Solution for Assignment 5

1. a) The key insight here is to use $\mathbf{v}^{\top} \mathbf{v}=\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}=1$. We then get

$$
A^{2}=\left(\mathbf{v} \mathbf{v}^{\top}\right)\left(\mathbf{v} \mathbf{v}^{\top}\right)=\mathbf{v}\left(\mathbf{v}^{\top} \mathbf{v}\right) \mathbf{v}^{\top}=\mathbf{v} 1 \mathbf{v}^{\top}=\mathbf{v} \mathbf{v}^{\top}=A
$$

for A^{2} and therefore

$$
P^{2}=(I-A)^{2}=I^{2}-2 A+A^{2}=I-2 A+A=I-A=P
$$

for P^{2}.
b) Knowing that $\mathbf{w} \cdot \mathbf{v}=0$, we compute $A \mathbf{w}=\left(\mathbf{v v}^{\top}\right) \mathbf{w}=\mathbf{v}\left(\mathbf{v}^{\top} \mathbf{w}\right)=\mathbf{v}(\mathbf{v} \cdot \mathbf{w})=(\mathbf{v} \cdot \mathbf{w}) \mathbf{v}=0 \mathbf{v}=\mathbf{0}$.
c) We are given $A \mathbf{w}=\mathbf{0}$ and hence get $\mathbf{0}=A \mathbf{w}=\left(\mathbf{v} \mathbf{v}^{\top}\right) \mathbf{w}=\mathbf{v}\left(\mathbf{v}^{\top} \mathbf{w}\right)=\mathbf{v}(\mathbf{v} \cdot \mathbf{w})=(\mathbf{v} \cdot \mathbf{w}) \mathbf{v}$. Note that $\mathbf{v} \cdot \mathbf{w}$ is a scalar and that $\mathbf{v} \neq \mathbf{0}$. From $(\mathbf{v} \cdot \mathbf{w}) \mathbf{v}=\mathbf{0}$ we hence get $\mathbf{v} \cdot \mathbf{w}=0$, as desired.
d) Combining subtasks \mathbf{b}) and c), we get that for all $\mathbf{w} \in \mathbb{R}^{3}$, we have $A \mathbf{w}=\mathbf{0}$ if and only if $\mathbf{v} \cdot \mathbf{w}=0$. Hence, the nullspace of A is given by $\mathbf{N}(A)=\left\{\mathbf{w} \in \mathbb{R}^{3}: \mathbf{w} \cdot \mathbf{v}=0\right\}$. In words, this is the set of all vectors orthogonal to \mathbf{v}.
e) Observe that A has the form

$$
A=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
v_{1} \mathbf{v} & v_{2} \mathbf{v} & v_{3} \mathbf{v} \\
\mid & \mid & \mid
\end{array}\right]
$$

where $\mathbf{v}=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]^{\top}$. Hence, all of its columns are linearly dependent on the first one. By $\mathbf{v} \neq \mathbf{0}$, we conclude that A has rank 1. Therefore, it is not invertible. Note that we have studied matrices of rank 1 before in Exercise 3 of Assignment 2.
f) We first prove $\mathbf{C}(A) \subseteq\{\alpha \mathbf{v}: \alpha \in \mathbb{R}\}$. Let $\mathbf{w} \in \mathbf{C}(A)$ be arbitrary. By definition of $\mathbf{C}(A)$, there exists \mathbf{x} with $A \mathbf{x}=\mathbf{w}$. We conclude $\mathbf{w}=A \mathbf{x}=\mathbf{v} \mathbf{v}^{\top} \mathbf{x}=(\mathbf{v} \cdot \mathbf{x}) \mathbf{v}=\alpha \mathbf{v}$ for $\alpha=\mathbf{v} \cdot \mathbf{x}$. Thus, $\mathbf{w} \in\{\alpha \mathbf{v}: \alpha \in \mathbb{R}\}$.
It remains to prove $\{\alpha \mathbf{v}: \alpha \in \mathbb{R}\} \subseteq \mathbf{C}(A)$. Let $\mathbf{w} \in\{\alpha \mathbf{v}: \alpha \in \mathbb{R}\}$ be arbitrary, i.e. $\mathbf{w}=\alpha \mathbf{v}$ for some $\alpha \in \mathbb{R}$. Choosing $\mathbf{x}=\mathbf{w}$, we get

$$
A \mathbf{x}=\mathbf{v}^{\top} \mathbf{x}=\mathbf{v}^{\top}(\alpha \mathbf{v})=\alpha(\mathbf{v} \cdot \mathbf{v}) \mathbf{v}=\alpha \mathbf{v}=\mathbf{w}
$$

