. Concretely, define
u = v+w and u′ = v−w as before and assume for a contradiction that u = u′ = 0. This would
imply

u+ u′ = 2v = 0

which is a contradiction to v ̸= 0. Hence, either u ̸= 0 or u′ ̸= 0 and by the arguments from a),
either 3 or −3 is an eigenvalue of A.

4. The key insight of this exercise is to look at the real eigenvalues of A. For this, we first compute the
characteristic polynomial

p(λ) =

∣∣∣∣∣∣
−λ 1 3
1
2 −λ 0
0 1

3 −λ

∣∣∣∣∣∣ = −λ3 +
1

2
λ+

1

2
.



We can guess one of the roots of this polynomial to be 1. Hence, we obtain

p(λ) = (λ− 1)(−λ2 − λ− 1

2
)

and it turns out that the other roots of p are complex-valued. Hence, the only real eigenvalue of A is 1.

Recall that our goal is to find an initial population that yields a stable population over time. The idea
here is that an eigenvector corresponding to eigenvalue 1 is a suitable choice. Such an eigenvector can be
found in N(A− I) and one example would be to choose

v0 =
[
6 3 1

]⊤
.

Indeed, we get

Av0 =

0 1 3
1
2 0 0
0 1

3 0

63
1

 =

63
1

 ,

and hence vt = Atv0 = v0 for all t ∈ N0. We conclude that this choice of initial population yields a
stable population.

5. a) One could solve this by first computing A and then computing its real eigenvalues. But in this case,
it is not hard to guess eigenvectors of A. In particular, choosing x = y = 1 yields

A

[
1
1

]
=

[
1
1

]
and hence 1 is an eigenvalue of A. Moreover, guessing x = 1 and y = −1 yields

A

[
−1
1

]
=

[
1
−1

]
and hence −1 is an eigenvalue of A. We conclude that the two real eigenvalues of A are 1 and −1.
Since A is a 2× 2 matrix, there cannot be more thant 2 eigenvalues.

b) The simplest choice is the diagonal matrix

A =

0 0 0
0 1 0
0 0 2

 .

Indeed, we have Ae1 = 0, Ae2 = e2, and Ae3 = 2e3. Hence, A has the desired eigenvalues. It
does not have any other eigenvalues because a 3× 3 matrix can have at most 3 eigenvalues.

c) Consider the matrix A from the previous subtask and the basis

v1 = e1 + e2, v2 = e1 − e2, v3 = e3

of R3. In particular, consider the matrix

V =

 | | |
v1 v2 v3

| | |

 =

1 1 0
1 −1 0
0 0 1


with inverse

V −1 =

1
2

1
2 0

1
2 −1

2 0
0 0 1


and define B as

B = V AV −1 =

1
2 −1

2 0
1
2

1
2 0

0 0 2

 .

The matrices A and B are similar and hence have the same eigenvalues.


