Solution for Assignment 13

1. a) Let $\mathbf{x} \in \mathbb{R}^{n} \backslash\{0\}$ be an eigenvector of $A+B$ corresponding to eigenvalue $\lambda_{\text {min }}^{(A+B)}$. By using our knowledge about Rayleigh quotients (Proposition 6.3.10), we get

$$
\lambda_{\min }^{(A+B)}=\frac{\mathbf{x}^{\top}(A+B) \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}=\frac{\mathbf{x}^{\top} A \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}+\frac{\mathbf{x}^{\top} B \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}} \stackrel{6.3 .10}{\geq} \lambda_{\min }^{(A)}+\lambda_{\min }^{(B)}
$$

b) Since both A and B are positive semidefinite, we have $\lambda_{\text {min }}^{(A)} \geq 0$ and $\lambda_{\text {min }}^{(B)} \geq 0$. Using our result from the previous subtask, we conclude that $\lambda_{\min }^{(A+B)} \geq 0$. Hence, $A+B$ is positive semidefinite.
c) This is analogous to the proof in the previous subtask: since both A and B are positive definite, we have $\lambda_{\min }^{(A)}>0$ and $\lambda_{\min }^{(B)}>0$. Using our result from the subtask a), we conclude that $\lambda_{\min }^{(A+B)}>0$. Hence, $A+B$ is positive definite.
Remark: Note that we actually only need one of A and B to be positive definite, as long as the other one is still positive semidefinite.
2. Consider first the $r \times n$ matrix $B=\Sigma_{r} V_{r}^{\top}$ with rank r. In particular, B has full row rank and hence

$$
B^{\dagger}=B^{\top}\left(B B^{\top}\right)^{-1}=V_{r} \Sigma_{r}\left(\Sigma_{r} V_{r}^{\top} V_{r} \Sigma_{r}\right)^{-1}=V_{r} \Sigma_{r}\left(\Sigma_{r}^{2}\right)^{-1}=V_{r} \Sigma_{r}^{-1}
$$

where we have used Definition 4.5.3, the fact that Σ_{r} is a diagonal matrix, and the fact that $V_{r}^{\top} V_{r}=I$.
Similarly, the $m \times r$ matrix U_{r} has full column rank r and hence we get

$$
U_{r}^{\dagger}=\left(U_{r}^{\top} U_{r}\right)^{-1} U_{r}^{\top}=I U_{r}^{\top}=U_{r}^{\top}
$$

by Definition 4.5.1 and the fact that $U_{r}^{\top} U_{r}=I$.
Finally, we conclude that

$$
A^{\dagger}=B^{\dagger} U_{r}^{\dagger}=V_{r} \Sigma_{r}^{-1} U_{r}^{\top}
$$

by Proposition 4.5.9.
3. a) The main idea is to plug in the SVD of A. A crucial observation that we will need is that by orthogonality of U, we have $\left\|U^{\top} \mathbf{v}\right\|_{2}^{2}=\left(U^{\top} \mathbf{v}\right)^{\top}\left(U^{\top} \mathbf{v}\right)=\mathbf{v}^{\top} U U^{\top} \mathbf{v}=\mathbf{v}^{\top} \mathbf{v}=\|\mathbf{v}\|_{2}^{2}$ for all $\mathbf{v} \in \mathbb{R}^{m}$. Equipped with this observation, we calculate

$$
\begin{aligned}
\min _{\mathbf{x} \in \mathbb{R}^{n}}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2} & =\min _{\mathbf{x} \in \mathbb{R}^{n}}\left\|U \Sigma V^{\top} \mathbf{x}-\mathbf{b}\right\|_{2}^{2} \\
& =\min _{\mathbf{x} \in \mathbb{R}^{n}}\left\|U^{\top} U \Sigma V^{\top} \mathbf{x}-U^{\top} \mathbf{b}\right\|_{2}^{2} \\
& =\min _{\mathbf{x} \in \mathbb{R}^{n}}\left\|\Sigma V^{\top} \mathbf{x}-U^{\top} \mathbf{b}\right\|_{2}^{2} \\
& =\min _{\mathbf{y} \in \mathbb{R}^{n}}\|\Sigma \mathbf{y}-\mathbf{c}\|_{2}^{2}
\end{aligned}
$$

where we have substituted $\mathbf{y}=V^{\top} \mathbf{x}$ in the end (which works because V^{\top} is invertible).
b) Consider the expression $\|\Sigma \mathbf{y}-\mathbf{c}\|_{2}^{2}$ and observe that we can write it as

$$
\|\Sigma \mathbf{y}-\mathbf{c}\|_{2}^{2}=\sum_{i=1}^{n}\left(\Sigma_{i i} y_{i}-c_{i}\right)^{2}=\sum_{i=1}^{r}\left(\sigma_{i} y_{i}-c_{i}\right)^{2}+\sum_{i=r+1}^{n} c_{i}^{2}
$$

