Solution for Assignment 9

1. a) Consider the matrix $M:=A B$. We claim that it has $\operatorname{rank}(M)=n$. To see this, observe that $\operatorname{rank}(B)=n$ implies $\mathbf{C}(B)=\mathbb{R}^{n}$ because n is also the number of rows of B. Hence, we get $\mathbf{C}(M)=\mathbf{C}(A)$ (and therefore $\operatorname{rank}(M)=\operatorname{rank}(A)=n$). Finally, we can use Proposition 4.5 .9 to get $(A B)^{\dagger}=M^{\dagger}=B^{\dagger} A^{\dagger}$.
b) Assume first that A has full column rank $n=\operatorname{rank}(A)$. In this case, we have $A^{\dagger}=\left(A^{\top} A\right)^{-1} A^{\top}$ by definition of the pseudoinverse for matrices with full column rank. Moreover, notice that A^{\top} has full row rank and hence we also get $\left(A^{\top}\right)^{\dagger}=A\left(A^{\top} A\right)^{-1}$ by definition of the pseudoinverse for matrices with full row rank. Hence, we get

$$
\left(A^{\dagger}\right)^{\top}=\left(\left(A^{\top} A\right)^{-1} A^{\top}\right)^{\top}=A\left(\left(A^{\top} A\right)^{-1}\right)^{\top}=A\left(\left(A^{\top} A\right)^{\top}\right)^{-1}=A\left(A^{\top} A\right)^{-1}=\left(A^{\top}\right)^{\dagger}
$$

We conclude that the statements holds for all matrices with full column rank.
Analogously, we can prove that the statement holds if A has full row rank $m=\operatorname{rank}(A)$. In that case, we have $A^{\dagger}=A^{\top}\left(A A^{\top}\right)^{-1}$ and $\left(A^{\top}\right)^{\dagger}=\left(A A^{\top}\right)^{-1} A$. Hence, we indeed get

$$
\left(A^{\dagger}\right)^{\top}=\left(A^{\top}\left(A A^{\top}\right)^{-1}\right)^{\top}=\left(\left(A A^{\top}\right)^{-1}\right)^{\top} A=\left(\left(A A^{\top}\right)^{\top}\right)^{-1} A=\left(A A^{\top}\right)^{-1} A=\left(A^{\top}\right)^{\dagger}
$$

We conclude that the statement holds for all matrices with full row rank.
It remains to prove the general case, i.e. we do not assume anymore that A has full row rank or full column rank. Then by definition, we have $A^{\dagger}=R^{\dagger} C^{\dagger}$ where $A=C R$ is a $C R$ decomposition of A. In particular, we have $C \in \mathbb{R}^{m \times r}$ and $R \in \mathbb{R}^{r \times n}$ where $r=\operatorname{rank}(A)$. Now observe that we also have $A^{\top}=R^{\top} C^{\top}$ with $R^{\top} \in \mathbb{R}^{n \times r}$ and $C^{\top} \in \mathbb{R}^{r \times m}$ and of course, $r=\operatorname{rank}(A)=\operatorname{rank}\left(A^{\top}\right)$. Hence, we can use Proposition 4.5.9 to get $\left(A^{\top}\right)^{\dagger}=\left(C^{\top}\right)^{\dagger}\left(R^{\top}\right)^{\dagger}$. We conclude that

$$
\left(A^{\top}\right)^{\dagger}=\left(C^{\top}\right)^{\dagger}\left(R^{\top}\right)^{\dagger}=\left(C^{\dagger}\right)^{\top}\left(R^{\dagger}\right)^{\top}=\left(R^{\dagger} C^{\dagger}\right)^{\top}=\left(A^{\dagger}\right)^{\top}
$$

by using that C has full column rank and R has full row rank and hence $\left(C^{\top}\right)^{\dagger}=\left(C^{\dagger}\right)^{\top}$ and $\left(R^{\top}\right)^{\dagger}=\left(R^{\dagger}\right)^{\top}$.
c) Let $A=C R$ be a $C R$ decomposition of A with $C \in \mathbb{R}^{m \times r}$ and $R \in \mathbb{R}^{r \times n}$ where $r=\operatorname{rank}(A)$. We can rewrite