and therefore $\mathbf{w} \in \mathbf{C}(A)$.
g) By subtask f), it suffices to prove $\{\alpha \mathbf{v}: \alpha \in \mathbb{R}\}=\left\{\mathbf{w} \in \mathbb{R}^{3}: A \mathbf{w}=\mathbf{w}\right\}$. To see that $\{\alpha \mathbf{v}: \alpha \in \mathbb{R}\} \subseteq\left\{\mathbf{w} \in \mathbb{R}^{3}: A \mathbf{w}=\mathbf{w}\right\}$, observe that $A(\alpha \mathbf{v})=\alpha \mathbf{v}$ (we have calculated this in more detail already above) and hence $\alpha \mathbf{v} \in\left\{\mathbf{w} \in \mathbb{R}^{3}: A \mathbf{w}=\mathbf{w}\right\}$ for all α. It remains to prove $\left\{\mathbf{w} \in \mathbb{R}^{3}: A \mathbf{w}=\mathbf{w}\right\} \subseteq\{\alpha \mathbf{v}: \alpha \in \mathbb{R}\}$. By definition, any $\mathbf{w} \in\left\{\mathbf{w} \in \mathbb{R}^{3}: A \mathbf{w}=\mathbf{w}\right\}$ is also in $\mathbf{C}(A)$. Hence, $\left\{\mathbf{w} \in \mathbb{R}^{3}: A \mathbf{w}=\mathbf{w}\right\} \subseteq \mathbf{C}(A)$ and with subtask f) we conclude the proof.
h) Let $\mathbf{w} \in \mathbb{R}^{3}$ be arbitrary. We have

$$
P \mathbf{w}=\mathbf{0} \Longleftrightarrow(I-A) \mathbf{w}=\mathbf{0} \Longleftrightarrow \mathbf{w}-A \mathbf{w}=\mathbf{0} \Longleftrightarrow A \mathbf{w}=\mathbf{w}
$$

This implies $\mathbf{N}(P)=\left\{\mathbf{w} \in \mathbb{R}^{3}: A \mathbf{w}=\mathbf{w}\right\}$ and by subtask g) we conclude $\mathbf{N}(P)=\mathbf{C}(A)$.
i) We start by proving $\mathbf{C}(P) \subseteq \mathbf{N}(A)$. Let $\mathbf{w} \in \mathbf{C}(P)$ be arbitrary. By definition, there is $\mathbf{x} \in \mathbb{R}^{3}$ with $P \mathbf{x}=\mathbf{w}$. We use this to compute $A \mathbf{w}$ as

$$
A \mathbf{w}=A(P \mathbf{x})=A(I-A) \mathbf{x}=\left(A-A^{2}\right) \mathbf{x}=(A-A) \mathbf{x}=\mathbf{0}
$$

and conclude $\mathbf{w} \in \mathbf{N}(A)$.
It remains to prove $\mathbf{N}(A) \subseteq \mathbf{C}(P)$. Let $\mathbf{w} \in \mathbf{N}(A)$ be arbitrary. By definition, we have $A \mathbf{w}=\mathbf{0}$. Choosing $\mathbf{x}=\mathbf{w}$, we get $P \mathbf{x}=(I-A) \mathbf{x}=\mathbf{x}-A \mathbf{x}=\mathbf{w}-A \mathbf{w}=\mathbf{w}$. We conclude $\mathbf{w} \in \mathbf{C}(P)$.
2. a) The vector \mathbf{b} is an element of U if it can be written as a linear combination of the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$. This is equivalent to the existence of a solution of the linear system

$$
\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} \\
\mid & \mid & \mid
\end{array}\right] \mathbf{x}=\mathbf{b} .
$$

To solve the linear system, we need to do elimination on the matrix and also apply the same row operations to \mathbf{b}. It is sometimes convenient to do both at once by first concatenating \mathbf{b} to the matrix (as a new column) and then applying elimination on this new matrix. By concatenating \mathbf{b} to the matrix we get

$$
\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} & \mathbf{b} \\
\mid & \mid & \mid & \mid
\end{array}\right] .
$$

To remember that the last column comes from b, we can insert a vertical separator (this is just notation) as follows:

$$
\left[\begin{array}{rrr|r}
\mid & \mid & \mid & \mid \\
\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} & \mathbf{b} \\
\mid & \mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{rrr|r}
2 & -1 & 2 & 1 \\
-4 & 5 & -5 & -2 \\
8 & 5 & 5 & 6 \\
2 & 2 & 1 & 2
\end{array}\right] .
$$