We are looking to choose y such that this expression is minimized. Clearly, there is nothing that we can do about the term $\sum_{i=r+1}^{n} c_{i}^{2}$. But by choosing $y_{i}=c_{i} / \sigma_{i}$ for all $i \in[r]$, we get $\sum_{i=1}^{r}\left(\sigma_{i} y_{i}-\right.$ $\left.c_{i}\right)^{2}=0$. Hence, this choice of \mathbf{y} must be optimal. Concretely, we conclude that the optimal solution is

$$
\mathbf{y}^{*}=\left[\begin{array}{c}
c_{1} / \sigma_{1} \\
\vdots \\
c_{r} / \sigma_{r} \\
0 \\
\vdots \\
0
\end{array}\right]=\underset{\mathbf{y} \in \mathbb{R}^{n}}{\arg \min }\|\Sigma \mathbf{y}-\mathbf{c}\|_{2}^{2} .
$$

c) In subtask a), we substituted $\mathbf{y}=V^{\top} \mathbf{x}$. Hence, it would make sense to guess that $\mathbf{x}^{*}=V \mathbf{y}^{*}$. Indeed, we can verify that with this choice of x^{*} we get
$\left\|\Sigma \mathbf{y}^{*}-\mathbf{c}\right\|_{2}^{2}=\left\|\Sigma V^{\top} \mathbf{x}^{*}-\mathbf{c}\right\|_{2}^{2}=\left\|U \Sigma V^{\top} \mathbf{x}^{*}-U U^{\top} \mathbf{b}\right\|_{2}^{2}=\left\|U \Sigma V^{\top} \mathbf{x}^{*}-U U^{\top} \mathbf{b}\right\|_{2}^{2}=\left\|A \mathbf{x}^{*}-\mathbf{b}\right\|_{2}^{2}$ and by $\min _{\mathbf{x} \in \mathbb{R}^{n}}\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}=\min _{\mathbf{y} \in \mathbb{R}^{n}}\|\Sigma \mathbf{y}-\mathbf{c}\|_{2}^{2}$ and optimality of \mathbf{y}^{*} we conclude that \mathbf{x}^{*} is optimal, i.e.

$$
\mathbf{x}^{*}=\underset{\mathbf{x} \in \mathbb{R}^{n}}{\arg \min }\left\|A \mathbf{x}^{*}-\mathbf{b}\right\|_{2}^{2}
$$

4. a) We prove this by direct calculation

$$
\|\mathbf{x}\|_{2}^{2}=\sum_{i=1}^{n} x_{i}^{2} \leq \sum_{i=1}^{n} \sum_{j=1}^{n}\left|x_{i}\right|\left|x_{j}\right|=\left(\sum_{i=1}^{n}\left|x_{i}\right|\right)^{2}=\|\mathbf{x}\|_{1}^{2}
$$

Observe that the inequality $\sum_{i=1}^{n} x_{i}^{2} \leq \sum_{i=1}^{n} \sum_{j=1}^{n}\left|x_{i}\right|\left|x_{j}\right|$ holds because all terms appearing on the left actually appear on the right as well (but on the right we have some additional non-negative terms).
b) Without loss of generality, assume that all entries in x are non-negative (if there was a negative entry, simply switch its sign and observe that both norms remain the same). Next, observe that $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|=\sum_{i=1}^{n} x_{i}=\mathbf{1}^{\top} \mathbf{x}$ where $\mathbf{1} \in \mathbb{R}^{n}$ is the all-ones vector. By Cauchy-Schwarz, we obtain $\mathbf{1}^{\top} \mathbf{x} \leq\|\mathbf{1}\|_{2}\|\mathbf{x}\|_{2}$. It remains to calculate $\|\mathbf{1}\|_{2}=\left(\sum_{i=1}^{n} 1\right)^{\frac{1}{2}}=\sqrt{n}$ to conclude that

$$
\|\mathbf{x}\|_{1}=\mathbf{1}^{\top} \mathbf{x} \leq\|\mathbf{1}\|_{2}\|\mathbf{x}\|_{2}=\sqrt{n}\|\mathbf{x}\|_{2}
$$