$$
A A^{\dagger}=C R(C R)^{\dagger}=C R R^{\dagger} C^{\dagger} \stackrel{\text { Prop.4.5.4 }}{=} C I C^{\dagger}=C\left(C^{\top} C\right)^{-1} C^{\top}
$$

and hence we conclude symmetry of $A A^{\dagger}$ since

$$
\left(A A^{\dagger}\right)^{\top}=\left(C\left(C^{\top} C\right)^{-1} C^{\top}\right)^{\top}=C\left(\left(C^{\top} C\right)^{-1}\right)^{\top} C^{\top}=C\left(\left(C^{\top} C\right)^{\top}\right)^{-1} C^{\top}=C\left(C^{\top} C\right)^{-1} C^{\top}=A A^{\dagger}
$$

It remains to prove that $A A^{\dagger}$ is the projection matrix that projects vectors onto $\mathbf{C}(A)$. For this, observe that we have $\mathbf{C}(A)=\mathbf{C}(C)$ (by the properties of $C R$-decomposition) and that we have already shown $A A^{\dagger}=C\left(C^{\top} C\right)^{-1} C^{\top}$. By Theorem 4.2.6, this is exactly the projection matrix that projects vectors onto $\mathbf{C}(C)=\mathbf{C}(A)$.
d) We proceed as in the preceding subtask. Let $A=C R$ be a $C R$ decomposition of A with $C \in \mathbb{R}^{m \times r}$ and $R \in \mathbb{R}^{r \times n}$ where $r=\operatorname{rank}(A)$. We can rewrite

$$
A^{\dagger} A=(C R)^{\dagger} C R=R^{\dagger} C^{\dagger} C R \stackrel{\text { Prop. 4.5.2 }}{=} R^{\dagger} I R=R^{\top}\left(R R^{\top}\right)^{-1} R
$$

and hence we conclude symmetry of $A A^{\dagger}$ since

$$
\left(A^{\dagger} A\right)^{\top}=\left(R^{\top}\left(R R^{\top}\right)^{-1} R\right)^{\top}=R^{\top}\left(\left(R R^{\top}\right)^{-1}\right)^{\top} R=R^{\top}\left(\left(R R^{\top}\right)^{\top}\right)^{-1} R=R^{\top}\left(R R^{\top}\right)^{-1} R=A^{\dagger} A .
$$

By Theorem 4.2.6, the matrix $R^{\top}\left(R R^{\top}\right)^{-1} R=A^{\dagger} A$ is exactly the projection matrix onto the subspace $\mathbf{C}\left(R^{\top}\right)=\mathbf{R}(R)=\mathbf{R}(A)=\mathbf{C}\left(A^{\top}\right)$ (the equality $\mathbf{R}(R)=\mathbf{R}(A)$ is due to the observation that R can be obtained from A through row operations and deleting 0 -rows, and by recalling that row operations preserve the row space).
2. We solve this by using our knowledge on pseudoinverses. Consider the function $f^{-1}: \mathbf{C}(A) \rightarrow \mathbf{C}\left(A^{\top}\right)$ given by $f^{-1}(\mathbf{x})=A^{\dagger} \mathbf{x}$ for all $\mathbf{x} \in \mathbf{C}(A)$. Observe that the composition $f^{-1} \circ f$ is the identity: we know from Exercise 1 that $A^{\dagger} A$ is the projection matrix that projects vectors onto the subspace $\mathbf{C}\left(A^{\top}\right)$, and hence we have

$$
f^{-1}(f(\mathbf{x}))=A^{\dagger} A \mathbf{x}=\mathbf{x}
$$

for all $\mathbf{x} \in \mathbf{C}\left(A^{\top}\right)$. This already implies that f is injective. Observe that with an analogous argument we get