We get

$$
\left[\begin{array}{rrr|r}
2 & -1 & 2 & 1 \\
0 & 3 & -1 & 0 \\
0 & 9 & -3 & 2 \\
0 & 3 & -1 & 1
\end{array}\right]
$$

after performing elimination in the first column and finally

$$
\left[\begin{array}{rrr|r}
2 & -1 & 2 & 1 \\
0 & 3 & -1 & 0 \\
0 & 0 & 0 & 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

after performing elimination also in the second column. In particular, this means that the system

$$
\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} \\
\mid & \mid & \mid
\end{array}\right] \mathbf{x}=\mathbf{b} .
$$

has the same solutions as the system

$$
\left[\begin{array}{ccc}
2 & -1 & 2 \\
0 & 3 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right]
$$

But this last system does not have a solution and hence $\mathbf{b} \notin U$.
b) Interpreting the result of the elimination from the previous part of the task, we can determine that the rank of the system matrix is 2 (there are two pivots). Hence, the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ are linearly dependent and therefore do not form a basis.
3. Each of the four points yields one linear equation with variables a, b, c, d. For example, for $x=4, y=5$ we get the equation

$$
a 4^{3}+b 4^{2}+c 4+d=5
$$

In total, we get the linear system

$$
\begin{aligned}
a 0^{3}+b 0^{2}+c 0+d & =1 \\
a 2^{3}+b 2^{2}+c 2+d & =2 \\
a 4^{3}+b 4^{2}+c 4+d & =5 \\
a 6^{3}+b 6^{2}+c 6+d & =6
\end{aligned}
$$

with four equations and four variables that we can write in matrix form as

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 2 & 4 & 8 \\
1 & 4 & 16 & 64 \\
1 & 6 & 36 & 216
\end{array}\right]\left[\begin{array}{l}
d \\
c \\
b \\
a
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
5 \\
6
\end{array}\right] .
$$

We now want to solve this system by using the elimination technique. For this, it is convenient to apply the row operations to the system matrix and the right-hand side simultaneously by appending the righthand side to the matrix as follows:

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 0 & 1 \\
1 & 2 & 4 & 8 & 2 \\
1 & 4 & 16 & 64 & 5 \\
1 & 6 & 36 & 216 & 6
\end{array}\right] .
$$

After performing elimination in the first column we get

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 0 & 1 \\
0 & 2 & 4 & 8 & 1 \\
0 & 4 & 16 & 64 & 4 \\
0 & 6 & 36 & 216 & 5
\end{array}\right] .
$$

Next, we perform elimination in the second columns to get

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 0 & 1 \\
0 & 2 & 4 & 8 & 1 \\
0 & 0 & 8 & 48 & 2 \\
0 & 0 & 24 & 192 & 2
\end{array}\right]
$$

Finally, we obtain

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 0 & 1 \\
0 & 2 & 4 & 8 & 1 \\
0 & 0 & 8 & 48 & 2 \\
0 & 0 & 0 & 48 & -4
\end{array}\right]
$$

It remains to perform backward substitution. From the last row, we get $a=-\frac{4}{48}=-\frac{1}{12}$. Next, we get $b=\frac{2-48 a}{8}=\frac{6}{8}=\frac{3}{4}$. From the second row we obtain $c=\frac{1-8 a-4 b}{2}=\frac{1+\frac{2}{3}-3}{2}=-\frac{2}{3}$. Finally, we get $d=1$ from the first row. Hence, the function $f(x)=-\frac{1}{12} x^{3}+\frac{3}{4} x^{2}-\frac{2}{3} x+1$ interpolates all of our datapoints.
4. a) Note that the function $\mathbf{0}: x \in \mathbb{R} \mapsto 0$ is both in O and E. Hence, both sets are non-empty. Thus, it remains to prove that both O and E are closed under vector addition and scalar multiplication. We start with O. Let $\mathbf{f}, \mathbf{g} \in O$ and $c \in \mathbb{R}$ be arbitrary. We have

$$
(\mathbf{f}+\mathbf{g})(-x)=\mathbf{f}(-x)+\mathbf{g}(-x)=-\mathbf{f}(x)-\mathbf{g}(x)=-(\mathbf{g}+\mathbf{f})(x)
$$

for all $x \in \mathbb{R}$ and hence $\mathbf{f}+\mathbf{g} \in O$. Similarly, we have

$$
(c \mathbf{f})(-x)=c \mathbf{f}(-x)=-c \mathbf{f}(x)=-(c \mathbf{f})(x)
$$

for all $x \in \mathbb{R}$ which proves $c \mathbf{f} \in O$. We conclude that O is a subspace of V.
We proceed analogously for E. Let $\mathbf{f}, \mathbf{g} \in E$ and $c \in \mathbb{R}$ be arbitrary. We have

$$
(\mathbf{f}+\mathbf{g})(-x)=\mathbf{f}(-x)+\mathbf{g}(-x)=\mathbf{f}(x)+\mathbf{g}(x)=(\mathbf{g}+\mathbf{f})(x)
$$

for all $x \in \mathbb{R}$ and hence $\mathbf{f}+\mathbf{g} \in E$. And also

$$
(c \mathbf{f})(-x)=c \mathbf{f}(-x)=c \mathbf{f}(x)=(c \mathbf{f})(x)
$$

for all $x \in \mathbb{R}$ which proves $c \mathbf{f} \in E$. We conclude that E is a subspace of V.
b) We already know that $\mathbf{0}$ is in both O and E and therefore $\mathbf{0} \in O \cap E$.