5. a) Recall that the trace of a matrix is the sum of its diagonal entries. Consider the matrix $A^{\top} A$. The j th diagonal entry of $A^{\top} A$ is exactly the norm of the j-th column of A which is given by $\sum_{i=1}^{m} A_{i j}^{2}$. Hence, the trace of $A^{\top} A$ is given by

$$
\operatorname{Tr}\left(A^{\top} A\right)=\sum_{j=1}^{n} \sum_{i=1}^{m} A_{i j}^{2}=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j}^{2}=\|A\|_{F}^{2} .
$$

b) By Remark 7.1.13 we know that the squared singular values of A are the eigenvalues of the matrix $A^{\top} A$. Moreover, by Proposition 6.1.11 we know that the trace of $A^{\top} A$ is equal to the sum of its eigenvalues. Hence, we conclude

$$
\operatorname{Tr}\left(A^{\top} A\right)=\sum_{i=1}^{\min \{m, n\}} \sigma_{i}^{2}
$$

and the result follows by combining this with the previous subtask.
c) By definition, we have

$$
\|A\|_{o p}=\max _{\substack{\mathbf{x} \in \mathbb{R}^{n} \\\|\mathbf{x}\|_{2}=1}}\|A \mathbf{x}\|_{2}
$$

Now observe that we can rewrite the squared version of this as

$$
\max _{\substack{\mathbf{x} \in \mathbb{R}^{n} \\\|\mathbf{x}\|_{2}^{2}=1}}\|A \mathbf{x}\|_{2}^{2}=\max _{\mathbf{x} \in \mathbb{R}^{n} \backslash\{0\}} \frac{\|A \mathbf{x}\|_{2}^{2}}{\|\mathbf{x}\|_{2}^{2}}=\max _{\mathbf{x} \in \mathbb{R}^{n} \backslash\{0\}} \frac{\mathbf{x}^{\top} A^{\top} A \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}
$$

The matrix $A^{\top} A$ is symmetric and its largest eigenvalue is σ_{1}^{2}, hence we get $\max _{\mathbf{x} \in \mathbb{R}^{n} \backslash\{0\} \frac{\mathbf{x}^{\top} A^{\top} A \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}=}=$ σ_{1}^{2} by Proposition 6.3.10. It remains to observe that

$$
\underset{\substack{\mathbf{x} \in \mathbb{R}^{n} \\\|\mathbf{x}\|_{2}=1}}{\arg \max }\|A \mathbf{x}\|_{2}=\underset{\substack{\mathbf{x} \in \mathbb{R}^{n} \\\|\mathbf{x}\|_{2}^{2}=1}}{\arg \max }\|A \mathbf{x}\|_{2}^{2}
$$

and hence

$$
\|A\|_{o p}=\max _{\substack{\mathbf{x} \in \mathbb{R}^{n} \\\|\mathbf{x}\|_{2}=1}}\|A \mathbf{x}\|_{2}=\sqrt{\max _{\substack{\mathbf{x} \in \mathbb{R}^{n} \\\|\mathbf{x}\|_{2}^{2}=1}}\|A \mathbf{x}\|_{2}^{2}}=\sqrt{\sigma_{1}^{2}}=\sigma_{1}
$$

d) This follows from b) and c) as

$$
\|A\|_{o p}=\sigma_{1}=\sqrt{\sigma_{1}^{2}} \leq \sqrt{\sum_{i=1}^{\min \{m, n\}} \sigma_{i}^{2}}=\|A\|_{F}
$$

e) Using previous subtasks, we obtain

$$
\|A\|_{F}^{2}=\sum_{i=1}^{\min \{m, n\}} \sigma_{i}^{2} \leq \min \{m, n\} \sigma_{1}^{2}
$$

and hence

$$
\|A\|_{F} \leq \sqrt{\min \{m, n\}} \sigma_{1}=\sqrt{\min \{m, n\}}\|A\|_{o p}
$$