$$
f\left(f^{-1}(\mathbf{x})\right)=A A^{\dagger} \mathbf{x}=\mathbf{x}
$$

for all $\mathbf{x} \in \mathbf{C}(A)$. Hence, f^{-1} is injective as well which implies that both f and f^{-1} are bijective.
Note that the matrix $A^{\dagger} A$ is in general not the identity matrix. It is crucial that the function f is only defined on $\mathbf{C}\left(A^{\top}\right)$ and not on all of \mathbb{R}^{n}.
3. a) The linear transformation given by $A=I-2 \mathbf{v} \mathbf{v}^{\top}$ corresponds to reflection along the hyperplane $H=\left\{\mathbf{x} \in \mathbb{R}^{2}: \mathbf{x} \cdot \mathbf{v}=0\right\}$. To see this, recall that the projection matrix for projection onto $\operatorname{Span}(\mathbf{v})$ is given by $B=\frac{\mathbf{v} \mathbf{v}^{\top}}{\|\mathbf{v}\|^{2}}$. Since \mathbf{v} is a unit vector, this simplifies to $B=\mathbf{v} \mathbf{v}^{\top}$. In particular, this means that $A=I-2 B$ applied to some vector $\mathbf{x} \in \mathbb{R}^{2}$ will subtract the projection of \mathbf{x} onto $\operatorname{Span}(\mathbf{v})$ twice from \mathbf{x} itself. In other words, assume we split \mathbf{x} into two parts $\mathbf{x}=\mathbf{x}_{\mid}+\mathrm{x}_{\perp}$ with $\mathbf{x}_{\mid}=B \mathbf{x}$ and $\mathbf{x}_{\perp} \cdot \mathbf{v}=0$. Then the transformation given by matrix A maps \mathbf{x} to the vector

$$
A \mathbf{x}=(I-2 B)\left(\mathbf{x}_{\mid}+\mathbf{x}_{\perp}\right)=\mathbf{x}_{\mid}+\mathbf{x}_{\perp}-2 B \mathbf{x}_{\mid}-2 B \mathbf{x}_{\perp}=\mathbf{x}_{\mid}+\mathbf{x}_{\perp}-2 \mathbf{x}_{\mid}-2 \mathbf{v} \mathbf{v}^{\top} \mathbf{x}_{\perp}=\mathbf{x}_{\mid}-\mathbf{x}_{\perp}-\mathbf{0}=\mathbf{x}_{\mid}-\mathbf{x}_{\perp} .
$$

A picture of this is provided in Figure 1.

Figure 1: A sketch of the situation in subtask a).
b) Recall from the lecture (notes) that the 2×2 matrix

$$
A^{\prime}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

is a rotation matrix. In particular, it rotates vectors in \mathbb{R}^{2} by $\frac{\pi}{4}$ in counter-clockwise direction. Observe that the matrix A contains A^{\prime} as a submatrix, i.e. we can obtain A^{\prime} by removing the second column and second row from A.

Now consider an arbitrary vector $\mathbf{v} \in \mathbb{R}^{3}$ that is spanned by \mathbf{e}_{1} and \mathbf{e}_{3}, i.e. $\mathbf{v}=v_{1} \mathbf{e}_{1}+v_{3} \mathbf{e}_{3}$. Then applying A to \mathbf{v} has no effect on the second coordinate, but it will rotate that \mathbf{v} in the plane spanned by \mathbf{e}_{1} and \mathbf{e}_{3}. A better way to say this, is that applying A to \mathbf{v} corresponds to a rotation around the axis \mathbf{e}_{2} (the vecor orthogonal to the plane spanned by \mathbf{e}_{1} and \mathbf{e}_{3}).

Finally, observe that this is still true even if we don't have $v_{2}=0$. Since the second column of A is simply \mathbf{e}_{2}, the second coordinate of \mathbf{v} remains unchanged when applying A to it.
In conclusion, the linear transformation given by matrix A is a rotation by $\frac{\pi}{4}$ around the axis spanned by \mathbf{e}_{2}.
c) Note that we did not specify a direction for the rotation in the exercise. The exercise is still well defined because we want to rotate by π and hence the direction does not matter.
We start by thinking about what such a transformation would do to the standard unit vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$. The vector \mathbf{e}_{1} should be mapped to \mathbf{e}_{2}, the vector \mathbf{e}_{2} should be mapped to \mathbf{e}_{1}, and the vector \mathbf{e}_{3} should be mapped to $-\mathbf{e}_{3}$. In particular, we want

$$
A\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
\mid & \mid & \mid
\end{array}\right] \stackrel{!}{=}\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{e}_{2} & \mathbf{e}_{1} & -\mathbf{e}_{3} \\
\mid & \mid & \mid
\end{array}\right] .
$$

