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Solution for Assignment 12

Let v be an eigenvector of AB corresponding to eigenvalue . Observe that
(BA)Bv = B(AB)v = BAv = ABv.

Hence, if Bv # 0 then Bv is an eigenvector of BA with corresponding eigenvalue A. Otherwise,
we must have Bv = 0 and hence A = 0. But this implies that B is not full rank which also means
that BA is not full rank. Thus, A = 0 must be an eigenvalue of BA.

Let vi,...,v, € R" be a complete set of real eigenvectors of AB. By subtask a) and the addi-
tional assumption that B is invertible, we know that the vectors Bvy,..., Bv, € R" are all real
eigenvectors of BA. Moreover, the n vectors Bvy, ..., Bv, are linearly independent since B is
invertible and because the vectors vy, ..., v, are linearly independent. Hence, Bvy, ..., Bv, form
a basis of R"™ and therefore they are a complete set of real eigenvectors of BA.

From subtask b), we know that if AB has a complete set of real eigenvectors, then so does BA.
Using subtask b) again with matrices A and B exchanged (we can do this because here A is invert-
ible as well), we also get that if B A has a complete set of real eigenvectors, then so does AB. This
proves the claim.

Consider the matrices

10 0 1
A—[O O} andB—[O 0]

with

0 1 0 0
AB—[O 0] andBA—{0 0].

The matrix B A has a complete set of real eigenvectors because N(BA) = R2. However, the matrix
AB does not have a complete set of real eigenvectors: the eigenvalue 0 appears with algebraic
multiplicity 2, but AB only has rank 1 and hence dim(N(AB)) = 1. In other words, the geometric
multiplicity of eigenvalue O is only 1. We conclude that there is no complete set of real eigenvectors
for AB.

Since Ay, ..., A\, are distinct, we know from Proposition 6.1.7 that any n corresponding real eigen-
vectors vi,...,v, € R™ of A are linearly independent. In other words, A has a complete set
of real eigenvectors vy, ..., Vv,. By assumption, B also has this complete set of real eigenvectors
Vi,...,Vp. Let V be the matrix with columns vy, ...,v,. From Theorem 6.2.1 it follows that
A =V A,V ! for some diagonal matrix A4 € R™*". Analogously, it follows that B = VAgV !
for some diagonal matrix Ag € R™ ™. Now observe that since both A4 and Ap are diagonal
matrices, we have Ay Ap = ApA4. Thus, we get
AB = (VALV H(VAgV ™

= VAV V) AV !

=VAuA BV_I

=VAAsV !

=VAg(VIV)A vt

= (VALV H(VAgV Y

= BA



which concludes the proof.

b) By similarity of A and B, there exists an invertible matrix S € R™*" with A = SBS~!. By
similarity of B and C, there exists an invertible matrix 7" € R™*" with B = TCT~!. Hence, we
get

A=8BS'=S8TCcT 'S = PCP!

where P = ST is invertible with inverse P~1 = T-15~!. We conclude that A and C are similar.

¢) Since A has n distinct real eigenvalues, it must have a complete set of real eigenvectors and hence
it must be diagonalizable (by Proposition 6.1.7 and Theorem 6.2.1), i.e. there exists an invertible
matrix V' € R™ " and a diagonal matrix A € R™*" with A = VAV ~!. Analogously, B is
diagonalizable with B = W AW ™! for some invertible matrix W € R™*". Note that we can
assume that the diagonalization of both A and B use the same diagonal matrix A because A and B
are assumed to have the same eigenvalues.

We observe that this means that A is similar to /A and that A is similar to B. By using the statement
from the previous subtask for A, A, B, it follows that A is similar to B.

d) Let A € R be an arbitrary real eigenvalue of A with corresponding eigenvector v.€ R"™. By
similarity of A and B, there exists an invertible matrix S € R™" with B = SAS~!. Now
consider the vector w = S'v. We have

Bw = SAST(Sv) = SAv = A\Sv = \w

and hence w is a real eigenvector of B with corresponding real eigenvalue A. Since A\ was arbitrary,
we conclude that every real eigenvalue of A is also a real eigenvalue of B.

By a symmetric argument (swapping the roles of A and B above) we get that every real eigenvalue
of B is also a real eigenvalue of A. We conclude that A and B have the same set of real eigenvalues.

3. a) Consider the vector u = v + w. By linear independence of v and w we get that u # 0. We also
get
Au=A(v+w)=Av+ Aw = 3w + 3v = 3u

and hence 3 is an eigenvalue of A.

Analogously, we define u' = v — w. By linear independence of v and w we get that u’ # 0.
Again, we compute

Au' = A(v—-w)=Av — Aw = 3w — 3v = —3u
and hence —3 is also an eigenvalue of A.

b) First of all, note that the proof that we used in the previous subtask breaks down because without
linear independence we cannot conclude that u and u’ are both non-zero. The key insight for
this subtask is that we can still guarantee that at least one of them is non-zero. Concretely, define
u = v+ wand u’ = v — w as before and assume for a contradiction that u = u’ = 0. This would
imply

ut+u =2v=0

which is a contradiction to v # 0. Hence, either u # 0 or u’ # 0 and by the arguments from a),
either 3 or —3 is an eigenvalue of A.

4. The key insight of this exercise is to look at the real eigenvalues of A. For this, we first compute the
characteristic polynomial

- 1 3 L1
Io-x 0= —/\3+§A+§.
0 & =



5.

We can guess one of the roots of this polynomial to be 1. Hence, we obtain
1
P = (A= 1D(=3 =2 = 3)

and it turns out that the other roots of p are complex-valued. Hence, the only real eigenvalue of A is 1.

Recall that our goal is to find an initial population that yields a stable population over time. The idea
here is that an eigenvector corresponding to eigenvalue 1 is a suitable choice. Such an eigenvector can be
found in N(A — I) and one example would be to choose

vo=1[6 3 1]'.

Indeed, we get

0 1 3][6 6
Avo= |3 0 0] [3] = [3],
0 % of [1 1

and hence v; = Alvy = v for all t € Ny. We conclude that this choice of initial population yields a
stable population.

a) One could solve this by first computing A and then computing its real eigenvalues. But in this case,
it is not hard to guess eigenvectors of A. In particular, choosing x = y = 1 yields

1] [1
Al =1}
and hence 1 is an eigenvalue of A. Moreover, guessing x = 1 and y = —1 yields
—-11 [1
A= [4

and hence —1 is an eigenvalue of A. We conclude that the two real eigenvalues of A are 1 and —1.
Since A is a 2 x 2 matrix, there cannot be more thant 2 eigenvalues.

b) The simplest choice is the diagonal matrix
0 0 0
A=10 1 0
00 2
Indeed, we have Ae; = 0, Aes = e9, and Ae3 = 2e3. Hence, A has the desired eigenvalues. It

does not have any other eigenvalues because a 3 x 3 matrix can have at most 3 eigenvalues.

¢) Consider the matrix A from the previous subtask and the basis
Vi=e1t+e, Vz=e€ —e Vz=e3

of R3. In particular, consider the matrix

| | \ 1 1 0
V=|vi v2 vz =|1 -1 0
| | 0 0 1
with inverse
1 1 9
-1 {2
0 0 1
and define B as
1 _1 9
2 2
B=VAV'= | L1 0
0O 0 2

The matrices A and B are similar and hence have the same eigenvalues.