Now consider an arbitrary function $\mathbf{f} \in O \cap E$ and fix $x \in \mathbb{R}$. By definition of O, we have $\mathbf{f}(-x)=-\mathbf{f}(x)$. By definition of E, we also get $\mathbf{f}(-x)=\mathbf{f}(x)$. We conclude that we must have $-\mathbf{f}(x)=\mathbf{f}(x)$. But this implies $\mathbf{f}(x)=0$. Since this works for any $x \in \mathbb{R}$, we conclude that \mathbf{f} must be the zero function $\mathbf{0}$. Hence, $\mathbf{0}$ is the only function in $O \cap E$.
c) Let $\mathbf{f} \in V$ be arbitrary and define

$$
\begin{aligned}
\mathbf{g}(x) & :=\frac{1}{2}(\mathbf{f}(x)+\mathbf{f}(-x)) \\
\mathbf{h}(x) & :=\frac{1}{2}(\mathbf{f}(x)-\mathbf{f}(-x))
\end{aligned}
$$

for all $x \in \mathbb{R}$. Observe that we have $\mathbf{f}=\mathbf{g}+\mathbf{h}$. It remains to prove $\mathbf{g} \in E$ and $\mathbf{h} \in O$: For all $x \in \mathbb{R}$ we have

$$
\mathbf{g}(-x)=\frac{1}{2}(\mathbf{f}(-x)+\mathbf{f}(-(-x)))=\frac{1}{2}(\mathbf{f}(x)+\mathbf{f}(-x))=\mathbf{g}(x)
$$

and hence $\mathbf{g} \in E$. Similarly, we have

$$
\mathbf{h}(-x)=\frac{1}{2}(\mathbf{f}(-x)-\mathbf{f}(-(-x)))=\frac{1}{2}(\mathbf{f}(-x)-\mathbf{f}(x))=-\frac{1}{2}(\mathbf{f}(x)-\mathbf{f}(-x))=-\mathbf{h}(x)
$$

for all $x \in \mathbb{R}$. Hence, $\mathbf{h} \in O$.
5. 1. Consider the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] \quad \text { and } \quad \mathbf{v}_{2}=\left[\begin{array}{c}
7 \\
6 \\
5 \\
4
\end{array}\right]
$$

Which of the following sets of vectors is a basis of \mathbb{R}^{4} ?
(a)

$$
\left\{\mathbf{v}_{1}, \quad \mathbf{v}_{2}, \quad\left[\begin{array}{c}
1 \\
0 \\
-2 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
1 \\
2 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

A set of 5 vectors from \mathbb{R}^{4} can never be linearly independent. Hence, this is not a basis.
(b)

$$
\left\{\mathbf{v}_{1}, \quad \mathbf{v}_{2},\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right\}
$$

The zero vector is linearly dependent on all other vectors. Hence, this is not a basis.
(c)

$$
\left\{\mathbf{v}_{1}, \quad \mathbf{v}_{2},\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]\right\}
$$

These 4 vectors are linearly independent. If we put them as columns into a matrix A, then A will have full rank. By the inverse theorem, the system $A \mathbf{x}=\mathbf{b}$ will have a unique solution for all $\mathbf{b} \in \mathbb{R}^{4}$. Thus, $\mathbf{C}(A)=\mathbb{R}^{4}$ or in other words, the four vectors span all of \mathbb{R}^{4}. Thus, they are a basis of \mathbb{R}^{4}.
2. Which of the following matrices are in reduced row echelon form?
(a) $\left[\begin{array}{llll}1 & 0 & 2 & 4 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0\end{array}\right]$

Not in reduced row echolon form because of the 2 in the first row.
(b) $\left[\begin{array}{llll}1 & 0 & 2 & 4 \\ 0 & 1 & 1 & 5 \\ 0 & 0 & 0 & 0\end{array}\right]$

This is in reduced row echolon form. There are two pivots, one in the first column and one in the second column.
(c) $\left[\begin{array}{llll}1 & 0 & 0 & 4 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0\end{array}\right]$

This is in reduced row echolon form. The pivots are in the first and third column.
(d) $\left[\begin{array}{llll}1 & 0 & 2 & 4 \\ 0 & 1 & 1 & 5 \\ 0 & 0 & 1 & 0\end{array}\right]$

Not in reduced row echolon form because the 1 and 2 in the first and second row of the third column have not been eliminated.