From this, we conclude that A has to be the matrix

$$
A=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{e}_{2} & \mathbf{e}_{1} & -\mathbf{e}_{3} \\
\mid & \mid & \mid
\end{array}\right]
$$

4. a) Let $\mathbf{x} \in T$ be arbitrary. By definition, there exist $c_{1}, c_{2}, c_{3} \in \mathbb{R}_{0}^{+}$with $c_{1}+c_{2}+c_{3}=1$ such that $\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}$. We compute

$$
A \mathbf{x}=A\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}\right)=c_{1} A \mathbf{v}_{1}+c_{2} A \mathbf{v}_{2}+c_{3} A \mathbf{v}_{3}=c_{1} \mathbf{v}_{1}^{\prime}+c_{2} \mathbf{v}_{2}^{\prime}+c_{3} \mathbf{v}_{3}^{\prime}
$$

where $\mathbf{v}_{1}^{\prime}, \mathbf{v}_{2}^{\prime}, \mathbf{v}_{3}^{\prime}$ are the vertices of T^{\prime} given in the exercise. We conclude that indeed we have $A \mathbf{x} \in T^{\prime}$.
b) Since T^{\prime} is not a single point, two of its vertices must be distinct. Without loss of generality, assume it is \mathbf{v}_{1}^{\prime} and \mathbf{v}_{2}^{\prime}, i.e. $\mathbf{v}_{1}^{\prime} \neq \mathbf{v}_{2}^{\prime}$. We also know that T^{\prime} is not a triangle. Hence, by definition of a triangle, T is either a line segment or the vertices $\mathbf{v}_{1}^{\prime}, \mathbf{v}_{2}^{\prime}, \mathbf{v}_{3}^{\prime}$ are not distinct. If the former is the case, we are done. Thus, assume now the latter and without loss of generality assume $\mathbf{v}_{3}^{\prime}=\mathbf{v}_{2}^{\prime}$. But then T^{\prime} can be described by just using \mathbf{v}_{1}^{\prime} and \mathbf{v}_{2}^{\prime} as

$$
\begin{aligned}
T^{\prime} & =\left\{c_{1} \mathbf{v}_{1}^{\prime}+c_{2} \mathbf{v}_{2}^{\prime}+c_{3} \mathbf{v}_{3}^{\prime}: c_{1}, c_{2}, c_{3} \in \mathbb{R}_{0}^{+}, c_{1}+c_{2}+c_{3}=1\right\} \\
& =\left\{c_{1} \mathbf{v}_{1}^{\prime}+\left(c_{2}+c_{3}\right) \mathbf{v}_{2}^{\prime}: c_{1}, c_{2}, c_{3} \in \mathbb{R}_{0}^{+}, c_{1}+\left(c_{2}+c_{3}\right)=1\right\} \\
& =\left\{c_{1} \mathbf{v}_{1}^{\prime}+c_{23} \mathbf{v}_{2}^{\prime}: c_{1}, c_{23} \in \mathbb{R}_{0}^{+}, c_{1}+c_{23}=1\right\}
\end{aligned}
$$

Notice that we still have $\mathbf{v}_{1}^{\prime} \neq \mathbf{v}_{2}^{\prime}$ and hence T^{\prime} is a line segment.
c) We prove both directions individually.
$" \Longrightarrow "$ Assume that A has rank 0 and hence $A=0$. Then $\mathbf{v}_{1}^{\prime}=\mathbf{v}_{2}^{\prime}=\mathbf{v}_{3}^{\prime}=\mathbf{0}$ and hence $T^{\prime}=\{\mathbf{0}\}$ is a single point.
$" \Longleftarrow "$ Assume now T^{\prime} is a single point. Then we must have $\mathbf{v}_{1}^{\prime}=\mathbf{v}_{2}^{\prime}=\mathbf{v}_{3}^{\prime}$. Consider the vectors $\mathbf{w}_{1}=\mathbf{v}_{1}-\mathbf{v}_{3}$ and $\mathbf{w}_{2}=\mathbf{v}_{2}-\mathbf{v}_{3}$. Since T is a triangle, these two vectors must be linearly independent (otherwise they would be collinear and we get that T is actually a line segment, and not a triangle). We have $A \mathbf{w}_{1}=A \mathbf{v}_{1}-A \mathbf{v}_{3}=\mathbf{0}$ and also $A \mathbf{w}_{2}=A \mathbf{v}_{2}-A \mathbf{v}_{3}=\mathbf{0}$. Hence, the nullspace of A has dimension two and consequently the rank of A (dimension of its column space) must be zero.
d) We prove both directions individually.
$" \Longrightarrow "$ Assume that A has rank 2. Consider again the two linearly independent vectors $\mathbf{w}_{1}=\mathbf{v}_{1}-\mathbf{v}_{3}$ and $\mathbf{w}_{2}=\mathbf{v}_{2}-\mathbf{v}_{3}$. Since A has full rank, the vectors $A \mathbf{w}_{1}=\mathbf{v}_{1}^{\prime}-\mathbf{v}_{3}^{\prime}$ and $A \mathbf{w}_{2}=\mathbf{v}_{2}^{\prime}-\mathbf{v}_{3}^{\prime}$ must be linearly independent as well. This directly implies $\mathbf{v}_{1}^{\prime} \neq \mathbf{v}_{2}^{\prime} \neq \mathbf{v}_{3}^{\prime} \neq \mathbf{v}_{1}^{\prime}$ and it remains to argue that T^{\prime} is not a line segment.
$" \Longleftarrow "$ Assume now T^{\prime} is a triangle. Consider the vectors $\mathbf{w}_{1}^{\prime}=\mathbf{v}_{1}^{\prime}-\mathbf{v}_{3}^{\prime}$ and $\mathbf{w}_{2}^{\prime}=\mathbf{v}_{2}^{\prime}-\mathbf{v}_{3}^{\prime}$. Since T^{\prime} is a triangle, these two vectors must be linearly independent (otherwise they would be collinear and we would get that T^{\prime} is actually a line segment, and not a triangle). We have $A\left(\mathbf{v}_{1}-\mathbf{v}_{3}\right)=A \mathbf{v}_{1}-A \mathbf{v}_{3}=\mathbf{w}_{1}^{\prime}$ and also $A\left(\mathbf{v}_{2}-\mathbf{v}_{3}\right)=A \mathbf{v}_{2}-A \mathbf{v}_{3}=\mathbf{w}_{2}^{\prime}$. Hence, the column space of A has dimension two and consequently the rank of A (dimension of its column space) is two.
e) We prove both directions individually.
$" \Longrightarrow "$ Assume that A has rank 1. By subtasks c) and d) we get that T^{\prime} cannot be a single point and it also cannot be a triangle. Hence, T^{\prime} must be a line segment by subtask b).
$" \Longleftarrow "$ Assume that T^{\prime} is a line segment. By subtasks c) and d) we know that A cannot have rank 0 and it also cannot have rank 2 . We conclude that is must have rank 1.
5. Let us denote the four given points by $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}_{4}$, respectively. We want to find $r \in \mathbb{R}^{+}$such that the sum

$$
\sum_{i=1}^{4}\left(r-\left\|\mathbf{p}_{i}\right\|\right)^{2}
$$

is minimized. The key observation of this exercise is that this is the least squares objective of the linear system

$$
\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right][r]=\left[\begin{array}{l}
\left\|\mathbf{p}_{1}\right\| \\
\left\|\mathbf{p}_{2}\right\| \\
\left\|\mathbf{p}_{3}\right\| \\
\left\|\mathbf{p}_{4}\right\|
\end{array}\right]=\left[\begin{array}{c}
2 \\
\sqrt{2} \\
\sqrt{\frac{20}{9}} \\
\sqrt{\frac{10}{4}}
\end{array}\right]
$$

Using the normal equations to solve this we get

$$
4 r=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right][r]=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\left\|\mathbf{p}_{1}\right\| \\
\left\|\mathbf{p}_{2}\right\| \\
\left\|\mathbf{p}_{3}\right\| \\
\left\|\mathbf{p}_{4}\right\|
\end{array}\right]=\sum_{i=1}^{4}\left\|\mathbf{p}_{i}\right\|
$$

and hence

$$
r=\frac{1}{4} \sum_{i=1}^{4}\left\|\mathbf{p}_{i}\right\|=\frac{1}{4}\left(2+\sqrt{2}+\sqrt{\frac{20}{9}}+\sqrt{\frac{10}{4}}\right) .
$$

